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Abstract

We consider the problem of filtering in lin-
ear state-space models (e.g., the Kalman fil-
ter setting) through the lens of regret opti-
mization. Specifically, we study the problem
of causally estimating a desired signal, gen-
erated by a linear state-space model driven
by process noise, based on noisy observations
of a related observation process. We define
a novel regret criterion for estimator design
as the difference of the estimation error en-
ergies between a clairvoyant estimator that
has access to all future observations (a so-
called smoother) and a causal one that only
has access to current and past observations.
The regret-optimal estimator is the causal es-
timator that minimizes the worst-case regret
across all bounded-energy noise sequences.
We provide a solution for the regret filter-
ing problem at two levels. First, an horizon-
independent solution at the operator level is
obtained by reducing the regret to the well-
known Nehari problem. Secondly, our main
result for state-space models is an explicit es-
timator that achieves the optimal regret. The
regret-optimal estimator is represented as a
finite-dimensional state-space whose param-
eters can be computed by solving three Ric-
cati equations and a single Lyapunov equa-
tion. We demonstrate the applicability and
efficacy of the estimator in a variety of prob-
lems and observe that the estimator has av-
erage and worst-case performances that are
simultaneously close to their optimal values.
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1 Introduction

Filtering is the problem of estimating the current value
of a desired signal, given current and past values of a
related observation signal. It has numerous applica-
tions in signal processing, control, and learning and a
rich history going back to Wiener, Kolomgorov, and
Kalman. When the underlying desired and observa-
tion signals have state-space structures driven by white
Gaussian noise, the celebrated Kalman filter gives the
minimum mean-square error estimate of the current
value of the desired signal, given the past and cur-
rent of the observed signal Kalman (1960). When all
that is known of the noise sources are their first and
second-order statistics, the Kalman filter gives the lin-
ear least-mean-squares estimate. While these are very
desired properties, the Kalman filter is predicated on
knowing the underlying statistics and distributions of
the signal. It can therefore have poor performance if
the underlying signals have statistics and/or proper-
ties that deviate from those that are assumed. It is
also not suitable for learning applications, since it has
no possibility of ”learning” the signal statistics.

Another approach to filtering that was developed in
the 80’s and 90’s was H., filtering, where the noise
sources were considered adversarial and the worst-
case estimation error energy was minimized (over all
bounded energy noises). While H,, estimators are
robust to lack of statistical knowledge of the under-
lying noise sources, and have some deep connections
to classical learning algorithms (see, e.g. Hassibi et
al. (1996)), they are often too conservative since they
safeguard against the worst-case and do not exploit
the noise structure.

1.1 Main contributions
The contributions can be summarized as follows:

e Motivated by the concept of regret in learning
problems (e.g., Hazan (2019), Simchowitz (2020),
Foster (2020) Abbasi-Yadkori (2011),(2019)), we
propose to adopt it for filtering problems so as to
bridge between the philosophies of Kalman and
H, filtering. Specifically, we formulate a new



Regret-Optimal Filtering

design criterion for filtering which optimizes the
difference in estimation error energies between a
clairvoyant estimator that has access to the en-
tire observations sequence (including future sam-
ples) and a causal one that does not have access
to future observations. We show that the regret
formulation is fundamentally different from the
H, (e.g., the Kalman filter by Kalman (1960))
and H,, criteria (see the tutorial by Shaked et al.
(1992)).

o We show that the regret-optimal estimation prob-
lem can be reduced to the classical Nehari prob-
lem in operator theory (Theorem 1). This is the
problem of approximating an anti-causal operator
with a causal one in the operator norm by Nehari
(1957).

e When the underlying signals have a state space
structure, we provide an explicit solution for the
regret-optimal filter. The solution to the filter-
ing problem is given as via simple steps; first, the
optimal regret value is determined by solving two
Riccati equations and a single Lyapunov, along
with a bisection method with a simple condition
that is given in Theorem 2. Then, the regret-
optimal filter is given explicitly in a state-space
form in Theorem 3.

e We present numerical examples that demonstrate
the efficacy and applicability of the approach and
observe that the regret-optimal filter has average
and worst-case performances that are simultane-
ously close to their optimal values. We therefore
argue that regret-optimality is a viable approach
to estimator design.

