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Abstract

We present eigenvalue decay estimates of inte-
gral operators associated with compositional
dot-product kernels. The estimates improve
on previous ones established for power se-
ries kernels on spheres. This allows us to
obtain the volumes of balls in the correspond-
ing reproducing kernel Hilbert spaces. We
discuss the consequences on statistical estima-
tion with compositional dot product kernels
and highlight interesting trade-offs between
the approximation error and the statistical er-
ror depending on the number of compositions
and the smoothness of the kernels.

Introduction

Dot product kernels are important tools to tackle sig-
nal or image data in machine learning, statistical es-
timation, and computational mathematics (Steinwart
and Christmann, 2008; Eggermont and LaRiccia, 2001;
Wendland, 2005; Dyn et al., 2001). Normalizing sig-
nal and image data to lie on a sphere is common in
signal processing and computer vision (Mairal et al.,
2014a). The shape and the volume of the reproducing
kernel Hilbert space is reflected through the decay of
the eigenvalues of the associated integral operator.

The spectrum of eigenvalues of an integral operator as-
sociated with the Gaussian radial basis function kernel
was first presented by Smola et al. (2001). The sub-
ject was further explored in several papers (Cho and
Saul, 2010; Zwicknagl, 2009; Azevedo and Menegatto,
2014). Recently, dot product kernels have been con-
sidered in relation to the theoretical analysis of deep
networks (Daniely et al., 2016; Bach, 2017a; Song et al.,
2018) and in relation to the design of new kernel-based
methods (Mairal et al., 2014b; Mroueh et al., 2015).
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We present in this paper general estimates of eigenvalue
decay of integral operators associated with dot product
kernels of the form

K(x, x) := f(hx, x0iRd) (1)

when the function f satisfies regularity conditions on
[�1, 1]. The eigenvalue decay estimates we obtain gen-
eralize previous fundamental results on Mercer decom-
positions and eigenvalue estimates of dot product ker-
nels (Zwicknagl, 2009; Azevedo and Menegatto, 2014).

Spherical harmonic functions are central to our analy-
sis. These special functions arise as the eigenfunctions
of the integral operator associated with the simple dot
product kernel. We highlight the relationship between
f , the smoothness properties of the dot product kernel
K and the rate of decay of the eigenvalues of the as-
sociated integral operator. The conditions we provide
are concrete and verifiable, boiling down to conditions
related to a Taylor series expansion of the kernel. This
allows us to characterize the reproducing kernel Hilbert
space, obtain estimates of the effective dimension in
statistical estimation of eigendecay and show the learn-
ing rates of the regularized least-squares algorithm in
all regimes.

The results we present here can potentially be used in a
number of contexts. We illustrate them on three exam-
ples related to the theoretical analysis of deep networks.
These examples allow us to relate the nonlinear activa-
tion functions involved in the construction of a deep
network to the spectrum of eigenvalues of an integral
operator. In particular, we show that, as one iterates
the composition of a nonlinear function, the effect on
the spectrum is different if the nonlinearity is smooth,
as in the case of the exponential or the Swish activa-
tion (Ramachandran et al., 2017), or non-smooth, as
in the special case of the ReLU activation (Goodfellow
et al., 2016).

Furthermore our results also establish sufficient condi-
tions for this family of kernels in (1) to be universal.
The universality of a kernel is a key property which
guarantees Bayes-consistency (Steinwart and Christ-
mann, 2008). We show that the universality can be
related to smoothness properties of the function f .
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All the proofs can be found in the long version (Scetbon
and Harchaoui, 2021). We start in Sec. 1 with a re-
fresher on spherical harmonics and eigenspectra of in-
tegral operators associated with dot product kernels.
In Sec. 2, we present our main results on eigendecay
estimates for these integral operators. Table 2 summa-
rizes our results. In Sec. 3, we explore the statistical
implications for regularized least-squares. Finally, in
Sec. 4, we discuss examples related to deep networks.

Related work We give here a brief overview of the
related works. The variety of the related works shows
the versatility of dot product kernels in machine learn-
ing and related fields and the importance of general
results on the eigendecay of integral operators.

Dot product kernels. Smola et al. (2001) provided in a
seminal work estimates of eigenvalue decay for sim-
ple dot product kernels. Eigendecay estimates for
power series kernels were obtained by Zwicknagl (2009);
Azevedo and Menegatto (2014) in a particular eigen-
decay regime. We obtain tight eigendecay estimates
in a broad range of regimes. The results we present
can also be potentially applied to recent kernel-based
alternatives to deep networks (Shankar et al., 2020).

Regularized least-squares. Caponnetto and De Vito
(2007) studied regularized least-square in a reproduc-
ing kernel Hilbert spaces in the polynomial regime of
eigendecay of the spectrum of the integral operator.
The polynomial regime is also common in asymptotic
statistical results; see also (Gu, 2013) for a review. We
extend this line of work by delineating and studying
the geometric regime and the super-geometric regime.
The analysis requires a careful control of the eigende-
cay. The tools we develop for this purpose can be of
independent interest.

