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Abstract

Counterfactual explanations (CEs) are a prac-
tical tool for demonstrating why machine
learning classifiers make particular decisions.
For CEs to be useful, it is important that they
are easy for users to interpret. Existing meth-
ods for generating interpretable CEs rely on
auxiliary generative models, which may not
be suitable for complex datasets, and incur
engineering overhead. We introduce a simple
and fast method for generating interpretable
CEs in a white-box setting without an aux-
iliary model, by using the predictive uncer-
tainty of the classifier. Our experiments show
that our proposed algorithm generates more
interpretable CEs, according to IM1 scores
(Van Looveren and Klaise, 2019), than ex-
isting methods. Additionally, our approach
allows us to estimate the uncertainty of a
CE, which may be important in safety-critical
applications, such as those in the medical do-
main.

1 INTRODUCTION

The growing number of decisions influenced by machine
learning models drives the need for explanations of why
a system makes a particular prediction (Sartor and
Lagioia, 2020). Explanations are necessary for users to
understand what factors influence a decision and under-
stand what changes they could make to alter it. One
important application for such explanations is recourse,
where the explanations allow users to understand what
adjustments they could make to the input to change
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the classification given by the model (Spangher et al.,
2018)

A common approach is to generate a counterfactual
explanation (CE) of the form “If X had not occurred,
then Y would not have occurred” (Wachter et al., 2017).
Consider the following binary classification problem:
“Given the current specifications of my house (e.g., loca-
tion, number of bedrooms, etc.), am I likely or unlikely
to sell it for $300,000?”. On inputting the details of
their apartment, the user might receive the classifica-
tion “unlikely”. In this example, a CE could be the
same house with upgraded furnishings to increase the
desirability, resulting in the classification “likely”.

Methods for generating CEs focus on finding an alter-
nate input that is close to the original input, but with
the desired classification (Molnar, 2019). However, this
highlights a fundamental difficulty in designing CEs,
namely their similarity to adversarial examples. Both
CEs and adversarial examples search for a minimal per-
turbation to add to the original input that changes the
classification. The distinguishing conceptual feature is
interpretability: while CEs should be interpretable, ad-
versarial examples need not be 1 However, interpretabil-
ity is an ambiguous term, with varying definitions in
existing literature (Lipton, 2018).

We propose defining an interpretable CE as one that is
realistic, i.e., a likely scenario for the user in question,
and unambiguous, i.e., not a pathological ‘borderline’
case. Figure 1 provides an illustration of these two
properties for an MNIST image (LeCun et al., 2010).
Here, we want to find a minimal change to to alter
the original image of a 9 so that it is 4. Second from
the left is an example of a CE that is not realistic –
it doesn’t resemble a “normal” 4. Third from the left

1Although there is a common conception that adversarial
attacks generate imperceptible changes, the term ‘percepti-
ble’ is ill-defined, and many adversarial perturbations are
visible to the human eye (see e.g. Papernot et al., 2016;
Sharif et al., 2016; Brown et al., 2017).
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Figure 1: Examples of possible CEs for an input image
of the digit 9 when changing the classification to 4.
From left to right: the original image, an unrealistic
CE, an ambiguous CE (it can be interpreted as either a
4 or 9), a realistic and unambiguous CE (output from
our algorithm).

is an example of an ambiguous counterfactual; it is
unclear whether it depicts a 4 or 9. In the final image
is a CE that is both realistic and unambiguous, which is
clearly preferable. We give a more extensive definition
of realism and unambiguity in Section 2.

Existing work largely focuses on generating realistic
CEs, and does not consider ambiguity (Wachter et al.,
2017; Dhurandhar et al., 2018; Joshi et al., 2019). Ad-
ditionally, many of these approaches rely on using an
auxiliary generative model, in addition to the classifier,
to either generate realistic CEs or evaluate the real-
ism of CEs in order to guide a search process. This
may impose a bottleneck, as generative models are
ill-suited for some datasets, and incur engineering and
maintenance overhead.