2 The Setting and Problem
Formulation

2.1 Notation

Linear operators are denoted by calligraphic letters,
e.g., X. Finite-dimensional vectors and matrices are
denoted with small and capital letters, respectively,
e.g., x and X. The conjugate transpose of a vector
xis denoted by x*. Subscripts are used to denote time
indices e.g., z;, and boldface letters denote the set of
finite-dimensional vectors at all times, e.g., x = {;}.

2.2 The setting and problem formulation

We consider a general estimation problem

y=Hw+vVv
s=Lw (1)

where H and L are strictly causal operators, the se-
quence w denotes an exogenous disturbance w that
generates a hidden state as the output of an operator
‘H, y denotes the observations process and s denotes
the signal that should be estimated. Note that we did
not specify yet the estimator operation or the time
horizon. The setting is quite general and includes for
instance the state-space model that will be presented
in the next section.

A linear estimator is a linear mapping from the obser-
vations to the signal space s and is denoted as § = Ky.
Then, for any IC, the estimation error of the signal is

e=8—s8

—(L-KH -K) ("V")

ézk(i) @)

Note that the estimation error is a function of the driv-
ing disturbance w and the observation noise v. The
squared error can then be expressed as

e(w,v,K) 2 e*e
—wv v (3). o

Different assumptions on the driving disturbance and
the observation noise sequences give rise to differ-
ent estimators: in the stochastic setting to the cele-
brated Kalman filter, and in the deterministic setting
of bounded energy disturbances to H,, estimators. A
common characteristic of these two paradigms is that
if we do not restrict the constructed estimators to be
causal, then there exists a single linear estimator that
attains the minimal Frobenius and operator norms si-
multaneously. This known fact is summarized in the
following lemma.

Lemma 1 (The non-causal estimator). For the Ho
and the Hy, problems, the optimal non-causal estima-
tor is Ko = LH*(I +HH*)~L.

Note that the non-causal estimator cannot be imple-
mented in practice even for simple operator £, H since
it requires access to future instances of the observa-
tions. However, the fact that there is a single esti-
mator that simultaneously optimizes these two norms
(indeed, it is optimal for any norm induced by an in-
ner product) naturally leads to our new approach of
regret optimization. Specifically, we will aim at con-
structing a causal (or strictly causal) estimator that
performs as closely as possible to the non-causal esti-
mator in Lemma 1. The optimal non-causal estimator
is a known result and can be found for instance in

Chapter 10 of (Hassibi, 1999) and (Sabag, 2021).
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The optimal regret can now be defined as

le(w,v,K) —e(w,v,Kp)|

t* = i
FOBTEY = atisal K w,velaom w0 [wZ+[v]?
— min | TETx - T, T . (4)
causal IC

The defined regret metric measures the worst-case de-
viation of the estimation error from the estimation
error of the non-causal estimator across all bounded-
energy disturbances sequences. It is illuminating to
compare now the regret criterion with the traditional
H_, estimation:

inf T:T, , inf
% 1Tk Tk |l

1Tk T — T, T l-
causal causal

H, estimation regret-optimal estimation

The difference is now transparent; in H.,, estimation,
one attempts to minimize the worst-case gain from the
disturbances energy to the estimation error, whereas
in regret-optimal estimation one attempts to minimize
the worst-case gain from the disturbance energy to the
regret. It is this latter fact that makes the regret-
optimal estimator more adaptive since it has as its
baseline the best that any noncausal estimator can do,
whereas the H,, estimator has no baseline to measure
itself against. This fact will be illustrated in Section
4, where we will show that the regret definition results
in an estimator that interpolates between the Hs and
the H,, design criteria.

