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Abstract

Motivated by, e.g., sensitivity analysis and
end-to-end learning, the demand for differen-
tiable optimization algorithms has been in-
creasing. This paper presents a theoretically
guaranteed differentiable greedy algorithm for
monotone submodular function maximization.
We smooth the greedy algorithm via random-
ization, and prove that it almost recovers orig-
inal approximation guarantees in expectation
for the cases of cardinality and κ-extendible
system constraints. We then present how to
efficiently compute gradient estimators of any
expected output-dependent quantities. We
demonstrate the usefulness of our method by
instantiating it for various applications.

1 INTRODUCTION

Submodular function maximization is ubiquitous in
practice. In many situations such as influence maxi-
mization (Alon et al., 2012) and data summarization
(Mirzasoleiman et al., 2016), submodular functions
f(·,θ) : 2V → R, where V is a finite set (n := |V |),
are modeled with continuous-valued parameter θ ∈ Θ.
For example, f representing influence spread has link
probability parameter θ. In this paper, we consider
the following parametric submodular maximization:

maximize
X⊆V

f(X,θ) subject to X ∈ I, (1)

where I ⊆ 2V consists of all feasible solutions. In
what follows, we assume (V, I) to be a κ-extendible
system and f(·,θ) to be normalized, monotone, and
submodular for any θ ∈ Θ.
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Once θ is fixed, we often apply the greedy algorithm to
problem (1) due to its theoretical strength (Nemhauser
et al., 1978; Fisher et al., 1978) and high empirical
performances. However, if θ largely deviates from
unknown true θ̃, the greedy algorithm may return a
poor solution to the problem of maximizing f(·, θ̃).
This motivates us to study how changes in θ values
affect outputs of the greedy algorithm. Furthermore,
it is desirable if we can learn θ from data so that the
greedy algorithm can achieve high f(·, θ̃) values.

A major approach to studying such subjects is to dif-
ferentiate outputs of algorithms w.r.t. θ. Regarding
continuous optimization algorithms, this approach has
been widely studied in the field of sensitivity analysis
(Rockafellar and Wets, 1998; Gal and Greenberg, 2012),
and is used by recent decision-focused (or end-to-end)
learning methods (Donti et al., 2017; Wilder et al.,
2019a), which learn to predict θ based on outputs of
optimization algorithms. When it comes to the greedy
algorithm for submodular maximization, however, its
outputs are generally non-differentiable and, even at
differentiable points θ, the derivatives are constant zero.
Hence, we need some smoothing techniques for using
the well-established differentiation-based methods.

Tschiatschek et al. (2018) opened the field of differen-
tiable submodular maximization; they proposed greedy-
based differentiable learning methods for monotone and
non-monotone submodular functions. Their algorithm
for monotone objective functions was obtained by re-
placing non-differentiable argmax with differentiable
softmax. Since then, this field has been attracting in-
creasing attention; another softmax-based algorithm
that forms a neural network (NN) (Powers et al., 2018)
and applications (Kalyan et al., 2019; Peyrard, 2019)
have been studied. However, this field is still in its
infancy and the following two problems remain open:

Can we (1) smooth the greedy algorithm without losing
its theoretical guarantees and (2) efficiently compute
derivatives in an application-agnostic manner?

The first problem is important since, without the guar-



antees, we cannot ensure that the differentiation-based
methods work well. The existing studies (Tschiatschek
et al., 2018; Powers et al., 2018) state that the (1−1/e)-
approximation for the cardinality constrained case is ob-
tained if the temperature of softmax is zero (i.e., equal
to argmax). This, however, provides no theoretical
guarantees for the smoothed differentiable algorithms.

As regards the second problem, the existing methods
(Tschiatschek et al., 2018; Powers et al., 2018) focus
on differentiating some functions defined with subsets
X1, X2, . . . ⊆ V given as training data. This restricts
the scope of application; for example, we cannot apply
them to sensitivity analysis as detailed in Appendix A.
The efficiency also matters when computing derivatives;
in (Tschiatschek et al., 2018), a heuristic approxima-
tion method is used since the computation of exact
derivatives generally incurs exponential costs in n.

Our contribution is a theoretically guaranteed ver-
satile framework that resolves the two problems, thus
greatly advancing the field of differentiable submodular
maximization. Below we present the details.

SMOOTHED GREEDY We consider a stochastically
perturbed version of the greedy algorithm, called
Smoothed Greedy, which generalizes the exist-
ing algorithms (Tschiatschek et al., 2018; Powers
et al., 2018). We prove that Smoothed Greedy
achieves almost (1− 1/e)- and 1

κ+1 -approximation
guarantees in expectation for the cases of cardi-
nality and κ-extendible system constraints, respec-
tively, where a subtractive term depending on the
perturbation strength affects the guarantees.