Deep networks in kernel regime. Recent work has
shown that a fully connected network, i.e., a multi-
layer perceptron, trained with gradient descent may
behave like a (tractable) kernel method in a certain
over-parameterized regime. See (Chen et al., 2020)
for instance. The framework we develop here can be
applied to such a tangent kernel and obtain the rate of
decay of the eigenvalues of the integral operator associ-
ated with the kernel. While our theoretical results cover
a broad class of activation functions, very recent work
has considered the special case of the ReLU activation
and developed a tailored analysis for that case. Bietti
and Bach (2021) argue that in that case the RKHS re-
mains unchanged regardless of the depth of the neural
network; see also (Chen and Xu, 2020). In this paper,
we relate the behavior of the coefficients in the Taylor
expansion of f to the decay of the eigenvalues of the
integral operator.

Moreover, we cover all regimes of eigendecay, including
the regime corresponding to the ReLU activation.

Kernels on spheres and shallow networks. In (Bach,
2017a), reproducing kernel Hilbert spaces of dot prod-
uct kernels are used to analyze single-hidden layer
neural networks with input data normalized on the
sphere. We extend the work of (Bach, 2017a) in that
we analyze neural networks with more than one hid-
den layer in various eigenvalue decay regimes including
the geometric and super-geometric ones which were
not considered in (Bach, 2017a). Moreover, in con-
trast to (Bach, 2017a) in which the learning problem
is assumed to be realizable, i.e., the target function is
assumed to live in the function space, we work with
source conditions which allow us to obtain statistical
convergence rates under more general assumptions.

Hilbertian envelopes of deep networks. In (Zhang et al.,
2016), reproducing kernel Hilbert spaces are used to
analyze multi-layer neural networks with smooth ac-
tivation functions. The family of kernels we consider
in Prop. 4.1 generalizes the one studied in (Zhang
et al., 2016) as our kernels are adaptive to the nonlinear
functions involved in the construction of the network.
In (Suzuki, 2018), excess risk bounds for multi-layer
perceptrons are presented. The eigendecay estimates
we obtain result in estimates of effective dimension or
degrees-of-freedom of multi-layer perceptrons.

1 Dot Product Kernels and their
Spectral Decompositions

Kernels on spheres are ubiquitous in machine learning,
statistical estimation, and computational mathemat-
ics (Smola et al., 2001; Steinwart and Christmann, 2008;
Eggermont and LaRiccia, 2001; Wendland, 2005; Dyn
et al., 2001). Simple kernels on spheres date back to
the seminal works on reproducing kernels (Schoenberg,
1942). Examples of simple kernels on spheres include
homogeneous polynomial kernels, inhomogeneous poly-
nomial kernels, and Vovk’s polynomial kernels (Smola
et al., 2001; Steinwart and Christmann, 2008). The
analysis of a dot product kernel on the sphere hinges
upon a Taylor-like expansion which gives, on the one
hand, a spectral decomposition, and on the other hand,
a Mercer decomposition.

Dot product kernel on the sphere. Let d � 2
and Sd�1 be the unit sphere of Rd. A kernel of the
form

K(x, y) =
X

m�0

bm(hx, yi)m, x, y 2 Sd�1 (2)

where (bm)m�0 is an absolutely summable sequence is
called a dot product kernel on the sphere Sd�1.
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Kernel bm Space µ �m

exp(�ckx� yk2) bm 2 O(m�3/2) Sd�1 d�d�1 m�d/2

⇡ � arccos(hx, x0i) bm 2 O(m�3/2) Sd�1 d�d�1 m�d/2

(2� hx, x0i)�1 bm 2 O(2�m) Sd�1 d�d�1 2�m

exp(�bkx� x0k22) |bm/bm�1| 2 O(m�1) Sd�1 d�d�1 (eb)mm�m+(d�1)/2

exp(�b(x� x0)2) |bm/bm�1| 2 O(m�1) [0, 1] / exp(�2ax2) (b/(a+ b))m

1 + (�1)s�1(2⇡)2s

(2s)! B2s({x� y}) / [0, 1] dx m�2s

Table 1: Eigendecay rates for different kernels. The kernels above the horizontal line are dot-product kernels on
the sphere.

Note that the construction we describe below could
be extended to dot product kernels in Hilbert
spaces (Schoenberg, 1942). If bm � 0 for every m � 0,
then K is a continuous positive semi-definite kernel on
the sphere Sd�1 (Pinkus, 2004; Zwicknagl, 2009).

Integral operator. Let L
d�d�1

2 (Sd�1) be the space
of real square-integrable functions on the sphere Sd�1

endowed with its induced Lebesgue measure d�d�1 and
|Sd�1| the surface area of Sd�1. Given a positive semi-
definite dot product kernel K, we define the integral
operator on L

d�d�1

2 (Sd�1) associated

TK : L
d�d�1

2 (Sd�1) ! L
d�d�1

2 (Sd�1)
f !

R
Sd�1 K(x, ·)f(x)d�d�1(x)

By continuity of K,
R
Sd�1 K(x, x)d�d�1(x) is finite and

TK is well defined, self-adjoint, positive semi-definite
and trace-class (Smale and Zhou, 2007; Steinwart and
Christmann, 2008).