Simplifying the optimal regret to have a simple for-
mula is a difficult task. Therefore, in this paper, we
define a sub-optimal problem of determining whether
the optimal regret is below, above or equal to a given
threshold ~. This is made precise in the following prob-
lem definition.

Problem 1 (The ~-optimal regret estimation prob-
lem). For a fized vy, if exists, find a causal estimator
IC such that

[T Tie — T, Tico lloo < 7° (5)

A ~-optimal estimator is referred to as any solution to
Problem 1.

Finally, we define a fundamental problem which will
serve as the main tool in the derivations.

Problem 2 (The Nehari problem). Given an anti-
causal and bounded operator U, find a causal operator
K such that |IC — U|| is minimized.

This problem is well known as the Nehari problem. In
the general operator notation, it is difficult to derive
an explicit formulae for the approximation K and the
minimal value of a valid . However, when there is a
state-space structure to the operator U, then the prob-
lem has a closed-form solution that will be presented
in Section 6.

2.3 The state-space model

The setting defined above in its operator notation is
general and cannot have an explicit structured solu-
tion. In many cases, including our problem, imposing
a state space structure for the problem provides means
to obtain explicit estimators. In the state-space set-
ting, the equations in (1) are simplified to

Ti+1 = F.]?i + Gwl
yi = Hzi +v;

where z; is the hidden state, y; is the observation and
s; corresponds to the signal that needs to be estimated.
We also make the standard assumption that the pair
(F, H) is detectable. To recover the state-space setting
from its operator notation counterpart in (1), choose H
and £ as Toeplitz operators with Markov parameters
HF'G and LF'G, respectively.

A causal estimator is defined as a sequence of map-
pings m;(-) with the estimation being $; = m; ({y;};<i)-
The estimation error at time ¢ is

€, = S; — éi- (7)

In a similar fashion, we can define a strictly causal
estimator as a sequence of strictly causal mappings,
ie., 8 = m({y;}j<i). Due to lack of space in this
paper, we will not present the solution for the strictly
causal setting which follows from the same steps that
will be taken for the causal scenario.

Note that we did not specify the time horizon of the
problem so that the formulation here and in the previ-
ous section hold for finite, one-sided infinite and dou-
bly infinite time horizons. However, to simplify the
derivations of the state-space, we will focus here on the
case of doubly-infinite time horizon where the total es-

timation error energy can be expressed as > .~ __efe;.

3 Main results

In this section, we present our main results. We first
provide the reduction of the general regret estimation
problem to a Nehari problem. In Section 3.1, we pro-
vide an explicit solution for the state-space setting in
the causal scenario.

Theorem 1 (Reduction to the Nehari Problem). A
~y-optimal estimator exists if and only if there exists a
solution to the Neahri problem

min [[{V, oA} - K| <1, (8)

where {-}_ denotes the strictly anticausal part of its
argument, and A,V are causal operators that are ob-



Regret-Optimal Filtering

tained from the canonical factorizations

AN =T +HH*
VIV, =y 2L+ HH) L) (9)

Let (v*,Kn) be a solution that achieves the upper
bound in the Nehari problem (8), then a regret-optimal
estimator is given by

K=V Ky +{Vy-KoAL)A™ (10)
where {-}+ denoted the causal part of an operator.

The regret-optimal filter in Theorem 1 holds for any
time horizon of the filtering problem. For general op-
erators £, H, Theorem 1 does not provide practical
means to derive an implementable estimator. Never-
theless, it provides the outline of the necessary tech-
nical steps in order to have explicit characterizations
in the state-space setting. Specifically, in the doubly-
infinite time horizon with a state-space structure, we
will perform two canonical (spectral) factorizations
that appear in Eq. 9 and an operator decomposition
of V.« KoA into its causal and anticausal counterparts.
The proof of Theorem 1 appears in Section 5.