Gradient estimation Owing to the perturbation, we
can differentiate expected outputs of Smoothed
Greedy. However, the computation cost is expo-
nential in n as with (Tschiatschek et al., 2018). To
avoid this, we show how to estimate derivatives
of any expected output-dependent quantities by
sampling Smoothed Greedy outputs. Our esti-
mator is unbiased, and can optionally be biased for
reducing its variance. Experiments reveal how the
perturbation strength affects estimator’s variance.

Applications We demonstrate that our framework
can serve as a bridge between the greedy algo-
rithm and differentiation-based methods in many
applications. When used for sensitivity analysis,
it elucidates how outputs of Smoothed Greedy
can be affected by changes in θ values. Results
of decision-focused learning experiments suggest
that our greedy-based approach can be a simple
and effective alternative to a recent continuous
relaxation method (Wilder et al., 2019a).

1.1 Related Work

Nemhauser et al. (1978) proved the well-known (1 −
1/e)-approximation guarantee of the greedy algorithm
for the cardinality constrained case, and this result is
known to be optimal (Nemhauser and Wolsey, 1978;
Feige, 1998). Fisher et al. (1978) proved that the greedy
algorithm achieves the 1

κ+1 -approximation if (V, I) is
an intersection of κ matroids; later, this result was
extended to the class of κ-systems (Calinescu et al.,
2011), which includes κ-extendible systems.

Differentiable greedy submodular maximization is stud-
ied in (Tschiatschek et al., 2018; Powers et al., 2018).
Our work is different from them in terms of theoretical
guarantees, differentiation methods, and problem set-
tings as explained above (see, also Appendix A). The
closest to our result is perhaps that of the continuous
relaxation method (Wilder et al., 2019a). Specifically,
they use the multilinear extension (Calinescu et al.,
2011) of f(·,θ) and differentiate its local optimum
computed with the stochastic gradient ascent method
(SGA) (Hassani et al., 2017), which achieves a 1/2-
approximation. Their method can be used for matroid
constraints, but their analysis focuses on the cardinal-
ity constrained case. Compared with this, our method
is advantageous in terms of approximation ratios and
empirical performances (see, Section 5.2).

Differentiable learning methods have been studied in
other situations: submodular minimization (Djolonga
and Krause, 2017), quadratic programming (Amos
and Kolter, 2017), structured prediction (Mensch and
Blondel, 2018), mixed integer programming (Ferber
et al., 2020), optimization on graphs (Wilder et al.,
2019b), combinatorial linear optimization (Pogančić
et al., 2020), satisfiability (SAT) instances (Wang et al.,
2019), and ranking/sorting (Cuturi et al., 2019).

Perturbation-based smoothing is used for, e.g., online
learning (Abernethy et al., 2016), linear contextual ban-
dit (Kannan et al., 2018), linear optimization (Berthet
et al., 2020), and sampling from discrete distributions
(Gumbel, 1954; Jang et al., 2017; Maddison et al., 2017),
but it has not been theoretically studied for smoothing
the greedy algorithm for submodular maximization.

1.2 Notation and Definition

For any f : 2V → R, we define fX(Y ) := f(X ∪ Y )−
f(X). We say f is normalized if f(∅) = 0, monotone
if X ⊆ Y implies f(X) ≤ f(Y ), and submodular if
fX(v) ≥ fY (v) for all X ⊆ Y and v /∈ Y . In this
paper, we assume the objective function, f(·,θ), to be
normalized, monotone, and submodular for any θ ∈ Θ.
Note that this is the case with many set functions, e.g.,
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Algorithm 1 Smoothed Greedy

1: S ← ∅
2: for k = 1, 2 . . . do
3: Uk = {u1, . . . , unk

} ← {v /∈ S | S ∪ {v} ∈ I}
4: gk(θ)← (fS(u1,θ), . . . , fS(unk

,θ))
5: pk(θ)← argmaxp∈∆nk {〈gk(θ),p〉 − Ωk(p)}
6: sk ← u ∈ Uk with probability pk(u,θ)
7: S ← S ∪ {sk}
8: if S is maximal then
9: return S

weighted coverage functions with non-negative weights
θ, probabilistic coverage functions with probabilities θ,
and deep submodular functions (Dolhansky and Bilmes,
2016) with non-negative linear-layer parameters θ.

We say (V, I) is a κ-extendible system (Mestre, 2006)
if the following three conditions hold: (i) ∅ ∈ I, (ii)
X ⊆ Y ∈ I implies X ∈ I, and (iii) for all X ∈ I
and v /∈ X such that X ∪ {v} ∈ I, and for every
Y ⊇ X such that Y ∈ I, there exists Z ⊆ Y \X that
satisfies |Z| ≤ κ and Y \Z ∪ {v} ∈ I. It is known
that (V, I) is a matroid iff it is a 1-extendible system,
which includes the cardinality constrained case. The
intersection of κ matroids defined on a common ground
set always forms a κ-extendible system. We say X ∈ I
is maximal if no Y ∈ I strictly includes X. We define
K := maxX∈I |X|, which is so-called the rank of (V, I).

