
Appendix

1 DPCG algorithm with Gaussian noise

For all k ∈ [K], let Y (k) ∼ N (0, σ2I). In order to compute the `2-sensitivity of the gradient, We can write:

‖∇fD(x)−∇fD′(x)‖2 =

√√√√ |V |∑
i=1

|∇ifD(x)−∇ifD′(x)|2

≤

√√√√ |V |∑
i=1

(2∆)2

= 2
√
|V |∆.

The Gaussian mechanism combined with the basic composition theorem provide the following privacy guarantee
for the DPCG algorithm with Gaussian noise.
Theorem 1. (Dwork and Roth, 2014) Let ε ∈ (0, 1) be arbitrary. For c2 > 2 ln(1.25K/δ), the DPCG algorithm

under Gaussian noise with parameter σ ≥ 2cK
√
|V |∆
ε is (ε, δ)-differentially private.

We now analyze the approximation guarantee in this setting. First, we remind the reader that the following holds
using Lemma 1 of the paper:

E[f(x)] ≥ (1− 1

e
)f(x∗)−GD −

LR2

2K
,

where if D = N (0, σ2I), we have GD ≤ 2rank(M)EY∼N (0,σ2I)‖Y ‖∞ and GD ≤ 2
cmin

EY∼N (0,σ2I)‖Y ‖∞ for matroid
and knapsack constraints respectively. For a |V |-dimensional Gaussian random vector Y ∼ N (0, σ2I), we can
write:

E‖Y ‖∞ ≤ O(σ
√

ln(|V |)),

P
(
‖Y ‖∞ − σ

√
2 ln(|V |) ≤ 2σ

√
ln(K)

)
≥ 1− 1

K2
.

Combining the above results and setting σ =
2cK
√
|V |∆
ε for c2 > 2 ln(1.25K/δ), the following holds for matroid

and knapsack constraints respectively:

E[f(x)] ≥ (1− 1

e
)f(x∗)− LR2

2K
−O(

rank(M)K
√
|V | ln(|V |) ln(K/δ)∆

ε
),

E[f(x)] ≥ (1− 1

e
)f(x∗)− LR2

2K
−O(

K
√
|V | ln(|V |) ln(K/δ)∆

cminε
).

Also, with probability at least 1− 1
K , we have:

f(x) ≥ (1− 1

e
)f(x∗)− LR2

2K
−O(

rank(M)K
√
|V | ln(max{|V |,K}) ln(K/δ)∆

ε
),

f(x) ≥ (1− 1

e
)f(x∗)− LR2

2K
−O(

K
√
|V | ln(max{|V |,K}) ln(K/δ)∆

cminε
).

Compared to the Laplace noise, the additive factor in the approximation guarantee using the Gaussian noise
is smaller by an order of

√
|V | ln(|V |). However, this improved accuracy comes at the price of achieving

(ε, δ)-differential privacy as opposed to ε-differential privacy using the Laplace noise.

Algorithm 1 FTRL template for Online Linear Optimization (Agarwal and Singh, 2017)
Input: Noise distribution D, regularizer g(x).
Initialize an empty binary tree B to compute differentially private estimates of

∑t
s=1 `s.

Sample n1
0, . . . , n

dlnTe
0 independently from D.

L̃0 =
∑dlnTe
i=1 ni0.

for t = 1, . . . , T do
Choose xt = arg minx∈X

(
η〈x, L̃t−1〉+ g(x)

)
.

Observe `t and suffer a loss of 〈`t, xt〉.
(L̃t, B) = TBAP(`t, B, t,D, T).

end for

2 Algorithm 1 of Agarwal and Singh (2017)

The DPMFW algorithm exploits Algorithm 1 of Agarwal and Singh (2017) for differentially private online linear
optimization as a sub-routine. We explain this algorithm in more detail below. The algorithm is provided in
Algorithm 1. Consider an online linear optimization problem over T rounds where at each round t ∈ [T], the
algorithm chooses an action xt ∈ X , X is the fixed domain set, and upon committing to this action, a loss
vector `t is revealed and the algorithm incurs the loss 〈`t, xt〉. Algorithm 1 is identical to the well-known FTRL
algorithm except the fact that instead of

∑t−1
s=1 `s, a noisy partial sum of the loss vectors L̃t−1 is used in the

update rule. This noisy partial sum is obtained using the Tree Based Aggregation Protocol (TBAP) which was
used in prior works as well (Dwork et al., 2010; Jain et al., 2012).

3 Missing proofs

3.1 Proof of Lemma 2

The upper bounds for R follow from ‖x‖1 ≤ rank(M), ∀x ∈ P (M) and ‖x‖1 ≤ 1
cmin

, ∀x ∈ {x ∈ [0, 1]|V | : cTx ≤ 1}.
Consider the (i, j)-th entry of the Hessian of f . Let mF = maxi∈V F ({i}). We can write:

|∇2
i,jf(z)| = |ER∼z

[
F (R ∪ {i, j})− F (R ∪ {i} \ {j})− F (R ∪ {j} \ {i}) + F (R \ {i, j})

]
|

≤ max{F ({i}), F ({j})}
≤ mF .