3.1 Solution for the state-space setting

We now proceed to particularize the results to the
state-space representation of the estimation problem.
Towards our main objective to derive the regret-
optimal estimator, we will solve the sub-optimal prob-
lem, i.e., for a given v. Thus, our results are presented
in two steps. First, we provide a simple condition to
verify whether the value of v is valid or not. Then,
assuming that the threshold v has been optimized, we
present the regret-optimal estimator.

Throughout the derivations, there are three Riccati
and a single Lyapunov equations. The first Riccati
equation is the standard one from the Kalman filter,
i.e.,

P=GG*+FPF*—FPH*(I+ HPH*) 'HPF*.
(11)

The stabilizing solution is denoted as P, its feedback
gainas Kp = FPH*(I+HPH*)~! and its closed-loop
system as Fp = F — KpH.

The remaining two Riccati equations depend on the
parameter v and therefore should be part of the opti-
mization on ~. Define the y-dependent Riccati equa-
tions as

W =H*H+~2L*L+ F*WF — K, Rw Kw
Q = —GRy/'G" + FwQFy, - KoRy'Kg,  (12)

with

Kw = Ry/G*'WF; Ry =I1+GWG
Ko =FwQL*R;'; Ro=~"I+LQL*. (13)

Additionally, define the corresponding closed-loop sys-
tems Fg = Fyww — KoL and Fyy = F — GKw, and the
factorizations Ry = R%QR%Q and Rg = Rég/ 2RZQ/ %,
Note that the Riccati equation for () depends on the
solution to the Riccati equation for W.

Finally, define U as the solution to the Lyapunov equa-
tion

U = KoQLPF} + FQUF}. (14)

We are now ready to present the condition for the ex-
istence of a regret-optimal estimator.

Theorem 2 (Condition for Estimator Existence). A
y-optimal estimator exists if and only if

5(Z,1) < 1, (15)

where Z., and 11 are the solutions to the Lyapunov
equations

Il =FplFp +H*(I+HPH*) 'H
Zy = FpZ,Fp+ Fp(P—U)"L*R,'L(P — U)Fp.
(16)

A regret-optimal estimator that attains the optimal
regret can be found by optimizing over v in (15) so
that the maximal singular value is arbitrarily close to
1. From now on, we assume that the value of v is
fixed after such an optimization which fixes in turn
the vy-dependent quantities (W, Q, U, Zy).

A key element in our solution to the regret-optimal es-
timator is a solution to the Nehari problem in Theorem
1. By Theorem 1, we require the best approximation
(in the operator norm) for the anticausal part of the
transfer function VICyA. We denote this anticausal
part as T = {VKoA}_ which appears more explicitly
for the state-space model in (40). We can now provide
a solution for the Nehari problem with 7.

Lemma 2. For any vy, the optimal solution to the Ne-
hari problem with the operator T in (40) can be de-
scribed as a state-space whose input is {c; }, its output
is {B:}, and is given by
Sit1 = In& + Gray
B; = IFn& + TGy oy (17)
with

Gy = (I - FpZ,FplI) *FpZ,H*(I + HPH*)~*/?
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Fy=Fp—Gn(I+HPH")'?H
1= R,"*L(P ~ U)FpII (18)
where (Z.,,I1) are defined in (16).

Although the solution to the Nehari problem is given
for any value of 7, it should be clear that it should be
chosen accordingly with Theorem 2 in order to result
in a y-optimal estimator. The optimal solution to the
Nehari problem can be also compactly represented in
the frequency domain as

Kn(2) =T(I + Fx(2I — Fy)"H)GN.  (19)

We are now ready to present the main result of this
paper, the regret-optimal filter.