Denote H the Reproducing Kernel Hilbert Space
(RKHS) associated to K. The spectral theorem for
compact operators (Kato, 1995) tells us that for M 2
N[{+1}, we have a positive, non-increasing summable
sequence (⌘m)0mM and a family (em)0mM ⇢ H,
such that (⌘1/2m em)0mM is an orthonormal system
in H while (em)0mM is an orthonormal system in
L
d�d�1

2 (Sd�1) with

TK =
MX

m=0

⌘mh., emiem .

where h·, ·i is in L
d�d�1

2 (Sd�1). The system of eigen-
functions of TK is particularly interesting, yet often
unknown analytically, except for special classes of ker-
nels. Our class of kernels is one of them.

Spherical harmonics. Let Pm(d) be the space of
homogeneous polynomials of degree m in d variables
with real coefficients and Hm(d) be the space of har-
monics polynomials defined by

Hm(d) := {P 2 Pm(d)|�P = 0}

where �· =
dP

i=1

@
2
·

@x
2
i

is the Laplace operator on

Rd (Wendland, 2005). Define Hm(Sd�1) the space
of real spherical harmonics of degree m defined as the
set of restrictions of harmonic polynomials in Hm(d)

to Sd�1. Let also L
d�d�1

2 (Sd�1) be the space of (real)
square-integrable functions on the sphere Sd�1 endowed
with its induced Lebesgue measure d�d�1 and |Sd�1|
the surface area of Sd�1. L

d�d�1

2 (Sd�1) endowed with
its natural inner product is a separable Hilbert space
and the family of spaces (Hm(Sd�1))m�0, yields a di-
rect sum decomposition (Efthimiou and Frye, 2014)
that reads as

L
d�d�1

2 (Sd�1) =
M

m�0

Hm(Sd�1) (3)

which means that the summands are closed and pair-
wise orthogonal. Moreover, each Hm(Sd�1) has a finite
dimension ↵m,d with ↵0,d = 1, ↵1,d = d and for m � 2

↵m,d =

✓
d� 1 +m

m

◆
�
✓
d� 1 +m� 2

m� 2

◆

Therefore for all m � 0, given any orthonormal basis of
Hm(Sd�1), (Y 1

m
, ..., Y

↵m,d

m ), we can build an Hilbertian
basis of Ld�d�1

2 (Sd�1) by concatenating these orthonor-
mal bases. Let us denote in the following (Y lm

m
)m,lm

such an Hilbertian basis of Ld�d�1

2 (Sd�1).

Azevedo and Menegatto (2014) give a Mercer decom-
position for a dot product kernel on the sphere of the
form (2). Indeed each spherical harmonics of degree
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m, Ym 2 Hm(Sd�1), is an eigenfunction of TK with
associated eigenvalue given by the formula

�m =
|Sd�2|�((d� 1)/2)

2m+1

X

s�0

b2s+m

(2s+m)!

(2s)!

�(s+ 1/2)

�(s+m+ d/2)
.

(4)

Mercer’s theorem then states that the RKHS H associ-
ated to the kernel K is the set of functions f 2 L2(Sd�1)
satisfying

f =
X

m�0
�m>0

↵m,dX

lm=1

am,lm
Y lm
m

s.t.

X

m�0
�m>0

↵m,dX

lm=1

a2
m,lm

�m

< +1 .

(5)

From this definition, we see immediately that as the
eigenvalues of the integral operator decreases slower,
the volume of the RKHS becomes larger. More gener-
ally, the eigendecay of the integral operator is central
to the understanding of a kernel. Note that, in general,
the rate of convergence of a sub-sequence of positive
(�m)m�0, ranked in the non-increasing order, is dif-
ferent from the one of (⌘m)0mM . Indeed we need
to take into account the eigenvalue multiplicities in
order to control the eigendecay. A control of eigende-
cay is usually out of reach, except for specific kernels
on specific domains; see (Steinwart and Christmann,
2008) for a survey and an extended discussion. Indeed
upper bounding or lower bounding can quickly result
in such loose bounds that they are trivial bounds. A
careful control of eigenvalues and their multiplicities is
essential.

Eigendecay regimes. We distinguish three regimes
of decay of eigenvalues: polynomial, geometric, and
super-geometric. A polynomial decay corresponds to
a rate proportional to m�q with q > 1; geometric
decay to one proportional to exp(�↵mq) with ↵ > 0
and q > 0; super-geometric decay to one faster to
geometric decay. We shall see that, depending on
the behavior of the coefficients (bm)m�0, dot product
kernels relate to one of the above three regimes. In
Table 1, we give an overview of dot product kernels
on the sphere (Blanchard and Zwald, 2008; Zhang
et al., 2016; Bach, 2017a,b) and give the rates of the
sequence (�m)m�0 defined in Eq. (4). We also recall the
eigendecay for classical kernels from the nonparametric
statistics literature (Gu, 2013).