In this work, we propose capturing realism and ambi-
guity using the predictive uncertainty of the classifier.
We consider two types of uncertainty: epistemic and
aleatoric uncertainty (Kendall and Gal, 2017). Epis-
temic uncertainty is uncertainty due to a lack of knowl-
edge, stemming from observing only a subset of all
possible data points. We propose that CEs for which
the classifier has low epistemic uncertainty are more
realistic, because they are more likely under the data
distribution. Aleatoric uncertainty captures inherent
stochasticity in the dataset, for example due to points
that lie on the decision boundary between two classes.
Therefore, CEs with lower aleatoric uncertainty will
have lower ambiguity. In Section 3 we discuss both
concepts in more depth.

Based on these insights, we introduce a novel method
for generating interpretable CEs by using a classifier
that offers estimates of epistemic and aleatoric un-
certainty. This method does not require an auxiliary
generative model and requires less hyperparameter tun-
ing than existing methods. Existing neural network
classifiers can be easily extended to represent uncer-
tainty, for example, by using Monte Carlo dropout (Gal
and Ghahramani, 2016), thus this approach has a low

engineering cost. Additionally, for many applications
where it is necessary to offer an explanation, it may
also be essential to quantify the uncertainty in the pre-
dictions. Thus, uncertainty estimates might already be
available and could readily be used for generating CEs.

Our contributions are that we:

• link the concepts of aleatoric and epistemic uncer-
tainty to the concepts of unambiguous and realistic
CEs (Section 3),

• introduce a new method for generating inter-
pretable CEs based on implicit minimisation of
both epistemic and aleatoric uncertainty (Sec-
tion 3),

• demonstrate empirically, from both a qualitative
and quantitative perspective, that our method
generates more interpretable CEs than existing
methods, despite not requiring an auxiliary model
(Section 4.3).

We release an implementation of our algorithm, and
the experiments, at github.com/oscarkey/explanations-
by-minimizing-uncertainty.

2 CE DESIDERATA

In this section we define the desirable properties of
CEs, including those which make a CE interpretable.

Before doing this, we clarify the term ‘counterfactual
explanation’. Consider an initial input x which is to
be explained. We can write the alternative input, x′,
found as the explanation as x′ = x + ∆, where ∆ is
the minimal change. From here on we will use counter-
factual explanation to refer to x′, and counterfactual
perturbation (CP) to refer to ∆.

Explanation desiderata are subjective, and some are
not mentioned below. Our goal is not to define a
complete list of all possible desiderata, but simply to
make explicit the framework and targets we consider in
this work. If interested, the reader can refer to Lipton
(2018) for a more in depth discussion.

For each desideratum below, we illustrate it using the
example given in the introduction: a landlord has a two
bedroom, one bathroom, one garage house in Boston
with a small garden. A classifier answers the question
“Is this property likely to sell for $300,000?” with False.
The goal is to generate explanations of the form “If the
property had X, then the classifier would return True ”.

Minimal Perturbation The CE should be as simi-
lar as possible to the original instance, i.e. there should

https://github.com/oscarkey/explanations-by-minimizing-uncertainty
https://github.com/oscarkey/explanations-by-minimizing-uncertainty
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be as few changes as possible between x and x′ (Huys-
mans et al., 2011; Wachter et al., 2017; Molnar, 2019;
Laugel et al., 2019; Van Looveren and Klaise, 2019).
By making as few changes as possible, we produce con-
cise explanations that are more interpretable and avoid
information overload (Lahav et al., 2018). For example,
consider the following two CPs that both change the
classification of the aforementioned problem to True:

∆1 repainting the kitchen

∆2 repainting both the kitchen and the bathroom

As both obtain the desired outcome, ∆1 is more desir-
able as it is more concise.