Theorem 3 (The Causal Regret-Optimal Estimator).
Given the optimal threshold ~*, a regret-optimal esti-
mator for the causal scenario is given by

§iv1 = F& + Gy
S :ﬁgi‘i‘jyi, (20)
where the estimator matrices are given by

C(Fo0 0
F=|Fy Fy 0 (21)
I3, I35 Fy

ﬁ:(ﬁl RY*TIFy L)

~ KP
G=|Gn(I+HPH")™/?
G
J=L(P—-U)H*(I+ HPH*)™!
+ RGN (I + HPH*) V2, (22)

and the explicit constants are
Foy=-Gn(I+ HPH*) Y?H
By, = FwUH*(I+ HPH*)'H
~ KoRy*NGN(I + HPH*)™V/2H
Py = KoRy TIFy
H =L-L(P-U)H*(I+HPH*)"'H
~ RY*NGN(I + HPH*)"V2H
Gs = KoRy TGN(I + HPH*)™/?
— FwUH*(I+ HPH*)™". (23)

with the Riccati variables defined in (11)-(14) and the
variables (Fn, Gy, 1) defined in (18).

By Theorem 3, given the optimal threshold ~*, the
regret-optimal estimator can be easily implemented.

Note that the y—dependent variables should be com-
puted only throughout the process of determining
7* but not throughout the estimation process itself.
Thus, from computational perspective, the filter re-
quires the same resources as the standard Kalman fil-
ter. Its internal state inherits the finite dimension of
the original state space but has an increased dimension
with a factor of three.

4 Numerical examples

We have performed two numerical experiments to eval-
uate the performance of the regret-optimal estimator
compared to the traditional Hs and H., estimators.
The examples illustrate the efficacy of our new fil-
ter both in the time and the frequency domains. In
the time domain, a realization of the disturbance se-
quences will be generated from some distribution, and
the estimation error energy is computed as a function
of time. The frequency domain, however, is a much
more powerful representation to compare the filters
performance since it evaluates the performance across
all energy-bounded disturbance sequences.

We will now provide basic preliminaries on the fre-
quency domain. The filter in Theorem 3 represents a
time-invariant mapping (i.e, it is a Toeplitz operator)
and, therefore, it can be represent in the frequency-
domain as

K(z)=H(zI — F)"'G + J, (24)

where z € C. The performance of any (linear) esti-
mator is governed by the operator Tk that maps the
disturbance sequences w and v to the error sequences
e. Given a filter K(z), the transfer operator Tk can
be written in the frequency domain as

Tx(2)=[ L(z) - K(2)H(z) —K(2) ], (25)

where H(z) and L(z) are the transfer matrices that
describe the state-space

H(z) = H(zI — F)™'G,
L(z) = L(zI — F)"'G. (26)

That is, they describe the mappings whose input is the
disturbance w and their outputs are the observation y
and the target signal s, respectively.

In the frequency domain, two metrics are used for a
performance comparison, the Frobenius and the oper-
ator norms. The squared Frobenius norm of Ty, which
is what the Hs estimator minimizes, is given by

1

27
| Tk||% = %/0 trace (T (e’*) Tk (¢’*)) dw,
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Figure 1: The squared operator norm as a function of
the frequency parameter for the scalar system in Sec-
tion 4.1. The norm is compared between the Hy, Hoo,
non-causal and our new regret-optimal estimator. As
can be seen, the non-causal estimator achieves the best
performance at all frequencies. As expected, among all
causal estimators, the H,, estimator achieves the low-
est peak, and the Hy estimator attains the smallest
area under its curve (i.e., integral). Our new estima-
tor attains the best of the two worlds as it achieves a
lower peak than the H, estimator, and a comparable
area with the Hs estimator. Precise comparison of the
resulted norms appears in Table 1.

and the squared operator norm of T, which is what
H, estimators minimize, by

2 — * jw jw
ITicll? = mavs & (Tielel)Tic(e?))

where (-) denotes the maximal singular value of a
matrix.