For any positive integer n, we let 0n and 1n be n-
dimensional all-zero and all-one vectors, respectively.
For any finite set V and S ⊆ V , we let 1S ∈ R|V | denote
the indicator vector of S; i.e., the entries corresponding
to S are 1 and the others are 0. For any scalar- or vector-
valued differentiable function f : Rn → Rm, ∇xf(x) ∈
Rm×n denotes its gradient or Jacobian, respectively.

2 SMOOTHED GREEDY

We first explain details of Smoothed Greedy (Algo-
rithm 1). Fix θ ∈ Θ arbitrarily. In the k-th iteration,
we compute marginal gain fS(u,θ) for every addable
element u ∈ Uk := {v /∈ S | S ∪ {v} ∈ I}; we define
nk := |Uk| and index the elements in Uk as u1, . . . , unk

.
Let gk(θ) = (gk(u1,θ), . . . , gk(unk

,θ)) ∈ Rnk denote
the marginal gain vector. We compute a probability
vector, pk(θ) = (pk(u1,θ), . . . , pk(unk

,θ)),1 as

pk(θ) = argmax
p∈∆nk

{〈gk(θ),p〉 − Ωk(p)}, (2)

where ∆nk := {x ∈ Rnk | x ≥ 0nk
, 〈x,1nk

〉 = 1}
is the (nk − 1)-dimensional probability simplex and

1Note that pk(θ) depends on the past k−1 steps, which,
however, is not written explicitly for simplicity.

Ωk : Rnk → R is a strictly convex function; we call Ωk
a regularization function. Note that pk(θ) is unique
due to the strict convexity. We then choose an element,
u ∈ Uk, with probability pk(u,θ) and add the chosen
element, denoted by sk, to S. The above procedure can
be seen as a stochastically perturbed version of argmax;
without Ωk, we have sk ∈ argmaxu∈Uk

fS(u,θ).

We then show theoretical guarantees of Smoothed
Greedy (see, Appendix B for proofs). Let δ ≥ 0 be
a constant that satisfies δ ≥ Ωk(p) − Ωk(q) for all
k = 1, . . . , |S| and p,q ∈ ∆nk . As show later, smaller
δ values yield better guarantees. We present examples
of Ωk and their δ values at the end of this section.

As is often done, we begin by bounding the marginal
gain. The following lemma elucidates the effect of δ and
plays a key role when proving the subsequent theorems.

Lemma 1. In any k-th step, conditioned on the (k−1)-
th step (i.e., S = {s1, . . . , sk−1} is arbitrarily fixed), we
have E[fS(sk,θ)] ≥ fS(u,θ)− δ for any u ∈ Uk.

Let S andO be an output of Algorithm 1 and a maximal
optimal solution to problem (1), respectively. In the car-
dinality constrained case, we can obtain the following
guarantee. We also show in Theorem 3 (Appendix F.1)
that the faster stochastic variant (Mirzasoleiman et al.,
2015) can achieve a similar approximation guarantee.

Theorem 1. If I = {X ⊆ V | |X| ≤ K}, we have
E[f(S,θ)] ≥ (1− 1/e)f(O,θ)− δK.

For the more general case of κ-extendible systems, we
can prove the following theorem.

Theorem 2. If (V, I) is a κ-extendible system with
rank K, we have E[f(S,θ)] ≥ 1

κ+1f(O,θ)− δK.

Proof sketch of Theorem 2. First, we briefly review
the proof for the standard greedy algorithm (Cali-
nescu et al., 2011). For a series of subsets ∅ = S0 ⊆
S1 ⊆ · · · ⊆ S|S| = S obtained in |S| steps of the
greedy algorithm, we construct a series of subsets
O = O0, O1 . . . , O|S| = S that satisfies Si ⊆ Oi ∈ I
and κ · (f(Si,θ)− f(Si−1,θ)) ≥ f(Oi−1,θ)− f(Oi,θ)
for i = 1, . . . , |S|. The 1

κ+1 -approximation is obtained
by summing both sides for i = 1, . . . , |S|. Our proof ex-
tends this analysis to randomized Smoothed Greedy.
We construct O0, O1 . . . for each realization of the ran-
domness, and prove κ·(E[f(Si,θ)]−E[f(Si−1,θ)]+δ) ≥
E[f(Oi−1,θ)] − E[f(Oi,θ)] for i = 1, . . . ,K by using
Lemma 1. Here, unlike the deterministic case, |S| may
differ depending on realizations, and thus we must care-
fully construct O0, O1, . . . . By summing both sides for
i = 1, . . . ,K, we obtain Theorem 2.

Existing guarantees (Tschiatschek et al., 2018; Powers



et al., 2018) consider only a special case of Theorem 1
with δ = 0; in this case the algorithm becomes non-
differentiable. Therefore, our results, which hold even
if δ > 0 and deal with a wider class of constraints,
bring significant progress in theoretically understanding
differentiable submodular maximization.

