
Dynamic Cutset Networks:
Supplementary Material

1 TRACTABILITY OF DAOCCN

In this section, we will describe the proof for Theorem 4 which is re-stated below for convenience.

Theorem 4. The forward algorithm has linear time complexity in the size of the unrolled DAOCCN if the following
condition is satisfied: the projection of the AOCT associated with the transition distribution on Xt−1 dominates the AOT
associated with the AOCN representation of α(xt−1) for all 2 ≤ t ≤ T where T is the total number of time slices.

Proof. We will prove this theorem using induction. Let us first define the following terminologies.

Terminology used
AOCT: AND/OR Conditional Tree
AOT: AND/OR Tree
AOCN: AND/OR Cutset Network
AOCCN: AND/OR Conditional Cutset Network

Let Ct−1 be the AOCN associated with the joint distribution over all variables in time slice t − 1 given evi-
dence i.e. α(xt−1) = P (xt−1|e1:t−1) and let Et|t−1 be the AOCCN associated with the transition distribution
P (xt, et|xt−1, et−1). Now let T t−1 and T t|t−1 be the AOT and AOCT associated with Ct−1 and Et|t−1 respectively.
Without loss of generality, let us assume that T t−1 and T t|t−1 are defined on the same set of variables. If not, then we can
repeatedly use the projection operation defined earlier to ensure that this condition is satisfied.

We already know that T t−1 is dominated by T t|t−1 (i.e. T t|t−1 is an I-map of T t−1). We can, therefore, transform the
AOCN Ct−1 into a new AOCN Ct|t−1 defined according to the structure of T t|t−1 as follows: (1) compute the branch
probabilities of T t|t−1 by performing inference over Ct−1 and (2) compute each leaf distribution Lt|t−1

i as
∏

j L
t−1
j such

that xpathT t−1 (L
t−1
j ) ∩ xpathT t|t−1 (L

t|t−1
i )

⊆ x
pathT t|t−1 (L

t|t−1
i )

for all j. Here, xpathT t−1 (L
t−1
j ) refers to the random

variables along the path of tree T t−1 to the jth leaf Lt−1
j . Clearly, this transformation can be performed tractably since

Ct−1 is a tractable model.

We will now show that the joint distribution P (xt,xt−1, et|e1:t−1) can also be represented using tree T t|t−1. Let us
use the AOCN Ct−1,t to represent this distribution. Ct−1,t can be easily constructed from Ct|t−1 by multiplying the leaf
distributions Lt|t−1

j ofCt|t−1 with the corresponding Lt|t−1
i from Et|t−1. Since the number of leaf distributions is bounded

by the model size, this step can also be performed tractably.

Finally, we wish to obtain the message α(xt) = P (xt|e1:t). We can easily obtain this from Ct−1,t by summing out over
xt−1 which will result in a hierarchical mixture model with multiple latent variables. Let us call this AOCN Ct. Since it is
already given that the projection of Ct on the subset of Xt is dominated by the AOCT T t+1|t of the transition distribution
P (xt+1, et+1|xt, et), we can repeat this procedure for all time slices up to T . This completes the proof.

Fig. 3 illustrates the concept of tree transformations used in the theorem with an example. Next, we provide constructive
proofs for the case when the AOCT associated with the transition distribution is an OR tree; namely proofs that do not use
properties of AND/OR graphs such as dominance and only use first principles. We consider two cases: (1) DAOCCNs
with OR Conditional Cutset Networks and No Evidence; and (2) DAOCCNs with OR Conditional Cutset Networks and
Evidence.
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Figure 3: This figures shows (a) a sample AOCN Ct−1 that represents the joint distribution α(xt−1) = P (xt−1|e1:t−1)
with the jth leaf distribution represented by Lj(Y

t−1) where Y t−1 ⊆Xt−1 (b) a sample AOCCN Et|t−1 that represents
the transition distribution P (xt, et|xt−1, et−1) where the ith leaf distribution is represented by Pi(X

t) (c) AOCN Ct|t−1

whose AOT follows the same format as the AOCT in Et|t−1 by making parameter transformations and (d) AOCN Ct−1,t

that represents the joint distribution P (xt−1,xt, et|e1:t−1) obtained by multiplying Ct|t−1 with Et|t−1. The AND nodes
are represented using the rectangular nodes while the leaf nodes are represented using dashed rectangles. The values
along the OR node branches represent context-specific probability values and individual domain values of the conditioning
variable in the AOTs and AOCTs respectively.