2 Eigenvalue Decay of Dot Product
Kernels on the Sphere

We show now how to control the eigenvalue decay of an
integral operator associated with a dot product kernel
K on the sphere introduced in Eq. 2. We exhibit three
regimes: polynomial, geometric and super-geometric.
We can be in one or the other regime, depending on
the coefficients (bm)m�0 involved. Recall that for such
kernels we have an explicit formulation of the eigen-
values (�m)m�0 associated to the integral operator TK

given by (4). In the following we denote (⌘m)0mM

the positive eigenvalues of the integral operator TK

associated to the kernel K ranked in a non-increasing
order with their multiplicities, where M 2 N [ {+1}.

Super-Geometric Decay. A first case of interest is
the one studied by Azevedo and Menegatto (2014).
There tight estimates for eigenvalues (�m)m�0 are
obtained, under the assumption that |bm/bm�1| 2
O(m��) when � is assumed to be strictly bigger than
1/2. We present here a more general result, holding for
any � > 0.
Proposition 2.1. If there exists � > 0 such that

����
bm

bm�1

���� 2 O(m��) (6)

then, denoting ↵ = 1/(1� 2�), we have

�m 2

8
>><

>>:

O
�

bm

2mm(d�2)/2

�
if � � 1/2

O
✓

m
m�

2↵
+ 1

↵ bm

2m+1m(d�2)/2

◆
if 0 < � < 1/2

To control the eigenvalue decay associated with such
dot product kernels, one needs to take into account the
eigenvalue multiplicities. From the above control, we
obtain a tight control of the eigenvalue decay of TK

ranked a non-increasing order with their multiplicities.
Proposition 2.2. Under the same assumption as
Prop. 2.1, M = +1 and there exists a universal
constant c > 0 such that

⌘m 2 O
✓
m�

�

s
m

1
d�1

◆
where s =

4c

(d� 2)!
.

Geometric Decay. Another case of interest is when
the coefficients (bm)m�0 decrease almost geometrically.
Indeed we also obtain a tight control of the sequence
(�m)m�0 associated and the eigenvalue decay with their
multiplicities of the integral operator TK .
Proposition 2.3. If there exist 0 < r < 1 and 0 <
c2  c1 constants such that for all m � 0

c2r
m  bm  c1r

m , (7)



Meyer Scetbon, Zaid Harchaoui

bm µ⌫

m
df⌫(�) Rates (2 � � > 1)

bm 2 O(m�↵), ↵ > 1 m�( d/2+↵�3/2
d�1 ) ��

d�1
d/2+↵�3/2 `�

�

�+q(↵,d) , q(↵, d) := d�1
d/2+↵�3/2

bm 2 O(r�m), 1 > r > 0 e�
(d�1)!

Q1
log(1/r)m

1
d�1

log(��1)d�1 log(`)d�1

`

|bm/bm�1| 2 O(m��), � > 0 m�
�

s
m

1
d�1 log(��1)d�1

(log(log(��1)))d�1
log(`)d�1

[log(log(`))]d�1`

Table 2: Comparison of the convergence rate of regularized least-squares with a dot product kernel on the sphere.

then there exists constants C1, C2 > 0 such that

C2

⇣r
4

⌘m

 �m  C1r
m .

Moreover, M = +1 and there exists universal con-
stants Q1 > Q2 > 0 such that for all m � 0

C2e
�

(d�1)!
Q2

log(4/r)m
1

d�1  ⌘m  C1e
�

(d�1)!
Q1

log(1/r)m
1

d�1
.

Polynomial Decay. When (bm)m�0 admits a poly-
nomial decay, we manage to control the rate of the
sequence (�m)m�0 associated and the eigenvalue decay
with their multiplicities of the integral operator TK .
Proposition 2.4. If there exists ↵ > 1 such that

bm 2 O(m�↵) , (8)

then we have

�m 2 O(m�d/2�↵+3/2) ,

and

⌘m 2 O(m�d/(2d�2)�↵/(d�1)+3/(2d�2)) .

Approximation of the RKHS. The eigenvalue de-
cay of the integral operator gives here a concrete no-
tion of the complexity of the function space considered.
Roughly speaking, if the (⌘m)m�0 decay rapidly, the
kernel K can be well approximated with a small number
of terms in the Mercer decomposition. More formally,
let (S, d) a metric space, M ⇢ S and ✏ > 0. The
✏-covering number of M with respect to the metric d
denoted N(✏,M, d) is the smallest number of elements
of an ✏-cover for M using the metric d. The n-th
entropy number of a set M for n 2 N is defined as

"n(M) := inf{✏: N(✏,M, d)  n} .