4.1 Scalar systems

We start with a simple scalar system to illustrate the
results. For scalar systems, Tk (z) is a 1-by-2 vector
so we have that

1
2

27
[ e a
0

1Tk || =

Consider a stable and scalar state-space with F' = 0.9,
H =L = G = 1. For such a system, we have con-
structed the optimal Hy, H.,, and non-causal estima-
tors, as well as the regret-optimal estimator. Plotting
the value of ||Tx(e?“)||?, as a function of frequency,
is quite illuminating as it allows one to assess and
compare the performance of the respective estimators
across the full range of input disturbances. This is
done in Figure 1.

As can be seen, the non-causal estimator outperforms
the other three estimators across all frequencies. The
H, estimator minimizes the Frobenius norm, i.e., the
average performance over iid w, which is the area un-
der the curve. However, in doing so, it sacrifices the
worst-case performance and so has a relatively large
peak at low frequencies. The H., estimator minimizes
the operator norm, i.e., the worst-case performance,
which is the peak of the curve. (Here we can see that
the H,.-optimal estimator has the same peak as the
non-causal estimator meaning that it attains the same
worst-case performance.) However, in doing so, it sac-
rifices the average performance and has a relatively
large area under the curve. Recall that the regret-
optimal estimator aims to mimic the non-causal be-
havior. In doing so, it achieves the best of both worlds:
it has an area under the curve that is close to that of
the Hs-optimal estimator (0.6 vs 0.65), and it has a
peak that significantly improves upon the the peak of
the Hs-optimal estimator. The precise norms are pre-
sented in Table 1.

Table 1: Performance for the Scalar Example

| ITkll I Tx|* Regret
Noncausal estimator 0.46 0.99 0
Regret-optimal 0.65 1.1 0.38
Hs estimator 0.6 1.27 0.7
H_, estimator 0.94 0.99 0.71

It is also illuminating to examine our new regret cri-
terion in Fig. 4.1. We plot the regret of the causal
estimators with respect to the non-causal estimator.
It can be seen that at low frequencies, the H, esti-
mator has the lowest regret, while at mid-frequencies

0.8 "
_H2

0.7 Regret-optimal ]

—H_

061

051

0.4¢

037

021

0.1

T (€7)Tic(€7°) = T, (€7)Ticy ()]

0 /2 T 3n/2 27

Frequency w

Figure 2: Illustration of the regret criterion of the fil-
ters across all frequencies. Ac expected, the regret-
optimal filter is the one with the lowest peak.
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it is the Hs estimator. However, their peak is almost
twice that of the regret-optimal estimator that main-
tains almost a constant regret across all frequencies.

4.2 Tracking example

Here, we will study a one-dimensional tracking prob-
lem whose state-space model is

()= 0 ) G+ ()

yi=(1 0 (i?) +; (27)

K2

S = Ti+1, (28)

where x; corresponds to the position, v; corresponds
to velocity and a; to the exogenous acceleration. The
desired signal is the position of the object at the next
time step s; = x;41, and the observations signal is the
noisy position y; = x; + v;, where v; is measurement
noise. The frequency reponse of the various estimators
is presented in Fig. 3 and Table 2 summarizes their
performance.

Table 2: Performance for the Tracking Experiment

| ITkll3 I Tx|* Regret
Noncausal estimator 0.39 1 0
Regret-optimal 0.82 1.24 0.65
Hy estimator 0.77 14 1.02
H_, estimator 0.97 1 0.95

The time domain performance of the various filters is
given in Fig. 4. We plot the time-averaged estima-
tion error energy as a function of time for the Hs,

1.4 7\

—_—H,

1.2 === Non-causal

=== Regret-optimal

—

0.8

0.6

1Tk ()]

0.4

0.2

0 /2 T 37/2 2
Frequency w

Figure 3: The frequency response of the various esti-
mators for the tracking example in Section 4.2. Com-
parison of the corresponding norms appears in Table
2.