1.1 DAOCCNs with OR Cutset Networks and No Evidence

Here, we are interested in computing the marginal probability distribution over variables in the last time slice given no
evidence. For large T , the marginal distribution is roughly equal to the stationary distribution associated with the Markov
chain. Let Xt = {Xt

1, . . . , X
t
n} be the set of query variables at time slice t. We define the forward message α(Xt) at the

t-th time slice as a cutset network (or a mixture of cutset networks) that defines the following distribution:

α(Xt) = P (Xt) (1)

Let {f t1, .., f to} be a set of mutually exclusive and collectively exhaustive features defined over Xt. Since the features
are mutually exclusive and collectively exhaustive, we can treat this set as a random variable F t and define a probability
distribution P (F t) on it such that P (F t = f tj ) represents the probability that feature f tj is True. We also define the
conditional distribution P (Xt|F t = f tj ) which denotes the distribution of Xt given that a certain feature f tj is True.
For instance, P (Xt

1 = 0, Xt
2 = 1, Xt

3 = 1|Xt
1 ∨ Xt

2) will give the conditional probability mass of the assignment
(Xt

1 = 0, Xt
2 = 1, Xt

3 = 1) conditioned on the feature Xt
1 ∨Xt

2 = 1. The joint distribution P (Xt,Xt−1) can therefore
be expressed as follows:

P (Xt,Xt−1) =

m∑
j=1

P (Xt|f t−1j ,Xt−1) · P (Xt−1|f t−1j ) · P (f t−1j ) (2)

Under the assumption that each feature f t−1j is associated with the leaf node of the OR conditional tree (Note that each
leaf node of an OR conditional tree can be thought of as a feature obtained by conjoining the assignments along the path
from the root to the leaf. Then, the set of leaf nodes of an OR tree is a set of mutually exclusive and exhaustive features),
we have P (Xt|f t−1j ,Xt−1) = P (Xt|f t−1j ). Therefore, we can rewrite Eq. (2) as:

P (Xt,Xt−1) =

m∑
j=1

P (Xt|f t−1j ) · P (Xt−1|f t−1j ) · P (f t−1j ) (3)

We can generate the message α(Xt) from this distribution by summing out Xt−1 as follows:

α(Xt) =
∑
xt−1

P (Xt,xt−1) (4)

=
∑
xt−1

m∑
j=1

P (Xt|f t−1j ) · P (xt−1|f t−1j ) · P (f t−1j ) (5)

=

m∑
j=1

P (Xt|f t−1j ) · P (f t−1j ) ·
( ∑

xt−1

P (xt−1|f t−1j )
)

(6)

=

m∑
j=1

P (Xt|f t−1j ) · P (f t−1j ) (7)

This is nothing but a mixture model with m components over Xt and is tractable to compute. Specifically, the distribu-
tions P (Xt|f t−1j ) correspond to the leaf nodes of the conditional model while the mixture probabilities P (f t−1j ) can be
computed tractably (in linear time) from the previous message α(Xt−1) (since it is also tractable) and projected on to the
branches of the new structure to create a mixture of cutset networks.

In summary, the forward algorithm runs in linear time when the AOCT associated with the transition distribution is an OR
tree and we have no evidence. Next we show that the forward algorithm runs in linear time in presence of evidence when
the AOCT associated with the transition distribution is an OR tree.

1.2 DAOCCNs with OR Conditional Cutset Networks and Evidence

Let Xt = {Xt
1, .., X

t
n} and Et = {Et

1, .., E
t
m} be the set of query and evidence variables at time slice t and Gt be the

random variable associated with the set of o mutually exclusive and collectively exhaustive features {gt1, .., gto} defined
over Xt and Et. The forward message α(Xt) for this version can be defined as follows:



Algorithm 1 LearnAOCN
Input: Training set D, variable set X , max height H , sample threshold T
Output: AND/OR cutset network C representing P (X)

1: if H = 0 or |D| <= T then
2: return LearnChowLiuTree(D,X)

3: Xpartitions ←Heuristically divide X into a number of disjoint partitions {Xp1 , ..,Xpm} such that
⋃m

i=1 Xpi = X
and Xpi ∩Xpj = ∅ for all i 6= j

4: if |Xpartitions| > 1 then
5: C.root type← AND
6: C.probabilities← { }
7: C.children← { }
8: for each Xpi in Xpartitions do
9: C.children← C.children ∪ LearnAOCN(D,Xpi , H − 1, T )

