
Appendix

1 DPCG algorithm with Gaussian noise

For all k ∈ [K], let Y (k) ∼ N (0, σ2I). In order to compute the `2-sensitivity of the gradient, We can write:

‖∇fD(x)−∇fD′(x)‖2 =

√√√√ |V |∑
i=1

|∇ifD(x)−∇ifD′(x)|2

≤

√√√√ |V |∑
i=1

(2∆)2

= 2
√
|V |∆.

The Gaussian mechanism combined with the basic composition theorem provide the following privacy guarantee
for the DPCG algorithm with Gaussian noise.
Theorem 1. (Dwork and Roth, 2014) Let ε ∈ (0, 1) be arbitrary. For c2 > 2 ln(1.25K/δ), the DPCG algorithm

under Gaussian noise with parameter σ ≥ 2cK
√
|V |∆
ε is (ε, δ)-differentially private.

We now analyze the approximation guarantee in this setting. First, we remind the reader that the following holds
using Lemma 1 of the paper:

E[f(x)] ≥ (1− 1

e
)f(x∗)−GD −

LR2

2K
,

where if D = N (0, σ2I), we have GD ≤ 2rank(M)EY∼N (0,σ2I)‖Y ‖∞ and GD ≤ 2
cmin

EY∼N (0,σ2I)‖Y ‖∞ for matroid
and knapsack constraints respectively. For a |V |-dimensional Gaussian random vector Y ∼ N (0, σ2I), we can
write:

E‖Y ‖∞ ≤ O(σ
√

ln(|V |)),

P
(
‖Y ‖∞ − σ

√
2 ln(|V |) ≤ 2σ

√
ln(K)

)
≥ 1− 1

K2
.

Combining the above results and setting σ =
2cK
√
|V |∆
ε for c2 > 2 ln(1.25K/δ), the following holds for matroid

and knapsack constraints respectively:

E[f(x)] ≥ (1− 1

e
)f(x∗)− LR2

2K
−O(

rank(M)K
√
|V | ln(|V |) ln(K/δ)∆

ε
),

E[f(x)] ≥ (1− 1

e
)f(x∗)− LR2

2K
−O(

K
√
|V | ln(|V |) ln(K/δ)∆

cminε
).

Also, with probability at least 1− 1
K , we have:

f(x) ≥ (1− 1

e
)f(x∗)− LR2

2K
−O(

rank(M)K
√
|V | ln(max{|V |,K}) ln(K/δ)∆

ε
),

f(x) ≥ (1− 1

e
)f(x∗)− LR2

2K
−O(

K
√
|V | ln(max{|V |,K}) ln(K/δ)∆

cminε
).

Compared to the Laplace noise, the additive factor in the approximation guarantee using the Gaussian noise
is smaller by an order of

√
|V | ln(|V |). However, this improved accuracy comes at the price of achieving

(ε, δ)-differential privacy as opposed to ε-differential privacy using the Laplace noise.



Algorithm 1 FTRL template for Online Linear Optimization (Agarwal and Singh, 2017)
Input: Noise distribution D, regularizer g(x).
Initialize an empty binary tree B to compute differentially private estimates of

∑t
s=1 `s.

Sample n1
0, . . . , n

dlnTe
0 independently from D.

L̃0 =
∑dlnTe
i=1 ni0.

for t = 1, . . . , T do
Choose xt = arg minx∈X

(
η〈x, L̃t−1〉+ g(x)

)
.

Observe `t and suffer a loss of 〈`t, xt〉.
(L̃t, B) = TBAP(`t, B, t,D, T ).

end for

2 Algorithm 1 of Agarwal and Singh (2017)

The DPMFW algorithm exploits Algorithm 1 of Agarwal and Singh (2017) for differentially private online linear
optimization as a sub-routine. We explain this algorithm in more detail below. The algorithm is provided in
Algorithm 1. Consider an online linear optimization problem over T rounds where at each round t ∈ [T ], the
algorithm chooses an action xt ∈ X , X is the fixed domain set, and upon committing to this action, a loss
vector `t is revealed and the algorithm incurs the loss 〈`t, xt〉. Algorithm 1 is identical to the well-known FTRL
algorithm except the fact that instead of

∑t−1
s=1 `s, a noisy partial sum of the loss vectors L̃t−1 is used in the

update rule. This noisy partial sum is obtained using the Tree Based Aggregation Protocol (TBAP) which was
used in prior works as well (Dwork et al., 2010; Jain et al., 2012).