Below we showcase two examples of regularization func-
tion Ωk: entropy and quadratic functions. We can also
use other strictly convex functions, e.g., a convex combi-
nation of the two functions. Note that when designing
Ωk, an additional differentiability condition (see, As-
sumption 2 in Section 3) must be satisfied for making
expected outputs of Smoothed Greedy differentiable.

Entropy Function If Ωk(p) = ε
∑nk

i=1 p(ui) ln p(ui),
where p(ui) is the i-th entry of p ∈ [0, 1]nk and ε > 0
is an arbitrary constant, we have δ = ε lnnk. That is,
the hyper-parameter, ε, controls the δ value. Moreover,
Steps 4 to 6 can be efficiently performed via softmax
sampling as with (Tschiatschek et al., 2018; Powers
et al., 2018); i.e., we have pk(u,θ) ∝ exp(fS(u,θ)/ε)
(see, Appendix C.1 for details).

Quadratic Function We can use strongly convex
quadratic functions as Ωk. To be specific, if we let
Ωk(p) = ε‖p‖22, then δ = ε(1− 1/nk) ≤ ε. In this case,
we need to solve quadratic programming (QP) for k =
1, 2, . . . for obtaining pk(θ). To this end, we can use
an efficient batch QP solver (Amos and Kolter, 2017).
When using the same Ωk for every k, preconditioning
(e.g., decomposition of Hessian matrices) is also effective
for efficiently computing pk(θ).

As above, the δ value is often controllable, and thus
we can use it as a hyper-parameter that balances the
trade-off between the approximation guarantees and
smoothness; we will experimentally analyze this in
Section 3.1. In practice, δ value should be set depending
on applications, which we discuss in Section 4.

3 GRADIENT ESTIMATION

We show how to differentiate outputs of Smoothed
Greedy w.r.t. θ. Our idea is to utilize the score-
function method (Rubinstein et al., 1996)2 for com-
puting gradient estimators. In Appendix F.2, we show
that our method also works with the faster stochas-
tic version (Mirzasoleiman et al., 2015) of Smoothed
Greedy.

2The method is also know as the likelihood estimator
(Glynn, 1990) and REINFORCE (Williams, 1992). Other
than this, there are several major gradient estimators, e.g.,
(Jang et al., 2017; Mohamed et al., 2019). However, it
is difficult to use them in our submodular maximization
scenario as discussed in Appendix D.

In this section, we assume the following condition to
hold:

Assumption 1. For any X ⊆ V , we assume f(X,θ)
to be differentiable w.r.t. θ.

Assumption 1 is inevitable; the existing studies (Tschi-
atschek et al., 2018; Powers et al., 2018; Wilder et al.,
2019a) are also based on this condition. Examples
of functions satisfying Assumption 1 include weighted
coverage functions (w.r.t. weights of covered vertices),
probabilistic coverage functions (Wilder et al., 2019a),
and deep submodular functions with smooth activation
functions (Dolhansky and Bilmes, 2016). At the end
of this section, we discuss what occurs if Assumption 1
fails to hold and possible remedies for such cases.

We also assume the following condition to hold. Note
that, as we will see shortly, we can always satisfy it by
appropriately choosing Ωk (thus, it is rather a require-
ment when designing Ωk than an assumption, but we
here state it as an assumption for convenience).

Assumption 2. Let pk(gk) be the maximizer, pk(θ),
in (2) regarded as a function of gk(θ). We assume
pk(gk) to be differentiable w.r.t. gk.

For example, if Ωk is the entropy function, we have
∇gk

pk(gk) = ε−1(diag(pk(gk))−pk(gk)pk(gk)>); i.e.,
the desired derivative can be computed in a closed form
(see, Appendix C.1). In Appendix C.2, we present a
sufficient condition for Ωk to satisfy Assumption 2.

We then introduce the probability distribution of
Smoothed Greedy outputs.3

Definition 1 (Output distribution). Let SI be the
set of all sequences of elements that form a feasible
solution S ∈ I. For any fixed θ ∈ Θ, we define p(θ) :
SI → [0, 1] as the probability distribution function of
Smoothed Greedy outputs, i.e., S ∼ p(θ), which we
refer to as the output distribution.

We let p(S,θ) ∈ [0, 1] denote the probability that S ∈
SI is returned by Smoothed Greedy. Specifically, if
it returns a sequence S = (s1, . . . , s|S|) ∈ SI , we have
p(S,θ) =

∏|S|
k=1 pk(sk,θ), where pk(sk,θ) is the entry

of pk(θ) corresponding to sk ∈ Uk.
We now present our derivative computation method.
Let Q(S) be any scalar- or vector-valued function (see,
Section 4 for examples of Q(S)). We aim to compute
∇θES∼p(θ)[Q(S)] = ΣS∈SIQ(S)∇θp(S,θ). Since the
size of SI is exponential in K = O(n), the exact deriva-
tive is unavailable in practice. Instead, we consider
using the following unbiased estimator of the derivative:

3A similar notion is used in (Tschiatschek et al., 2018),
but our way of using it is different (see, Appendix A).
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Proposition 1. Let Sj = (s1, . . . , s|Sj |) ∼ p(θ) (j =
1, . . . , N) be outputs of Smoothed Greedy. Then

1

N

N∑
j=1

Q(Sj)⊗∇θ ln p(Sj ,θ)

is an unbiased estimator of ∇θES∼p(θ)[Q(S)], where ⊗
denotes the outer product.