10: else
11: C.root type← OR
12: Xv ← Heuristically select from X for splitting
13: for each d in domain(Xv) do
14: DXv=d ← select all instances in D where Xv = d and drop feature corresponding to Xv

15: C.probabilities[d]← |DXv=d|/|D|
16: C.children[d]← LearnAOCN(DXv=d,X \Xv, H − 1, T )

17: return C

α(Xt) = P (Xt, et|e1:t−1) (8)

Similar to the procedure used in the previous subsection, we calculate α(Xt) by summing out Xt−1 from the joint
distribution P (Xt,Xt−1, et|e1:t−1):

α(Xt) =
∑
xt−1

P (Xt,xt−1, et|e1:t−1)

=
∑
xt−1

m∑
j=1

P (Xt, et|gt−1j ) · P (xt−1|gt−1j , e1:t−1) · P (gt−1j |e1:t−1)

=

m∑
j=1

P (Xt, et|gt−1j ) · P (gt−1j |e1:t−1) ·
( ∑

xt−1

P (xt−1|gt−1j , e1:t−1)
)

=

m∑
j=1

P (Xt, et|gt−1j ) · P (gt−1j |e1:t−1)

Thus α(Xt) is a mixture model defined over Xt and et. P (Xt, et|gt−1j ) can be directly computed from the conditional
model while P (gt−1j |e1:t−1) can be computed tractably, in linear time, from the previous message α(Xt−1) since:

P (gt−1j |e1:t−1) = P (gt−1j |et−1, e1:t−2)

∝ P (gt−1j , et−1|e1:t−2)

Thus, in summary, the forward algorithm has linear time complexity in the size of the unrolled DAOCCN if the AOCT
associated with the transition distribution is an OR tree. This proves Corollary 5 (see section 4.1 in the main paper).

2 LEARNING ALGORITHMS FOR DCN

As discussed in the main paper, a DCN comprises a prior distribution of the form P (X1,E1) and a transition distribution
of the form P (Xt,Et|Xt−1,Et−1) which can be modeled using an AOCN and a CCN or AOCCN respectively. The



Algorithm 2 LearnCCN
Input: Training set D, variable sets X,Y , sample threshold T
Output: Conditional cutset network C representing P (Y |X)

1: if |D| <= T then
2: return LearnConditionalChowLiuTree(D,X,Y )

3: for all pairs (Yi, Yj) ∈ Y , i 6= j do
4: Compute P̄ (Yi, Yj) using calibrated classifiers
5: Ypartitions ← Heuristically divide Y into a number of disjoint partitions {Yp1 , ..,Ypm} such that

⋃m
i=1 Ypi = Y

and Ypi ∩ Ypj = ∅ for all i 6= j
6: if |Ypartitions| > 1 then
7: C.root type← AND
8: C.probabilities← { }
9: C.children← { }

10: for each Ypi in Ypartitions do
11: C.children← C.children ∪ LearnCNN(D,X,Ypi , T )

12: else
13: C.root type← OR
14: Yv ← Heuristically select from Y for splitting
15: for each d in domain(Yv) do
16: DYv=d ← select all instances in D where Yv = d and drop feature corresponding to Yv
17: C.probabilities[d]← P̄ (Yv = d|X)
18: C.children[d]← LearnCCN(DYv=d,X,Y \ Yv, T )

19: return C

LearnAOCN (Algorithm 1) and LearnCCN (Algorithm 2) algorithms have been taken from the original papers by Rahman
et al. (2014, 2016c, 2019) and have been modified to fit our notation. The LearnAOCCN algorithm (Algorithm 3) can be
used to learn the AOCCN model we introduced in the main paper that guarantees tractable inference for the entire network.

3 EXPERIMENTAL DETAILS

3.1 Dynamic Sum-Product Networks (DSPNs)

The DSPN models had three hyperparameters - the number of interface nodes I (between 2 and 7), the maximum depth of
the template network at each time slice (up to 7) and the maximum size of each multivariate node (up to 7). We selected
the hyperparameters using the validation set.

3.2 Dynamic tree Bayesian Networks (CLDBNs)

We learn dynamic Bayesian networks as follows: a tree-structured Bayesian Network was learnt over the static data (i.e.
Xt) using the Chow-Liu tree learning algorithm. This structure was first duplicated for the previous time slice Xt−1 and
then connected to the Xt structure by drawing an edge from each Xt−1

v to Xt
v for all Xt

v ∈ Xt. We call this model
Chow-Liu Dynamic Bayesian Networks (CLDBNs).