3 Missing proofs

3.1 Proof of Lemma 2

The upper bounds for R follow from ‖x‖1 ≤ rank(M), ∀x ∈ P (M) and ‖x‖1 ≤ 1
cmin

, ∀x ∈ {x ∈ [0, 1]|V | : cTx ≤ 1}.
Consider the (i, j)-th entry of the Hessian of f . Let mF = maxi∈V F ({i}). We can write:

|∇2
i,jf(z)| = |ER∼z

[
F (R ∪ {i, j})− F (R ∪ {i} \ {j})− F (R ∪ {j} \ {i}) + F (R \ {i, j})

]
|

≤ max{F ({i}), F ({j})}
≤ mF .

Thus, for all k ∈ [K] and j ∈ V , using the mean-value theorem, we have:

|∇jf(x(k) +
1

K
vk)−∇jf(x(k))| ≤ 1

K
mF |1T vk|

= mF ‖
1

K
vk‖1.

Therefore, we can conclude ‖∇f(x(k) + 1
K vk)−∇f(x(k))‖∞ ≤ mF ‖ 1

K vk‖1 and thus, L ≤ mF .



3.2 Proof of Lemma 5

First, note that by definition, the function g is monotone DR-submodular. Thus, similar to the proof of Lemma 1
in the paper, we can write:

g(x(k+1))− g(x(k))
(a)
≥ 1

K
〈vk,∇g(x(k))〉 − L

2K2
‖vk‖21

(b)
≥ 1

K
〈x∗,∇g(x(k))〉+

1

K
〈x∗ − vk, Y (k)〉 − LR2

2K2

(c)
≥ 1

K
〈(x∗ − x(k)) ∨ 0,∇g(x(k))〉+

1

K
〈x∗ − vk, Y (k)〉 − LR2

2K2

(d)
≥ 1

K

(
g(x∗ ∨ x(k))− g(x(k))

)
+

1

K
〈x∗ − vk, Y (k)〉 − LR2

2K2

(e)
≥ 1

K

(
g(x∗)− g(x(k))

)
+

1

K
〈x∗ − vk, Y (k)〉 − LR2

2K2
,

where (a) is due to L-smoothness of g, (b) follows from the update rule of the algorithm, (c) and (e) use the
monotonocity of g and (d) exploits concavity of g along non-negative directions. Using the definition of GD, if we
take expectation of both sides, and apply the inequality recursively for all k ∈ [K], we obtain:

E[g(x(K+1))]− g(x∗) ≥ (1− 1

K
)K
(
E[g(x(1)︸︷︷︸

=0

)]− g(x∗)
)
−GD −

LR2

2K
.

Rearranging the terms and using the inequality (1− 1
K )K ≤ 1

e , we can write:

E[g(x)] ≥ (1− 1

e
)g(x∗)−GD −

LR2

2K
.

Using the update rule of the algorithm, we have:

`Tx = `Tx(K+1) =
1

K

K∑
k=1

`T vk ≥
1

K

K∑
k=1

λ = λ = `Tx∗,

where the inequality is due to the update rule of the algorithm for vk. Also, using the definition of ` and
DR-submodularity of f , the following holds:

`Tx∗ =
∑
i∈[|V |]

x∗i `i

≥ (1− κF )
∑
i∈[|V |]

x∗i∇if(0)

≥ (1− κF )f(x∗).

Putting the above inequalities together, we have:

E[f(x)] = E[g(x)] + E[`Tx]

≥ (1− 1

e
)g(x∗) + `Tx∗ −GD −

LR2

2K

≥ (1− 1

e
)f(x∗)− (1− 1

e
)`Tx∗ + `Tx∗ −GD −

LR2

2K

= (1− 1

e
)f(x∗) +

1

e
`Tx∗ −GD −

LR2

2K

≥ (1− 1

e
)f(x∗) +

1

e
(1− κF )f(x∗)−GD −

LR2

2K

≥ (1− κF
e

)f(x∗)−GD −
LR2

2K
.



3.3 Proof of Theorem 4

Similar to the offline setting, assume that all utility functions {ft}Tt=1 are monotone DR-submodular and L-smooth
with respect to the norm ‖ · ‖1. We can write:

ft(x
(k+1)
t ) ≥ ft(x(k)

t ) +
1

K
〈v(k)
t ,∇ft(x(k)

t )〉 − L

2K2
‖v(k)
t ‖21

≥ ft(x(k)
t ) +

1

K
〈v(k)
t − x∗,∇ft(x

(k)
t )〉+

1

K
〈x∗,∇ft(x(k)

t )〉 − LR2

2K2
.