Let L(E,F ) be the set of all bounded linear operators
T between the normed spaces (E, k ·kE) and (F, k ·kF ).
The entropy numbers of an operator T 2 L(E,F ) are
defined as

"n(T ) := "n(T (BE))

where BE is the closed unit ball of E. Obtaining a
control of "n(TK) leads to a control of the generaliza-
tion error of the kernel-based method using the kernel
K (Smola et al., 2001). Smola et al. (1999) obtained a
control of such quantities when the integral operator
associated with the kernel has a polynomial or geo-
metric eigendecay regime. Combining this with our
results, we can obtain a control of the entropy numbers
associated with dot product kernels.
Corollary 2.1. Let 1 > r > 0 and ↵ > 1. We have

bm 2 O(m�↵) =) "n(TK) 2 O(log�p(↵,d)/2(n))

where p(↵, d) =
d/2 + ↵� 3/2

d� 1
,

Furthermore we have

bm 2 O(rm) =) | log("n(TK))| 2 O(log1/d(n)) (9)

Recall that for a compact set M in finite dimen-
sional space of dimension d the entropy number is
"n(M) 2 O(n�1/d). What (9) tells us is that a nonpara-
metric estimator with that function class basically be-
haves like an estimator defined on a finite-dimensional
space. To obtain statistical bounds, all that is left is to
substitute the above control into the classical uniform
convergence results (Boucheron et al., 2005; Steinwart
and Christmann, 2008). In the next section, we focus
on regularized least-squares (RLS) with dot product
kernels, and, leveraging the eigendecay estimates we
obtained in the previous section, we parameterize the
statistical bounds in terms of the effective dimension.

3 Statistical Bounds for RLS with
Dot-product Kernels

We present here general statistical bounds on the per-
formance of regularized least-squares estimator of dot
product kernels in all the regimes. These statistical
bounds can be used to describe the statistical perfor-
mance of a regularized least-squares estimator when
this estimator can be computed exactly in practice.
This applies for instance to the kernel-based deep net-
works developed by Shankar et al. (2020) and to kernel-
based methods with kernels on spheres (Steinwart and
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Christmann, 2008). We focus on the approximation
error (our results do not assume realizability) and sta-
tistical prediction (our results match minimax rates)
of regularized least-squares (RLS).

Learning from data. Given a dataset z =
(xi, yi)

`

i=1 independently sampled from an unknown
distribution ⇢(x, y) on Z := X ⇥ Y where Y ⇢ R,
the goal of the least-squares regression is to estimate
the conditional mean function f⇢ : X ! R given by
f⇢(x) := E(Y |X = x). The joint distribution ⇢(x, y),
the marginal distribution ⌫, and the conditional distri-
bution ⇢(.|x), are related through ⇢(x, y) = ⌫(x)⇢(y|x).
Consider as hypothesis space a Hilbert space H of
functions f : X ! Y. For any regularization param-
eter � > 0 and training set z 2 Z`, the regularized
least-squares estimator fH,z,� is the solution of

argmin
f2H

(
1

`

`X

i=1

(f(xi)� yi)
2 + �kfk2

H

)
. (10)

In the following, the input space X is the sphere
Sd�1 and the hypothesis space considered is the
Hilbert space H associated with the dot product ker-
nel K with coefficients (bm)m�0. Define the inte-
gral operator on Ld⌫

2 (Sd�1) associated as T⌫(f)(y) =R
Sd�1 K(x, y)f(x)d⌫(x) and denote (µ⌫

m
)0mM its

positive eigenvalues ranked in a non-increasing order
with their multiplicities, where M 2 N [ {+1}. The
analysis of the convergence rates of RLS relies on the
control of the effective dimension defined as

df⌫(�) := Tr
�
(T⌫ + �)�1T⌫

�
=

MX

m=0

µ⌫

m

µ⌫
m
+ �

.

In the following, we manage to obtain tight estimates of
the df⌫ when M = +1 and (µ⌫

m
)0mM has a geomet-

ric decay or a super-geometric one. Note that Capon-
netto and De Vito (2007) previously obtained such a
control in the polynomial decay regime. Applying these
controls to the results obtained in the previous section
allows us to deduce the convergence rates of RLS for
dot product kernels in all the regimes. Table 2 summa-
rizes the control of the quantities of interest as well as
the convergence rates obtained for RLS associated to
dot product kernels in the different regimes.

We work here under general assumptions on the set of
probability measures ⇢ on Sd�1 ⇥ Y.
Assumptions 3.1. [Probability measures on
Sd�1 ⇥ Y]. Let P a set of probability measures on
Sd�1. Furthermore, let B,B1, L,� > 0 be some con-
stants and 0 < �  2 a parameter. Then we denote by
FB,B1,L,�,�(P) the set of all probability measures ⇢ on
Sd�1 ⇥ Y with the following properties.
(i) ⌫ 2 P

(ii)
R
Sd�1⇥Y

y2d⇢(x, y) < 1, kf⇢k2Ld⌫
1

 B1

(iii) There exists g 2 Ld⌫

2 (Sd�1) such that f⇢ = T �/2
⌫ g

and kgk2
⇢
 B

(iv) there exist � > 0 and L > 0 such that
R
Y
|y �

f⇢(x)|md⇢(y|x)  1
2m!�2Lm�2.

For ! � 1, we denote by W! the set of all probability
measures ⌫ on Sd�1 which satisfying d⌫/d�d�1 < !.
Furthermore, we introduce for a constant ! � 1 > h >
0, W!,h ⇢ W! the set of probability measures ⌫ on
Sd�1 which additionally satisfy d⌫/d�d�1 > h. In the
following we denote G!,� := FHN ,B,B1,L,�,�(W!) and
G!,h,� := FHN ,B,B1,L,�,�(W!,h).