4
—_—H
2
s 35 —n
ko 3 —— Regret-optimal =~
i
Ty 25
— 4 5
o
S 15
D
) 1
4 - ———
< 0.5
o L L L L
0 200 400 600 800 1000

Time ¢

Figure 4: Time-averaged estimation error energy as
a function of time for the tracking example with two
different disturbances. In the bottom three curves,
the state-space model is driven with Gaussian distur-
bances. In the top three curves, it is driven with an
adversarial disturbance.

H,, and regret-optimal filters for two different types
of noise. One is the white Gaussian noise for which
the Hs filter is the optimal, and one is an adversarial
noise for which the H, filter is the best. As can be
seen, the regret-optimal filter has a performance that
interpolates nicely between these filters and achieves
good performance across a range of disturbances.

5 Proof of Theorem 1

Recall that we aim to solve the sub-optimal problem
TiTe — T, Ty V1. (29)

By the Schur complement and the Matriz inversion
lemma (in its operator form), we can write

Tic(y 21 =y 2T, (L + 7T, Ty ) " Tiey ) T = I

It can now be shown that for any I,

I
—H
= T, Ty, (30)

TTg, = (L—KH —K) ( ) (I+HH)" L

Combining the simplified condition with (30) gives
TicTx 221+ 7T, T, (L + 7T Tie,) " T I,

=721+ Tic, T, (V2T + Tico Tie, ) T, T, -
(31)

By the completion of square, (30) can be written as

TicTg = (K = Ko)(I +HH")(K — Ko)* + Tk, T,
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and rearranging the RHS of the condition gives

/72 I + T]CO T)"C‘o (72] + TK:O TEO ) ! T]CO T;‘C‘o - TKO Tféo

= (I +7 Tk Tie,) ™ (32)
To conclude, the condition can be written as
(K = Ko)(I +HH")(K — Ko)*
<AVAI4+~y2L(I +HH) L)t (33)
By defining the canonical factorizations
AN =T+ HH”
VIV, =7 2T+ LI+ HH)TILY).  (34)

and applying the Schur complement again gives that
(KA = KoA)*' VIV, (KA - KoA) = 1. (35)

Note that V,KA is a causal operator. Now, let
V,KoA = § + T where S is a causal operator and
T is a strictly anticausal operator (both operators de-
pend on v implicitly). Then, if £y is a solution to
the Nehari problem ||y — 7| < 1, then a y-optimal
estimator is given by V=1(Ky + S)A~L

6 Proof Outline of the State-Space

In this section, we present the main lemmas that con-
stitute the explicit solution for the state-space setting.
As written above, there are three lemmas to obtain a
Nehari problem. We then use an explicit solution to
the Nehari problem to obtain the frequency-domain
counterpart of Theorem 3. This solution can be easily
converted into the state-space setting in Theorem 3.
Both the Nehari problem solution and proofs of the
lemmas appear in the supplementary material.

The following theorem is an equivalent formulation of
our main result in the frequency domain.

Theorem 4 (The Regret-Optimal Estimator in Fre-
quency Domain). Given the optimal threshold v*, a
regret-optimal estimator is given by

K(z) = V;*l(z)[KN(z) +S(2)] AT 2) + Ku,(2),
with
Vil(z) = (I + L(zI - Fw) " 'Kq)Ry®
S(z) = —Rg'?L(2I — FQ) ' FQUH*(I + HPH*)™*/?
~ Ry'’LUH*(I + HPH*)~*/?

A Y 2)=(I+HPH*) " Y*(I+ H(2I — F)"'Kp)~!,
(36)
where all constants are defined in (11)-(14), Kn(z) is

given in (19) and Kp,(2) is the causal Hy (Kalman)
filter:

Kp,(2) = LPH*(I + HPH*)™!

+ L(I — PH*(I + HPH*) " 'H)(2I — Fp) 'Kp.

It is interesting to note that the causal Kalman filter
naturally appears as part of our solution to the regret-
optimal estimation. This implies that the regret-
optimal estimator is a sum of two terms; the first is a
Kalman filter which is designed to minimize the Frobe-
nius norm of the operator T, while the other term is
resulted from the Nehari and guarantees that the re-
gret criterion is minimized.