3.3 Long Short Term Memory networks (LSTMs)

The LSTM model comprised a single layer of LSTM nodes with a time-distributed dense layer having sigmoid activations
stacked on top (see Figure 4). Each variable Xt

v ∈ Xt had a corresponding sigmoid node in the output layer per time
slice which represented the probability distribution P (Xt

v|ht−1) where ht−1 is the hidden state information at time slice t.
The log-likelihood for each sequence of length T was then computed as

∑T
t=1

∑
v logP (Xt

v|ht−1). Each sequence in the
dataset was padded with 0’s in the beginning in order to model the prior distribution for the first time slice (i.e. P (X1|h0))
and at the end in order to make all the sequence lengths the same. The hyperparameters used for this model were: (a)
the number of hidden units (up to 64) (b) the batch size (up to 64) (c) the dropout percentage from 0.2 to 0.5. Again, the
hyperparameters were tuned using the validation set.



Algorithm 3 LearnAOCCN
Input: Training set D, variable sets X,Y , max conditional height H1, max cutset network height H2, conditional sample
threshold T1, cutset network sample threshold T2
Output: AND/OR conditional cutset network C representing P (Y |X)

1: if H1 = 0 or X = ∅ or |D| <= T1 then
2: D′ ← drop all features from D corresponding to each Xv ∈X
3: return LearnAOCN(D′,Y , H2, T2)

4: Xpartitions ←Heuristically divide X into a number of disjoint partitions {Xp1 , ..,Xpm} such that
⋃m

i=1 Xpi = X
and Xpi ∩Xpj = ∅ for all i 6= j

5: if |Xpartitions| > 1 then
6: C.root type← AND
7: C.probabilities← { }
8: C.children← { }
9: for each Xpi in Xpartitions do

10: C.children← C.children ∪ LearnAOCCN(D,Xpi ,Y , H1 − 1, H2, T1, T2)

11: else
12: C.root type← OR
13: Xv ← Heuristically select from X for splitting
14: for each d in domain(Xv) do
15: DXv=d ← select all instances in D where Xv = d and drop feature corresponding to Xv

16: C.probabilities[d]← |DXv=d|/|D|
17: C.children[d]← LearnAOCCN(DXv=d,X \Xv,Y , H1 − 1, H2, T1, T2)

18: return C

3.4 Dynamic AND/OR Conditional Cutset Networks (DAOCCNs)

The DAOCCN model was a DCN where the conditional model was a mixture of AOCCNs.It was learnt using the learning
algorithm outlined in the previous section with the mixture coefficients being learnt using the EM algorithm. The model
has four hyperparameters – (a) the maximum depth of the prior distribution (up to 7) (b) the maximum depth of the decision
tree portion of the transition distribution (up to 7) (c) the maximum depth of the cutset leaves (up to 7) of the transition
distribution (up to 7) (d) the number of mixture components (up to 10) and (e) the adaptive threshold β for partitioning
(tuned between 0.1 to 1.0).

3.5 Dynamic Conditional Cutset Networks (DCCNs)

The DCCN model used a CCN as the conditional model instead of an AOCCN. The calibrated classifier used was logistic
regression with L1 regularization with the regularization parameter λ = 1. For all particle filtering experiments, we took
K = 500 weighted particles.

Table 3 contains the results for all experiments performed on five real-world datasets.
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Figure 4: LSTM architecture used for all experiments. At each time slice t, the input variables of the sequence {Xt
1, .., X

t
n}

are used to predict a set of marginal distributions Y t+1 = {P (Xt+1
1 |ht), .., P (Xt+1

n |ht)} for the next time slice t + 1.
Note that the input to the first LSTM unit is a 0 vector, which is used to model the prior distribution P (X1|h0). These
marginal distributions are modeled using sigmoid functions. During inference time, only a fixed percentage of values
of Xt (say, {Xt

1, .., X
t
m}) are observed. The remaining {Xt

m, .., X
t
n} are imputed by sampling from the marginals

{P (Xt
m|ht−1), .., P (Xt

n|ht−1)}. Each sample (or particle) is weighed according to the posterior likelihood and the
particle filtering algorithm is used to propagate these particles forward. The ELL for the entire sequence is simply
1
K ·

∑K
k=1

∑T
t=1

∑m
v=1 log P (Xt

v|ht−1(k) ) where ht−1(k) is the hidden state of the LSTM generated at the t − 1th time slice
using the kth particle as input for a total of K particles.
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