Geometric Case We consider the case correspond-
ing to a geometric eigendecay. Here the coefficients
(bm)m�0 in the Taylor decomposition decrease almost
geometrically. The first goal is to obtain a control the
of the effective dimension associated with the integral
operator T⌫ .
Proposition 3.1. Let ! > 0 and ⌫ 2 W!. If there
exists 0 < r < 1 such that

bm 2 O(rm) , (11)

Then there exists a constant Q > 0 such that all 0 <
�  e�1 we have

df⌫(�)  Q log(��1)d�1

From the above control, we are now able to show the
convergence rates for nonparametric regression in the
geometric regime.
Theorem 3.1. Let us assume that there exists 0 <
r < 1 such that the sequence (bm)m�0 satisfies:

bm 2 O(rm) (12)

Let also w � 1 and 0 < �  2. Then there exists a
constant C > 0 independent of � such that for any
⇢ 2 G!,� and ⌧ � 1 we have:

• If � > 1, then there exists `⌧,� > 0 such that for
all ` � `⌧ and �` = 1

`1/�
, with a ⇢`-probability

� 1� e�4⌧ it holds

kfHN ,z,� � f⇢k2⇢  3C⌧2
log(`)d�1

`

• If � = 1, then there exists `⌧ > 0 such that for
all ` � `⌧ and �` =

log(`)µ

`
, µ > d� 1 > 0, with a

⇢`-probability � 1� e�4⌧ it holds

kfHN ,z,�`
� f⇢k2⇢  3C⌧2

log(`)µ

`
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• If � < 1, then there exists `⌧,� > 0 such that for

all ` � `⌧ and �` =
log(`)

d�1
�

`
, with a ⇢`-probability

� 1� e�4⌧ it holds

kfHN ,z,�`
� f⇢k2⇢  3C⌧2

log(`)d�1

`�

Note that we have for any 0 < �  2 an explicit
formulation of `⌧,� which depend to the constants of
the problem, ⌧ and � but we decide to hide them to
simplify the exposition of the results. Moreover the
rates obtained for RLS are optimal in the minimax
sense and therefore no better rate can be obtained
within this nonparametric learning framework.

Super-Geometric Case. Let us now consider the
case corresponding to a super-geometric eigendecay. As
in the geometric case, we start by obtaining a control
of df⌫(�) associated with T⌫ in this regime.
Proposition 3.2. Let ! > 0 and ⌫ 2 W!. If there
exist 0 < � < 1 such that

����
bm

bm�1

���� 2 O(m��)

Then there exists a constant Q > 0 such that all 0 <
�  e�1 we have:

df⌫(�)  Q
log(��1)d�1

(log(log(��1)))d�1

From the above control, we also obtain the conver-
gence rates for nonparametric regression in the super-
geometric regime. Table 2 shows the rates obtained in
that regime when 1 < �  2.

Polynomial Case. Caponnetto and De Vito (2007)
obtained the optimal convergence rates of RLS un-
der the assumption that the eigenvalue of the integral
operator T⌫ admits a polynomial decay for a given ker-
nel K. Combining their results and the one obtained
in Prop. 2.4 gives the convergence rates of RLS with
dot product kernels in the polynomial regime. See
Table 2 for rates obtained. As expected, the conver-
gence rate becomes faster as the complexity of the
model shrinks, i.e., the convergence rate of the super-
geometric regime is faster than the one obtained in
the geometric regime; the latter rate is therefore faster
than the one in the polynomial regime.

3.1 Numerical illustrations

In Figure 1, we compare the theoretical rates of RLS
estimator with the actual ones in the different regimes.
We use here a similar setup to the one of Bietti and Bach
(2021, Sec. 4). In each regime, we consider a specific

dot-product kernel. More precisely, for the polynomial,
geometric and super-geometric regimes, the kernels
considered are respectively, k(x, y) = exp(�ckx� yk),
k(x, y) = (2�hx, yi)�1 and k(x, y) = exp(�ckx� yk2).
To compare the rates, we consider randomly sampled
inputs on the unit sphere S3 in 4 dimensions, and gen-
erate outputs according to a target function living in
the associated RKHS. The regularization parameter
of RLS is chosen according the theoretical rules given
in the paper. The actual performance (red curve) is
computed on 10, 000 test datapoints. The x-axis cor-
responds to the number of training datapoints. The
blue curve corresponds to the theoretical upper rates
obtained in our paper. We see that the theoretical
rates we obtain match (up to a constant factor) the
actual rates of RLS when the number of datapoints is
sufficiently large.

4 Examples related to deep nets

We give two other applications of the theoretical results
from the previous sections related to multi-layer per-
ceptrons (MLP). Before introducing the applications,
Let us first recall the definition of an MLP.