Proof. The claim is obtained from ∇θES∼p(θ)[Q(S)] =
ΣS∈SIQ(S)⊗ (p(S,θ)∇θ ln p(S,θ)) = ES∼p(θ)[Q(S)⊗
∇θ ln p(S,θ)], where an unbiased estimator of the RHS
can be computed as described in the proposition.

The remaining problem is how to compute ∇θ ln p(S,θ)
for sampled S = (s1, . . . , s|S|). Since ∇θ ln p(S,θ) =

∇θ ln
∏|S|
k=1 pk(sk,θ) =

∑|S|
k=1

1
pk(sk,θ)∇θpk(sk,θ), it

suffices to compute ∇θpk(sk,θ) for k = 1, . . . , |S|.
From Assumptions 1 and 2, we can differentiate pk(θ)
by using the chain rule as ∇θpk(θ) = ∇gk

pk(gk) ·
∇θgk(θ), and the row corresponding to sk ∈ Uk gives
∇θpk(sk,θ). In some cases where pk(θ) can be ana-
lytically expressed as a function of θ, we can directly
compute ∇θ ln p(S,θ) via efficient automatic differen-
tiation (Paszke et al., 2017; Baydin et al., 2018).

The above differentiation is usually not computationally
expensive. If Ωk is the entropy function, once ∇θgk(θ)
is obtained, we can compute ∇θpk(θ) in O(nk×dim Θ)
time (see, Appendix C for details). The cost of comput-
ing ∇θgk(θ) is instance-dependent, but it is often as
cheap as O(nk) times evaluations of f due to the cheap
gradient principle (Griewank and Walther, 2008).

Variance Reduction The variance of the gradient
estimators sometimes becomes excessive, which requires
us to sample too many outputs of Smoothed Greedy.
Fortunately, there are various methods for reducing
the variance of such Monte Carlo gradient estimators
(Greensmith et al., 2004; Tucker et al., 2017; Mohamed
et al., 2019). A simple and popular method is the
following baseline correction (Williams, 1992): we use
Q(S)− β instead of Q(S), where β is some coefficient.
If β is a constant, the estimator remains unbiased
since ES∼p(θ)[∇θ ln p(S,θ)] = ∇θES∼p(θ)[1] = 0. By
appropriately setting the β value, we can reduce the
variance. In practice, to set β at the running average
of Q(·) values is often effective, although this causes a
small bias (see, (Mohamed et al., 2019) and references
therein). We will use this variance reduction method
(VR) in the experiments in Sections 3.1 and 5.

Non-differentiable Cases If Assumption 1 does
not hold, i.e., f(X,θ) is not differentiable w.r.t. θ,
the above discussion is not correct since the chain
rule fails to hold (Griewank and Walther, 2008). This
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Figure 1: Variance of Estimated Derivatives

issue is common with many machine learning scenarios,
e.g., training of NNs with ReLU activation functions.
The current state of affairs is that we disregard this
issue since it rarely brings harm in practice. Recently,
Kakade and Lee (2018) developed a subdifferentiation
method for dealing with such non-differentiable cases.
Their result may enable us to extend the scope of our
framework to non-differentiable f(X,θ).

3.1 Experimental Study on Variance

The behavior of our estimator depends on regulariza-
tion functions, sample size N , and whether we use
VR or not; in particular, the effect of regularization
strength δ on the estimator’s quality is non-trivial. Un-
fortunately, the theoretical analysis of the effects is too
difficult because of the complicated structure of the
output distribution, which is specified with the itera-
tive perturbed argmax over marginal gains of instance-
dependent function f . To gain an empirical under-
standing of the effects, we here present an experiment
on the variance of the estimator. We use a bipartite
influence maximization instance, which is the same as
the one detailed in Section 5.1. We use the entropy
function as Ωk, and thus the δ value is controlled by
ε > 0 as δ = ε lnnk.

For notational ease, we let Gj = Q(Sj)⊗∇θ ln p(Sj ,θ)
be a derivative estimated with the j-th output sample
(j = 1, . . . , N), and Ḡ denotes their average. We study
how the variance 1

N

∑
j=1 ‖Gj−Ḡ‖2, where ‖·‖ denotes

the Frobenius norm, is affected by ε, N , and VR.