We can use the DR-submodularity and monotonocity of the utility function ft to write:

〈x∗,∇ft(x(k)
t )〉 ≥ 〈(x∗ − x(k)

t ) ∨ 0,∇ft(x(k)
t )〉

≥ ft(x∗ ∨ x(k)
t )− ft(x(k)

t )

≥ ft(x∗)− ft(x(k)
t ).

Combining the above inequalities, we have:

ft(x
(k+1)
t ) ≥ ft(x(k)

t ) +
1

K
ft(x

∗)− 1

K
ft(x

(k)
t ) +

1

K
〈v(k)
t − x∗,∇ft(x

(k)
t )〉 − LR2

2K2
.

Rearranging the terms and taking sum over t ∈ [T ], we obtain:

T∑
t=1

(
ft(x

∗)− ft(x(k+1)
t )

)
≤ (1− 1

K
)

T∑
t=1

(
ft(x

∗)− ft(x(k)
t )
)

+
1

K

T∑
t=1

〈x∗ − v(k)
t ,∇ft(x(k)

t )〉+
LR2T

2K2
.

Applying the above inequality recursively for all k ∈ [K], we have:

T∑
t=1

(
ft(x

∗)− ft(x(K+1)
t︸ ︷︷ ︸
=xt

)
)
≤ (1− 1

K
)K︸ ︷︷ ︸

≤1/e

T∑
t=1

(
ft(x

∗)− ft(x(1)
t︸︷︷︸

=0

)
)

+
1

K

K∑
k=1

T∑
t=1

〈x∗ − v(k)
t ,∇ft(x(k)

t )〉+
LR2T

2K
.

Rearranging the terms, we can equivalently write:

RT ≤
1

K

K∑
k=1

T∑
t=1

〈x∗ − v(k)
t ,∇ft(x(k)

t )〉+
LR2T

2K
.

Using Theorem 3.1 of Agarwal and Singh (2017) with the regularizer g(x) =
∑|V |
i=1 xi ln(xi), we have the following

for all k ∈ [K]:

E
[ T∑
t=1

〈x∗ − v(k)
t ,∇ft(x(k)

t )〉
]
≤ O(R

√
T ln |V |) +WD,

where WD := EZ∼D′
[

maxx∈P 〈Z, x〉 − minx∈P 〈Z, x〉
]
and D′ is the distribution induced by the sum of dlnT e

independent samples from D = Lap|V |(λ) or D = N (0, σ2I). For matroid constraints, we can write:

max
x∈P
〈Z, x〉 −min

x∈P
〈Z, x〉 ≤ ‖x‖1‖Z‖∞ + ‖x‖1‖Z‖∞

= 2‖x‖1‖Z‖∞
≤ 2rank(M)dlnT e‖Y ‖∞,

where Y ∼ D. Therefore, WLap ≤ 2rank(M)dlnT eE‖Y ‖∞ holds. Similarly, we have WLap ≤ 2
cmin
dlnT eE‖Y ‖∞

for knapsack constraints. If D = Lap|V |(λ), we have:

E‖Y ‖∞ ≤ O(λ ln(|V |)).

If D = N (0, σ2I), the following holds:
E‖Y ‖∞ ≤ O(σ

√
ln(|V |)).



Setting λ =
2mF |V | lnT

√
2K ln(1/δ)

ε and using the result of Lemma 2, we have the following regret bound using the
Laplace noise and under matroid and knapsack constraints respectively.

E[RT ] ≤ O(rank(M)
√
T ln |V |) +

mF (rank(M))2T

2K
+O(

rank(M)|V | ln |V | ln2 T
√
K ln(1/δ)

ε
),

E[RT ] ≤ O(

√
T ln |V |
cmin

) +
mFT

2c2minK
+O(

|V | ln |V | ln2 T
√
K ln(1/δ)

cminε
).

Also, we can use the advanced composition theorem to conclude that the algorithm is (ε, δ)-differentially private.
Setting σ2 = 8β2K ln(1/δ)

ε2 ln2 T ln(K lnT
δ′ ), the regret bound using the Gaussian noise for matroid and knapsack

constraints are as follows:

E[RT ] ≤ O(rank(M)
√
T ln |V |) +

mF (rank(M))2T

2K
+O(

rank(M)
√

ln |V | ln2 T
√
K ln(1/δ) ln(K lnT

δ′ )

ε
),

E[RT ] ≤ O(

√
T ln |V |
cmin

) +
mFT

2c2minK
+O(

√
ln |V | ln2 T

√
K ln(1/δ) ln(K lnT

δ′ )

cminε
).

Similarly, the algorithm is (ε, δ + δ′)-differentially private using the Gaussian noise. Setting K = O(
√
T ) in the

above inequalities, we obtain the regret bounds as stated.
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