Multi-layer perceptrons. We refer to here as a
multi-layer perceptron a fully-connected deep neural
network (Shalev-Shwartz and Ben-David, 2014). Let
X the input space be a subset of Rd, N the number
of hidden layers, � := (�k)Nk=1 a sequence of nonlinear
activation functions and m := (mk)Nk=1 a sequence of
integers corresponding to the width of the hidden layers.
Let us also introduce the width m0 of the input layer
which is just the dimension of the input, and mN+1

which is the width of the ouput layer supposed to be
1 here. Then any function defined by a MLP is pa-
rameterized by weight matrices W := (W k)N+1

k=1 where
W k 2 Rmk�1⇥mk and can be recovered as follows. Let
x 2 X , define N 0(x) := x and for k 2 {1, . . . , N}, de-
note W k := (wk

1 , ..., w
k

mk
) where for all j 2 {1, . . . ,mk}

wk

j
2 Rmk�1 . Then, for all k 2 {1, ..., N}, define the

kth layer as

N k(x) := (�k(hN k�1(x), wk

1 i), ...,�k(hN k�1(x), wk

mk
i))

Finally the function associated to the MLP with weights
W is defined as N (x,W) := hNN (x),WN+1iRmN . We
shall denote FX ,�,m the function space defined by all
functions N (·,W) defined as above on X for any choice
of W. We shall also consider the union space

FX ,� :=
[

m2N⇤N

FX ,�,m.

We assume in the following that the input data is on the
unit sphere (X = Sd�1) which is a common assumption
in the literature (Elad, 2010).
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Figure 1: Comparison of the actual rates with the theoretical ones of the regularized least-squares estimator in
the three different regimes. Left: Polynomial case. Middle: Geometric case. Right: Super-geometric case.

Neural Tangent Kernels. Learning the weights
of a network using gradient methods results in a
non-convex problem. However, in a specific over-
parameterized regime, it may be shown that gradient
descent can reach a global minimum while keeping
weights very close to random initialization. More pre-
cisely, for a network N (x,W) initialized with W0,
learning in the infinitely width regime is then equiva-
lent to a kernel method with a specific kernel referred
to as a neural tangent kernel (Chen et al., 2020) and
defined as

KNTK(x, x
0) := lim

m!+1

hrWN (x,W0),rWN (x0,W0)i.

Bietti and Mairal (2019b) show that, when the input
space is the unit sphere, the neural tangent kernel as-
sociated to an MLP is a dot product kernel. More
precisely, consider the case where for all i 6= j, �i = �j

for simplicity and denote � the nonlinear activation con-
sidered. Moreover let (a(1)

i
)i�0 the coefficients in the

decomposition of � in the basis of Hermite polynomials,
(a(0)

i
)i�0 the coefficients in the decomposition of the

first-order derivative �0 of � (assuming that � is differen-
tiable) in the basis of Hermite polynomials, and define
f1(x) :=

P
i�0(a

(1)
i

)2xi and f2(x) :=
P

i�0(a
(0)
i

)2xi.
Then by defining KNTK

1 (x) = K1(x) = x and for all
i = 2, . . . , N ,

Ki(x) = f1(Ki�1(x))

KNTK
i

(x) = KNTK
i�1 (x)f0(Ki�1(x)) +Ki(x) ,

we obtain that KNTK(x, x0) = KNTK
N

(hx, x0i). There-
fore KNTK(x, x0) is a dot product kernel and our results
from Sec. 2-3 can be applied. In particular, we can
obtain estimates of the eigendecay of the integral oper-
ator associated with that kernel in all possible regimes
of eigendecay. Such results can be applied for example
to control the convergence the idealized gradient de-
scent algorithm for a two-layer MLP. The convergence
analysis of Cao et al. (2019, Th. 4.2) can be used.
The convergence results suggests that the magnitude
of the projected residuals is driven by the magnitude
of the pk-th eigenvalue of the integral operator asso-
ciated with the NTK. Therefore, during training by

gradient descent, a two-layer MLP with a large enough
width learns the target function along the eigenfunc-
tions of the integral operator associated with the NTK
corresponding to the larger eigenvalues. Moreover this
convergence is faster in the polynomial regime than
in the geometric regime; and faster in the geometric
regime than in the super-geometric regime.

Hilbertian Envelope of Smooth Multi-layer Per-
ceptrons The mapping defined by a multi-layer per-
ceptron can be embedded into an appropriate reproduc-
ing kernel Hilbert space with respect to the nonlinear
activations involved in the network architecture. More-
over the kernel induced by an MLP is a dot product
kernel of the form (2) where (bm)m�0 is completely de-
termined by the non linear activation functions (�i)Ni=1

involved in the network. When the input space is the
unit sphere Sd�1 of Rd with d � 2, our results from
Sec. 2-3 can be again applied now to the specific RHKS
related to this network. Note that this RKHS is a
different object than the one associated with a neural
tangent kernel.