Figure 1 shows the result. We see that the decrease
in ε increases the variance. This is because, as ε de-
creases, pk(gk) becomes close to being non-smooth;
consequently, ∇θ ln p(Sj ,θ) largely fluctuates among
sampled outputs, resulting in large variances. Thus,
as mentioned in Section 2, we can regard ε (or δ) as a
hyper-parameter that controls the trade-off between the



approximation guarantee and the variance (or smooth-
ness of pk(gk)). We can also see that VR is effective.
The increase in N appears to decrease the variance
when ε is small, but its effect is subtle when ε is large.

4 APPLICATIONS

Our framework accepts any computable Q(S), and thus
we can use it in various situations. We here show how
to apply it to sensitivity analysis and decision-focused
learning. We also present another application related
to learning of submodular models in Appendix E.

4.1 Sensitivity Analysis

When addressing parametric optimization instances,
the sensitivity—how and how much changes in parame-
ter values can affect outputs of algorithms—is a major
concern. In continuous optimization settings, most
sensitivity analysis methods are based on derivatives of
outputs (Rockafellar and Wets, 1998; Gal and Green-
berg, 2012; Bertsekas, 2016). By contrast, those for
combinatorial settings are diverse (Gusfield, 1980; Klei-
jnen and Rubinstein, 1996; Bertsimas, 1988; Ghosh
et al., 2000; Varma and Yoshida, 2019) probably due to
the non-differentiability. As explained below, our gra-
dient estimation method can be used for analyzing the
sensitivity of Smoothed Greedy, which can become
close to the greedy algorithm by decreasing δ. This
provides, to the best of our knowledge, the first method
for analyzing the sensitivity of the greedy algorithm
for submodular function maximization.

We analyze the sensitivity of the probability that each
v ∈ V appears in a Smoothed Greedy output, which
can be expressed as ES∼p(θ)[1S ] = ΣS∈SI1Sp(S,θ).
By using our method shown in Section 3 with Q(S) =
1S , we can estimate the Jacobian matrix as

∇θES∼p(θ)[1S ] ≈ 1

N

N∑
j=1

1Sj
⊗∇θ ln p(Sj ,θ).

Here, given θ, the (v, j) entry of the matrix indicates
how and how much the infinitesimal increase in the
j-th entry of θ affects the probability that v ∈ V is
chosen, which quantifies the sensitivity of each v ∈ V
to uncertainties in θ. This information is beneficial to
practitioners who address submodular maximization
tasks with uncertain parameters (e.g., advertisers who
want to know how to reliably promote products); if
Smoothed Greedy outputs are found to be too sensi-
tive, we can consider using more robust methods, e.g.,
(Staib et al., 2019). Experiments in Section 5.1 demon-
strates how this sensitivity analysis method works.

4.2 Decision-Focused Learning

We consider a situation where θ is computed with some
predictive models (e.g., NNs). Let m(·,w) be a pre-
dictive model that maps some observed feature X to
θ, where w represents model parameters. We train
m(·,w) by optimizing w values with training datasets
(X1,θ1), . . . , (XM ,θM ). Given test instance (X̃, θ̃),
where θ̃ is the unknown true parameter, the trained
model predicts θ = m(X̃,w), and we obtain solution
S ∈ I (or, make a decision) by approximately maximiz-
ing f(·,θ). Our utility (decision quality) is measured
by f(S, θ̃). This situation often occurs in real-world
scenarios, e.g., budget allocation, diverse recommenda-
tion, and viral marketing (see, (Wilder et al., 2019a)).
For example, in the case of viral marketing on a social
network, θ represents link probabilities, which we pre-
dict with m(·,w) for observed feature X. A decision
is a node subset S, which we activate to maximize the
influence. Our utility is the influence spread f(S, θ̃),
where θ̃ represents unknown true link probabilities.

With the decision-focused learning approach (Wilder
et al., 2019a), we train predictive models in an at-
tempt to maximize the decision quality, f(S, θ̃). This
approach is empirically more effective for the above
situation involving both prediction and optimization
than the standard two-stage approach, which trains
predictive models separately from the downstream opti-
mization problems. By combining our framework with
the decision-focused approach, we can train predictive
models with first-order methods so that Smoothed
Greedy achieves high expected objective values.

Below we detail how to train predictive models. We
consider maximizing the empirical utility function,
1
M

∑M
i=1 ES∼p(m(Xi,w))[f(S,θi)], where p(·) is the out-

put distribution. In each iteration, we sample a train-
ing dataset, (Xi,θi), and compute θ = m(Xi,w) with
the current w values. We then perform N trials of
Smoothed Greedy to estimate the current function
value, ES∼p(θ)[f(S,θi)]. Next, with the outcomes of N
trials, we estimate the gradient by using our method
with Q(S) = f(S,θi). More precisely, for each j-th
trial of Smoothed Greedy, we compute∇θ ln p(Sj ,θ)
as explained in Section 3 and estimate the gradient,
∇wES∼p(m(Xi,w))[f(S,θi)], as follows:4