Thus, for all k ∈ [K] and j ∈ V , using the mean-value theorem, we have:

|∇jf(x(k) +
1

K
vk)−∇jf(x(k))| ≤ 1

K
mF |1T vk|

= mF ‖
1

K
vk‖1.

Therefore, we can conclude ‖∇f(x(k) + 1
K vk)−∇f(x(k))‖∞ ≤ mF ‖ 1

K vk‖1 and thus, L ≤ mF .

3.2 Proof of Lemma 5

First, note that by definition, the function g is monotone DR-submodular. Thus, similar to the proof of Lemma 1
in the paper, we can write:

g(x(k+1))− g(x(k))
(a)
≥ 1

K
〈vk,∇g(x(k))〉 − L

2K2
‖vk‖21

(b)
≥ 1

K
〈x∗,∇g(x(k))〉+

1

K
〈x∗ − vk, Y (k)〉 − LR2

2K2

(c)
≥ 1

K
〈(x∗ − x(k)) ∨ 0,∇g(x(k))〉+

1

K
〈x∗ − vk, Y (k)〉 − LR2

2K2

(d)
≥ 1

K

(
g(x∗ ∨ x(k))− g(x(k))

)
+

1

K
〈x∗ − vk, Y (k)〉 − LR2

2K2

(e)
≥ 1

K

(
g(x∗)− g(x(k))

)
+

1

K
〈x∗ − vk, Y (k)〉 − LR2

2K2
,

where (a) is due to L-smoothness of g, (b) follows from the update rule of the algorithm, (c) and (e) use the
monotonocity of g and (d) exploits concavity of g along non-negative directions. Using the definition of GD, if we
take expectation of both sides, and apply the inequality recursively for all k ∈ [K], we obtain:

E[g(x(K+1))]− g(x∗) ≥ (1− 1

K
)K
(
E[g(x(1)︸︷︷︸

=0

)]− g(x∗)
)
−GD −

LR2

2K
.

Rearranging the terms and using the inequality (1− 1
K)K ≤ 1

e , we can write:

E[g(x)] ≥ (1− 1

e
)g(x∗)−GD −

LR2

2K
.

Using the update rule of the algorithm, we have:

`Tx = `Tx(K+1) =
1

K

K∑
k=1

`T vk ≥
1

K

K∑
k=1

λ = λ = `Tx∗,

where the inequality is due to the update rule of the algorithm for vk. Also, using the definition of ` and
DR-submodularity of f , the following holds:

`Tx∗ =
∑
i∈[|V |]

x∗i `i

≥ (1− κF)
∑
i∈[|V |]

x∗i∇if(0)

≥ (1− κF)f(x∗).

Putting the above inequalities together, we have:

E[f(x)] = E[g(x)] + E[`Tx]

≥ (1− 1

e
)g(x∗) + `Tx∗ −GD −

LR2

2K

≥ (1− 1

e
)f(x∗)− (1− 1

e
)`Tx∗ + `Tx∗ −GD −

LR2

2K

= (1− 1

e
)f(x∗) +

1

e
`Tx∗ −GD −

LR2

2K

≥ (1− 1

e
)f(x∗) +

1

e
(1− κF)f(x∗)−GD −

LR2

2K

≥ (1− κF
e

)f(x∗)−GD −
LR2

2K
.

3.3 Proof of Theorem 4

Similar to the offline setting, assume that all utility functions {ft}Tt=1 are monotone DR-submodular and L-smooth
with respect to the norm ‖ · ‖1. We can write:

ft(x
(k+1)
t) ≥ ft(x(k)

t) +
1

K
〈v(k)
t ,∇ft(x(k)

t)〉 − L

2K2
‖v(k)
t ‖21

≥ ft(x(k)
t) +

1

K
〈v(k)
t − x∗,∇ft(x

(k)
t)〉+

1

K
〈x∗,∇ft(x(k)

t)〉 − LR2

2K2
.

We can use the DR-submodularity and monotonocity of the utility function ft to write:

〈x∗,∇ft(x(k)
t)〉 ≥ 〈(x∗ − x(k)

t) ∨ 0,∇ft(x(k)
t)〉

≥ ft(x∗ ∨ x(k)
t)− ft(x(k)

t)

≥ ft(x∗)− ft(x(k)
t).

Combining the above inequalities, we have:

ft(x
(k+1)
t) ≥ ft(x(k)

t) +
1

K
ft(x

∗)− 1

K
ft(x

(k)
t) +

1

K
〈v(k)
t − x∗,∇ft(x

(k)
t)〉 − LR2

2K2
.

Rearranging the terms and taking sum over t ∈ [T], we obtain:

T∑
t=1

(
ft(x

∗)− ft(x(k+1)
t)

)
≤ (1− 1

K
)

T∑
t=1

(
ft(x

∗)− ft(x(k)
t)
)

+
1

K

T∑
t=1

〈x∗ − v(k)
t ,∇ft(x(k)

t)〉+
LR2T

2K2
.