We will now state the main technical lemmas consec-
utively. The following lemma is a regarding the first
canonical spectral factorization.

Lemma 3. The transfer function I + H(2)H*(z7*)
can be factored as

A(2)A*(z7*) =T+ H(z)H*(z7%)
with
A(z) = (I +H(zI — F)"'Kp)(I + HPH*)Y/? (37)

where (I + HPH*)Y/?(I + HPH*)*/?> = I + HPH*,
Kp = FPH*(I + HPH*)™! and P is the stabilizing
solution to the Riccati equation

P =GG*+ FPF* — FPH*(I + HPH*) 'HPF*.

Moreover, the transfer function A~1(2) is bounded on
2| > 1.

In the second factorization, the expression we aim to
factor is positive but the order of its causal and anti-
causal components are in the reversed order. This is
resolved with an additional Riccati equation.

Lemma 4. For any v > 0, the factoriza-
tion Vi(z7*)Vy(z) =~ + 7 2L(z)(I +
H*(27*)H(2))"tL*(2™*)) holds with

V. (2) = Ry'*(I - L(2I — Fo) ' Kq), (38)

where Rg = RngzQ/z, Q@ is a solution to the Riccati
equation

Q= —GRy/'G* + FwQF}y — KqRQK),

and K = FwQL*R;" and Rg = v*1+LQL* and the
closed-loop system Fo = Fyw — KgL. The constants
(Fw, Kw) are obtained from the solution W to the
Riccati equation

W =H'H+ L)L, + F*WF — Ky, RwKw, (39)

and Kyw = Ry/G*WF and Ry = I + G*WG with

Rw = R’Ri? and Fyy = F — GKy .

The following lemma is the required decomposition.
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Lemma 5. The product of the transfer matrices
Vo (2)L(2)H*(z7*)A™*(27*) can be written as the
sum of an anticausal transfer function

T(2) = Ry’ L(P-U)F}
(- Fp)TYH (I+HPH*) ™2 (40)
and a causal transfer function
S(z2) =V (2)L[(zI — F) *F+I|PH*(I+HPH*)~*/?
~ Ry'?L{(2] — Fo) 'Fo + IUH*(I + HPH*)~*/?
where U solves U = KqLPFp + FQUFE.

It can be shown that the first line of S(z) is
V4 (2)Kw,(2)A(z) where Kg,(z) is the optimal Ho
estimator. By having the decomposition and the an-
ticausal T'(z) in part, we can apply the results of the
Nahari problem (in the supplementary material) to ob-
tain Lemma 2 and consequently Theorem 4.

7 Conclusions and Outlook

We introduced a regret criterion for filters design, In
the state-space model case, we derived an explicit filter
that obtains the optimal regret. The resulted regret-
optimal filter is adaptive with respect to the tradi-
tional stochastic and the robust approaches since it
aims to minimize the distance to a clairvoyant estima-
tor that has an access to future observations regard-
less of their generation. The performance of the novel
regret-optimal estimator was compared with the Hy
and the H., estimators in particular examples, where
it is shown that it nicely interpolates between the Ho
and the H,, estimators.

An interesting research direction is to study filters de-
sign in semi-adversarial environments. Specifically, the
driving disturbance is adversarial but the measure-
ments noise is assumed to be stochastic. This regret
criterion is less pessimistic than our regret criterion
since only the driving disturbance is assumed to be
adversarial. Finally, we believe that it is possible to
extend the online learning tools developed for the LQR,
problem to the filtering problem studied in this paper.
The main difference of our setting and the online learn-
ing settings (in adversarial environments e.g. Hazan
(2019)) is the disturbance nature. In our setting, it is
an energy-bounded sequence, while in online learning
each instance of the sequence has a bounded ampli-
tude. Thus, it is intriguing to understand the funda-
mental trade-off in filters performance due to different
notions of adversarial environments.
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