1

N

N∑
j=1

f(Sj ,θi)∇θ ln p(Sj ,θ) · ∇wm(Xi,w),

where θ = m(Xi,w). We then update w with the
above gradient estimator. When using mini-batch up-

4If m(·,w) is not differentiable, the chain rule,
∇w ln p(Sj ,θ) = ∇θ ln p(Sj ,θ) · ∇wm(Xi,w), fails to hold.
This issue is essentially the same as what we discussed in
Section 3, which we may usually disregard in practice.
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Figure 2: Sensitivity Analysis Instance and Results. (a): The θ values; thick and thin edges have link probabilities
0.4 and 0.2, respectively. (b) to (d): Illustration of results; edge colors in (b), (c), and (d) indicate how the
increase in the corresponding θ entries can affect the probability of choosing v1, v2, and v3, respectively.

dates, we accumulate the loss values and gradient esti-
mators over datasets in a mini-batch, and then update
w. Note that the N trials of Smoothed Greedy, as
well as the computation of ∇θ ln p(Sj ,θ), can be per-
formed in parallel. Experiments in Section 5.2 confirm
the practical effectiveness of the above method.

In this setting, we let regularization strength δ be large
to some extent. This is because, Smoothed Greedy
with too small δ may overfit to outputs of a predictive
model in early stages, where it is not well trained yet.

5 EXPERIMENTS

We evaluate our method with sensitivity analysis and
decision-focused learning instances. We use the entropy
function as Ωk; as the effect of ε has been studied in
Section 3.1, we here fix ε = 0.2 for simplicity. All
experiments are performed on a 64-bit macOS machine
with 1.6GHz Intel Core i5 CPUs and 16GB RAMs.

We use the following bipartite influence maximization
instance. Let V and T be sets of items and targets,
respectively, and θ ∈ [0, 1]V×T be link probabilities.
We aim to maximize the expected number of influ-
enced targets, f(X,θ) =

∑
t∈T

(
1−∏v∈X(1− θv,t)

)
,

by choosing up to K items.

In Appendix E.2, we perform experiments with another
setting, where we consider learning deep submodular
functions under a partition matroid constraint. Exper-
iments in Appendix F.3 analyze performances of the
faster stochastic version of Smoothed Greedy.

5.1 Sensitivity Analysis

We perform sensitivity analysis with a synthetic in-
stance such that V = {v1, v2, v3}, T = {t1, t2, t3}, and

K = 2. Let θi,j denote the link probability of (vi, tj);
we set (θ1,1, θ1,2, θ1,3) = (0.4, 0.4, 0), (θ2,1, θ2,2, θ2,3) =
(0, 0.4, 0.2), and (θ3,1, θ3,2, θ3,3) = (0, 0, 0.2) as in Fig-
ure 2a. We analyze the sensitivity of Smoothed
Greedy by estimating∇θES∼p(θ)[1S ] as in Section 4.1.
We let N = 100 and use VR as explained in Section 3.

Figures 2b, 2c, and 2d illustrate how and how much
the increase in each θi,j value can affect the probability
of choosing v1, v2, and v3, respectively. In this setting,
the objective values of the three maximal solutions,
{v1, v2}, {v1, v3}, and {v2, v3}, are 1.24, 1.00, and 0.76,
respectively. Therefore, Smoothed Greedy returns
{v1, v2} or {v1, v3} with a high probability. This re-
mains true even if the θ values slightly change, and
thus the probability of choosing v1 is relatively insen-
sitive as in Figure 2b. By contrast, as in Figures 2c
and 2d, the probabilities of choosing v2 and v3, re-
spectively, are highly sensitive. For example, if θ2,3

increases, the probability that the algorithm returns
{v1, v2} ({v1, v3}) increases (decreases), which means
the probability of choosing v2 (v3) is positively (nega-
tively) affected by the increase in θ2,3. We can also see
the that the opposite occurs if θ3,3 increases.

5.2 Decision-Focused Learning

We evaluate the performance of our method via
decision-focused learning experiments with MovieLens
100K dataset (Harper and Konstan, 2015), which
contains 100, 000 ratings (1 to 5) of 1, 682 movies
made by 943 users. We set the link probabilities at
0.02, 0.04, . . . , 0.1 according to the ratings; those of
unrated ones are set at 0. We randomly sample 100
movies and 500 users, which form item set V and target
set T , respectively. We thus make 100 random (V, T )
pairs with link probabilities. Each movie v ∈ V belongs
to some of 19 genres, e.g., action and horror; we use



Table 1: Function Values Achieved with Each Method.

