Appendix

1 DPCG algorithm with Gaussian noise

For all k € [K], let Y () ~ N(0,6%I). In order to compute the fo-sensitivity of the gradient, We can write:
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The Gaussian mechanism combined with the basic composition theorem provide the following privacy guarantee
for the DPCG algorithm with Gaussian noise.

Theorem 1. (Dwork and Rothl, |2014]) Let € € (0,1) be arbitrary. For ¢ > 21In(1.25K/§), the DPCG algorithm
2cK+/[V]A

under Gaussian noise with parameter o > is (€, 0)-differentially private.
We now analyze the approximation guarantee in this setting. First, we remind the reader that the following holds

using Lemma 1 of the paper:

EL@)] > (1- /(@) - Gp - 2.

where if D = N(0,021), we have Gp < 2rank(M)Ey 0,021 |Y |loo and Gp < 2 Ey ar(0,021)|Y || oo for matroid
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and knapsack constraints respectively. For a |V|-dimensional Gaussian random vector Y ~ N(0,02I), we can
write:

E[Y[leo < O(ovIn([V])),

1
B(Y |l ~ ov/2I(V]) < 20v/I(K)) > 1 - .
Combining the above results and setting o = w for ¢> > 2In(1.25K/6), the following holds for matroid
and knapsack constraints respectively:
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Compared to the Laplace noise, the additive factor in the approximation guarantee using the Gaussian noise
is smaller by an order of \/|V|In(|V]). However, this improved accuracy comes at the price of achieving
(¢, 0)-differential privacy as opposed to e-differential privacy using the Laplace noise.



Algorithm 1 FTRL template for Online Linear Optimization (Agarwal and Singhl [2017)

Input: Noise distribution D, regularizer g(x).
Initialize an empty binary tree B to compute differentially private estimates of 22:1 L.

Sample n}, . .. ,ngln 1 independently from D.

Lo = Z{iﬂ nj.

fort=1,...,7 do
Choose z; = argmin,¢ » (n(z, Li_1) + g(z)).
Observe ¢; and suffer a loss of (¢, x).
(L, B) = TBAP(¢;, B,t,D,T).

end for

2 Algorithm 1 of Agarwal and Singh| (2017)

The DPMFW algorithm exploits Algorithm 1 of |Agarwal and Singh| (2017)) for differentially private online linear
optimization as a sub-routine. We explain this algorithm in more detail below. The algorithm is provided in
Algorithm [1} Consider an online linear optimization problem over T rounds where at each round ¢ € [T}, the
algorithm chooses an action z; € X, X is the fixed domain set, and upon committing to this action, a loss
vector ¢; is revealed and the algorithm incurs the loss (¢;, z;). Algorithm [1]is identical to the well-known FTRL
algorithm except the fact that instead of 22;11 ¢, a noisy partial sum of the loss vectors L,_; is used in the
update rule. This noisy partial sum is obtained using the Tree Based Aggregation Protocol (TBAP) which was
used in prior works as well (Dwork et al.| [2010; Jain et al., 2012).

3 Missing proofs

3.1 Proof of Lemma 2

The upper bounds for R follow from ||z||; < rank(M), Vz € P(M) and ||z||; < ﬁ, Vo e {z 0,1V Tx <1}

Cousider the (i, j)-th entry of the Hessian of f. Let mp = max;ev F'({7}). We can write:

V2, £(2)] = [Ere: [F(RU{G,5}) — F(RU L\ {3}) = F(RU G} \ {i}) + F(R\ {3, 5})]|
<max{F({i}), F{j})}

<mpg.

Thus, for all k € [K] and j € V, using the mean-value theorem, we have:
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Therefore, we can conclude ||V f(z®) 4+ Luy) — Vf(2®)| o < mp||£vkl1 and thus, L < mp.



3.2 Proof of Lemma 5

First, note that by definition, the function g is monotone DR-submodular. Thus, similar to the proof of Lemma 1
in the paper, we can write:
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where (a) is due to L-smoothness of g, (b) follows from the update rule of the algorithm, (c¢) and (e) use the
monotonocity of g and (d) exploits concavity of g along non-negative directions. Using the definition of Gp, if we
take expectation of both sides, and apply the inequality recursively for all k € [K], we obtain:

Blg(aX V)] — g(a") > (1 - )X (Blo(a)]) - 9(a")) - G - -
=0

Rearranging the terms and using the inequality (1 — %)K < %7 we can write:
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Using the update rule of the algorithm, we have:
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where the inequality is due to the update rule of the algorithm for vg. Also, using the definition of ¢ and
DR-submodularity of f, the following holds:
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Putting the above inequalities together, we have:
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3.3 Proof of Theorem 4

Similar to the offline setting, assume that all utility functions {f;}~_; are monotone DR-submodular and L-smooth
with respect to the norm || - [|;. We can write:
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We can use the DR-submodularity and monotonocity of the utility function f; to write:
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Combining the above inequalities, we have:
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Rearranging the terms and taking sum over ¢t € [T, we obtain:
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Applying the above inequality recursively for all k € [K], we have:
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Rearranging the terms, we can equivalently write:
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Using Theorem 3.1 of |Agarwal and Singh| (2017) with the regularizer g(z) = ZLZ‘l x; In(z;), we have the following
for all k € [K]:

T
E[> (a* — v, Vfu(z)] < O(RYT|V]) + Wp,
t=1
where Wp := Ez~p [ maxsep(Z, ) — mingep(Z,x)| and D’ is the distribution induced by the sum of [InT7]
independent samples from D = Lap!V (A) or D = N(0,02%I). For matroid constraints, we can write:
max(Z, z) —min(Z, z) < ||z]l1]|Z]loc + l|z]1[1 2]l
= 2[|z[[11Z]loo
< 2rank(M)[In T Y || oo,

where Y ~ D. Therefore, Wra, < 2rank(M)[InT|E||Y || holds. Similarly, we have Wy, <
for knapsack constraints. If D = Lap‘vl()\), we have:
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EY]lw < O In(|V])).

If D = N(0,02I), the following holds:
E[Y]leo < O(av/In(|V])).



Setting A = 2mr Vil TGV 2KIn(/9) ynd using the result of Lemma 2, we have the following regret bound using the
Laplace noise and under matroid and knapsack constraints respectively.

E[Ry] < O(ank(M)\/TTn[V]) + mF(raI;;éM))QT +O(rank(/\/l)|V|ln|V€|1n T\/Kln(l/é)),
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Also, we can use the advanced composition theorem to conclude that the algorithm is (e, §)-differentially private.

2
Setting 02 = W In? Tln(%), the regret bound using the Gaussian noise for matroid and knapsack
constraints are as follows:

mp (rank(M))*T O(rank(M)\/WIHQT\/Kln(l/é) In(£pT)

E[Rr] < O(rank(M)\/TIn|V]) + o |
B[Ry] < oYWy meT o I V]n® 7/ K n(1/5) =)
= Cmin 2CrzninK Cmin€ :

Similarly, the algorithm is (e, § + §)-differentially private using the Gaussian noise. Setting K = O(v/T) in the
above inequalities, we obtain the regret bounds as stated.
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