We show that there exists an RKHS containing the func-
tion space FX ,� for any smooth activation functions
� := (�i)Ni=1. Moreover, for well chosen activation
maps, the kernel is a universal kernel on X in the
sense of Sriperumbudur et al. (2011). The universality
property endows a kernel with interesting theoretical
properties.
Proposition 4.1. Let X be any subspace of Rd, N � 1,
(�i)Ni=1 functions which admits a Taylor decomposition
on R. Moreover let (fi)Ni=1 be the sequence of functions
such that for every i 2 {1, ..., N}:

fi(x) =
X

n�0

|�(n)
i

(0)|
n!

xn (13)

Then the RKHS HN of the kernel, KN defined on X⇥X
by

KN (x, x0) := fN � ... � f1(hx, x0iRd) (14)

contains the function space FX ,�. If we assume in
addition that for every i 2 {1, ..., N} and n 2 N,
�(n)
i

(0) 6= 0, then the kernel KN is cc-universal.
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The RKHS HN can be seen as an Hilbertian envelope
of the function space FX ,�. Note that the RKHS
we define above does not require that networks are
infinitely wide i.e. that all layers of the network are
infinitely large, as in some previous works (Daniely
et al., 2016; Du et al., 2018). Indeed, for any number
of weights m := (mi)Ni=1, the function space FX ,�,m

lies inside the RKHS we have just defined. This is an
important difference with previous works where RKHS
constructions were used to approach the function spaces
related to deep networks.

There are several consequences to the Proposi-
tion above. A direct consequence fact is that
inff2HN

E[(f(X) � Y )2]  inff2FX ,� E[(f(X) � Y )2].
In other words, the minimum expected risk in HN is a
straightforward lower bound on the minimum expected
risk in F . A second consequence is that the kernel KN

associated with HN defined above is universal. There-
fore, Bayes-consistency holds for common loss functions
and the Hilbert space embedding of probability distribu-
tions is injective under general assumptions (Steinwart
and Christmann, 2008).

We would like to underscore that, contrary to a common
misconception, many kinds of activations functions
other than ReLU activation functions have been used
with great success by practitioners in a number of
applications; see (Eger et al., 2018) for a recent account.

Eigendecay and depth. Thanks to our results,
when the input lies on the unit sphere, obtaining the
eigendecay of the integral operator associated with a
kernel, hence the shape and the volume of the RKHS
enveloping the MLP function space, boils down to find-
ing the rate of decay of the coefficients in the Taylor
decomposition of the kernel. However, as one overlays
layers over layers, iterating compositions of nonlinear
functions on top of the dot product, the rate of decay
of the coefficients (bm)m�0 changes. For example, as
one performs the composition of the exponential func-
tion f1 := exp(x) with the square function f2 := x2

(yielding a two-layer network), we get b(2)m = 2m/m!,
while if we had considered only the exponential func-
tion (yielding a single-layer network) we would have
got simply b(1)m = 1/m!. Generally, as one performs
compositions of functions, each coefficient bm increases
hence �m increases, resulting in a growth of the RKHS.

Convergence Rates and Network Depth. In the
geometric and super-geometric case, we can show that
increasing the depth of the network does not affect the
statistical rates as soon as the resulting kernel obeys
the same regime. Indeed, in the geometric regime (resp.
super-geometric), the statistical rates obtained in Sec. 3
do not depend on the parameter 0 < r < 1 (resp.

� > 0). Therefore while the resulting composed kernel
still obeys the same regime, the statistical rates remain
the same. For example, in the previous example we
obtain that b(2)m = 2m/m!, therefore b(2)

m+1/b
(2)
m = 2m.

Moreover we also have that b(1)
m+1/b

(1)
m = m, therefore

both are still in the same regime and the statistical rates
for both networks are the same. The two observations
above suggest that, from this viewpoint, increasing the
depth of a network can increase the size of the target
space, i.e., the set of realizable functions, while the
statistical rates appear to remain the same at least in
the geometric and super-geometric regime.

What about ReLUs? As shown in (Daniely et al.,
2016), a ReLU network with N layers can be approxi-
mated by the kernel KN introduced in Prop. 4.1 where
for all i = 1, . . . , N fi(x) = g(x) := 1

⇡
(⇡ � arccos(x)).

To clearly make the distinction, note that here the
function space generated by the ReLU network is not
included in the RKHS built associated to KN , whereas
the function space generated by the smooth MLP de-
fined with instead the activation function g at each layer
is included. As arccos admits a Taylor decomposition
and the coefficients admits a polynomial decay.

Bietti and Bach (2021) argue in a very recent work
that, in that specific case of deep neural networks with
ReLU activation functions, increasing the depth does
not change the eigendecay of the associated integral
operator. Our theoretical results encompass the polyno-
mial regime of decay of eigenvalues that is characteristic
of deep neural networks with ReLU activation functions.
We can then obtain estimates of the effective dimension
and statistical rates for regularized least-squares. Con-
trasting various viewpoints on ReLU networks is an
interesting venue for future work (Ongie et al., 2020).

Conclusion. We have analyzed the eigenvalue de-
cay of integral operators associated with dot product
kernels on Euclidean spheres. Depending on the be-
havior of the coefficients in the Taylor series expansion
of the kernel, we have distinguished three regimes of
decay of eigenvalues: polynomial, geometric, and super-
geometric. In each eigendecay regime, we have provided
tight effective dimension estimates as well as learning
rates for regularized least-squares. We have further
illustrated our results through examples inspired from
recent theoretical analyses of deep neural networks.
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