K = 5 K = 10 K = 20

Training Test Training Test Training Test

SG-1 26.3± 4.0 26.4± 4.4 46.0± 5.9 45.9± 6.5 69.7± 23.8 69.6± 24.1
SG-10 29.0± 3.7 28.1± 4.9 47.0± 12.1 46.1± 12.4 71.5± 28.0 70.6± 28.1

SG-100 33.6± 2.4 32.0± 3.8 54.3± 2.0 53.5± 4.2 82.6± 21.8 82.3± 21.7
VR-SG-10 35.2± 6.1 33.7± 6.2 57.9± 1.6 56.2± 3.4 90.8± 16.5 89.5± 16.7

VR-SG-100 36.8± 0.9 35.6± 2.2 59.9± 1.6 58.0± 2.9 96.8± 1.1 94.5± 2.6
Continuous 24.0± 4.5 23.2± 4.9 43.2± 6.1 42.3± 7.1 81.7± 6.8 81.3± 6.6
Two-stage 17.3± 1.2 17.3± 2.1 35.6± 0.9 35.6± 2.7 65.5± 4.0 64.8± 5.1
Random 17.5± 1.0 17.6± 2.2 33.8± 0.8 34.0± 2.7 64.0± 1.3 64.5± 2.6

the 19-dimensional indicator vector as a movie feature.
Each user t ∈ T has information of their age, sex, and
occupation categorized into 21 types, e.g., writer and
doctor; we concatenate them and use the resulting
24-dimensional vector as a user feature. A feature of
each (v, t) ∈ V × T is a concatenation of the 19- and
24-dimensional vectors. As a result, each of the 100 ran-
dom (V, T ) pairs has feature X of form 100× 500× 43.
The predictive model, which outputs θv,t ∈ [0, 1] for
the feature of each (v, t) ∈ V × T , is a 2-layer NN
with a hidden layer of size 200 and ReLU activation
functions, where the outputs are clipped to [0, 1]. Since
the features are sparse, the predictive model with de-
fault weight initialization returns 0 too frequently; to
avoid this, we set initial linear-layer weights at random
non-negative values drawn from [0, 0.01].

We split the 100 random instances into 80 training
and 20 test instances. We train the predictive model
with (X1,θ1), . . . , (X80,θ80) and test the performance
with (X̃1, θ̃1), . . . , (X̃20, θ̃20). We make 30 random
training/test splits; we present all results with means
and standard deviations over the 30 random splits.
Given 80 training datasets, we train the model over
mini-batches of size 20 for 5 epochs. We use Adam
with learning rate 10−3 for updating parameter w of
the predictive model.5

We compare SG-N , VR-SG-N , Continuous, Two-
stage, and Random. SG-N is our method based on
Smoothed Greedy (see, Section 4.2), where N indi-
cates the number of output samples; we let N = 1, 10,
and 100. VR-SG-N (variance-reduced SG-N) uses
the baseline correction method when estimating gra-
dients; we let N = 10 and 100 (omit N = 1) since if
N = 1, the baseline value is equal to the single output
value, which always yields zero gradients. Both SG-N
and VR-SG-N use the greedy algorithm when making
decisions. Continuous (Wilder et al., 2019a) maxi-

5The settings mostly replicate those of (Wilder et al.,
2019a), but we use the public MovieLens dataset instead of
the original one, which is not open to the public. Accord-
ingly, some parts are slightly changed.

mizes the continuous relaxation (multilinear extension)
of the objective function with SGA and differentiates
local optima (we use their original implementation).
Two-stage trains the model by minimizing the mean
square error and then maximizes the objective func-
tion with SGA (the implementation is based on that of
(Wilder et al., 2019a)). Continuous and Two-stage
make decisions S ∈ I by choosing elements correspond-
ing to the top-K entries of solution x ∈ [0, 1]n returned
by SGA. Random is a baseline method that makes
decisions S ∈ I uniformly at random.

Table 1 shows the objective function values (averaged
over the 80 training and 20 test instances) achieved
by each method for K = 5, 10, and 20. VR-SG-100
achieves the highest objective value for every case, and
(VR-)SG with other settings also performs compara-
bly to or better than Continuous. These results are
consistent with the theoretical guarantees. More pre-
cisely, while Continuous trains the predictive model
so that SGA, a 1/2-approximation algorithm, returns
high objective values, our method trains the predictive
model based on outputs of Smoothed Greedy, which
achieves an almost (1 − 1/e)-approximation. The re-
sults also show that VR is effective for improving the
performance of our method. The standard deviation
of (VR-)SG becomes sometimes high; this is because
they are sometimes trapped in poor local optima and
result in highly deviated objective values. Considering
this, the performance of our method would be further
improved if we can combine it with NN training tech-
niques for escaping from poor local optima. Regarding
running times, for updating w once, SG-1 takes 2.81,
3.38, and 3.77 seconds on average for K = 5, 10, and
20, respectively, while Continuous takes 5.86, 5.87,
and 6.11 seconds, respectively.6 Hence, our method
can run faster by performing Smoothed Greedy in
parallel as mentioned in Section 4.2.

6Note that the above instance is a special case where
the multilinear extension has a closed-form expression that
is computable in polynomial time; this makes Continuous
particularly fast. When such an expression is unavailable,
our method, is far more efficient than Continuous.
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