Applying the above inequality recursively for all k ∈ [K], we have:

T∑
t=1

(
ft(x

∗)− ft(x(K+1)
t︸ ︷︷ ︸
=xt

)
)
≤ (1− 1

K
)K︸ ︷︷ ︸

≤1/e

T∑
t=1

(
ft(x

∗)− ft(x(1)
t︸︷︷︸

=0

)
)

+
1

K

K∑
k=1

T∑
t=1

〈x∗ − v(k)
t ,∇ft(x(k)

t)〉+
LR2T

2K
.

Rearranging the terms, we can equivalently write:

RT ≤
1

K

K∑
k=1

T∑
t=1

〈x∗ − v(k)
t ,∇ft(x(k)

t)〉+
LR2T

2K
.

Using Theorem 3.1 of Agarwal and Singh (2017) with the regularizer g(x) =
∑|V |
i=1 xi ln(xi), we have the following

for all k ∈ [K]:

E
[T∑
t=1

〈x∗ − v(k)
t ,∇ft(x(k)

t)〉
]
≤ O(R

√
T ln |V |) +WD,

where WD := EZ∼D′
[

maxx∈P 〈Z, x〉 − minx∈P 〈Z, x〉
]
and D′ is the distribution induced by the sum of dlnT e

independent samples from D = Lap|V |(λ) or D = N (0, σ2I). For matroid constraints, we can write:

max
x∈P
〈Z, x〉 −min

x∈P
〈Z, x〉 ≤ ‖x‖1‖Z‖∞ + ‖x‖1‖Z‖∞

= 2‖x‖1‖Z‖∞
≤ 2rank(M)dlnT e‖Y ‖∞,

where Y ∼ D. Therefore, WLap ≤ 2rank(M)dlnT eE‖Y ‖∞ holds. Similarly, we have WLap ≤ 2
cmin
dlnT eE‖Y ‖∞

for knapsack constraints. If D = Lap|V |(λ), we have:

E‖Y ‖∞ ≤ O(λ ln(|V |)).

If D = N (0, σ2I), the following holds:
E‖Y ‖∞ ≤ O(σ

√
ln(|V |)).

Setting λ =
2mF |V | lnT

√
2K ln(1/δ)

ε and using the result of Lemma 2, we have the following regret bound using the
Laplace noise and under matroid and knapsack constraints respectively.

E[RT] ≤ O(rank(M)
√
T ln |V |) +

mF (rank(M))2T

2K
+O(

rank(M)|V | ln |V | ln2 T
√
K ln(1/δ)

ε
),

E[RT] ≤ O(

√
T ln |V |
cmin

) +
mFT

2c2minK
+O(

|V | ln |V | ln2 T
√
K ln(1/δ)

cminε
).

Also, we can use the advanced composition theorem to conclude that the algorithm is (ε, δ)-differentially private.
Setting σ2 = 8β2K ln(1/δ)

ε2 ln2 T ln(K lnT
δ′), the regret bound using the Gaussian noise for matroid and knapsack

constraints are as follows:

E[RT] ≤ O(rank(M)
√
T ln |V |) +

mF (rank(M))2T

2K
+O(

rank(M)
√

ln |V | ln2 T
√
K ln(1/δ) ln(K lnT

δ′)

ε
),

E[RT] ≤ O(

√
T ln |V |
cmin

) +
mFT

2c2minK
+O(

√
ln |V | ln2 T

√
K ln(1/δ) ln(K lnT

δ′)

cminε
).

Similarly, the algorithm is (ε, δ + δ′)-differentially private using the Gaussian noise. Setting K = O(
√
T) in the

above inequalities, we obtain the regret bounds as stated.

References

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found. Trends Theor.
Comput. Sci., 9(3–4):211–407, August 2014. ISSN 1551-305X. doi: 10.1561/0400000042. URL https:
//doi.org/10.1561/0400000042.

Naman Agarwal and Karan Singh. The price of differential privacy for online learning. volume 70 of Proceedings
of Machine Learning Research, pages 32–40, International Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR. URL http://proceedings.mlr.press/v70/agarwal17a.html.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy under continual
observation. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing, STOC ’10, page
715–724, New York, NY, USA, 2010. Association for Computing Machinery. ISBN 9781450300506. doi:
10.1145/1806689.1806787. URL https://doi.org/10.1145/1806689.1806787.

Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially private online learning. volume 23 of
Proceedings of Machine Learning Research, pages 24.1–24.34, Edinburgh, Scotland, 25–27 Jun 2012. JMLR
Workshop and Conference Proceedings. URL http://proceedings.mlr.press/v23/jain12.html.

https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
http://proceedings.mlr.press/v70/agarwal17a.html
https://doi.org/10.1145/1806689.1806787
http://proceedings.mlr.press/v23/jain12.html

	DPCG algorithm with Gaussian noise
	Algorithm 1 of pmlr-v70-agarwal17a
	Missing proofs
	Proof of Lemma 2
	Proof of Lemma 5
	Proof of Theorem 4