Realistic Explanation The suggested explanation
must be from a “possible world” (Wachter et al., 2017).
This is important because the explanation must repre-
sent a concept that the user understands in order for
it to be informative to them. For example, the expla-
nation “if the garage was rebuilt into 100 small rooms,
then it is likely the house could be sold for $300,000”
is clearly unrealistic and not informative to the user.
In comparison, “if the garage was rebuilt into an en-
suite bedroom, then it is likely the house could be sold
for $300,000” would be a reasonable explanation. In
addition, the feature values must be realistic when con-
sidered together (Joshi et al., 2019). For example, a
one-bedroom house with 6 bathrooms would not be a
realistic explanation as most real houses have a higher
bedroom to bathroom ratio.

Unambiguous Explanation CEs should be unam-
biguous to be informative. In this context, we take
informative to mean explanations that humans can
understand and learn from. For example, doctors may
be interested in informative explanations from a breast
cancer detection model.

Ambiguous inputs may be classified with a low confi-
dence score, result in ‘borderline’ cases or inputs that
resemble multiple classifications. For example, an ’am-
biguous’ house specification is one that one buyer might
value over $300,000, but another buyer might value
under $300,000. For a visual example, see Figure 1,
where the input resembles both a 4 and 9.

Realistic or Actionable Perturbation It must be
possible for the user to apply the suggested CP in prac-
tice. While the ‘Realistic Explanation’ property ensures
that the explanation is a possible instance, it will only
provide the user with recourse if it is possible for them
to apply the suggested perturbation to transition from
their original input to the explanation. For example,
while having an identical house to the original but in

New York city would be a realistic counterfactual, it is
not an actionable perturbation because the user cannot
move their house to a different city.

Run Time of the Algorithm The algorithm must
generate CEs sufficiently quickly for the use case
(Van Looveren and Klaise, 2019). While other compu-
tational properties of the algorithm, such as memory
usage, are also important, we highlight run time be-
cause recourse is often offered in a user facing applica-
tion, so the algorithm must be able to generate CEs
sufficiently quickly for this interactive setting. Many
generation algorithms involve non-convex optimisation
and repeated evaluations of a potentially expensive
model, thus run time is a significant concern.

In our approach, we will target all of the above desider-
ata. We explicitly target the desiderata unambiguous
and realistic, through our design of the loss function.
We believe these desiderata are particularly important
as they distinguish CEs from adversarial examples. The
remaining desiderata are targeted implicitly through
the design of the optimisation procedure of our CE
generation algorithm. In the next section, we will in-
troduce our method and discuss how each desideratum
is addressed.

3 METHODOLOGY

In this section we introduce a method for generat-
ing interpretable CEs. In particular, we introduce
and motivate using epistemic and aleatoric uncertainty
to capture realism and unambiguity. Next, we show
that minimizing both types of uncertainty can be im-
plemented efficiently by minimizing the cross-entropy
objective of specific model classes. Based on these
insights, we present a fast, greedy algorithm that gen-
erates minimal perturbations that minimize both types
of uncertainty, resulting in interpretable explanations.
Note that our method is a post-hoc – this method is
used on trained classifiers to generate CEs.

3.1 Uncertainty as a Proxy for Realism and
Unambiguity

We begin by following Wachter et al. (2017) in framing
the task of generating CEs as an optimisation problem.
Given an input x, we can generate an explanation x′

in class y′ by solving

x′ = arg min
x′

max
λ≤Λ

λ`(f, x′, y′) + h(x′), (1)

where f is the classifier, `(·) is a loss function, Λ is a
hyperparameter, and h(·) is a measure of intepretability
(for which lower is better). Intuitively, we want to
generate an explanation in class y′, which is encouraged
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by `(·), and is interpretable, as encouraged by h(·). The
main difficulty is the definition of h(·), the measure of
interpretability. As previously introduced, we define
h(·) by considering two key aspects of interpretability:
realism and unambiguity.

First we consider how to generate realistic CEs. As
we discuss in Section 4, existing literature has revealed
that this property is the most difficult to achieve, thus
improving on it is the primary focus our work. We
suggest that, when generating a CE x′ in target class
y′, we should maximise pD(x′ | y′), where pD is the
training data distribution. Our justification for this
builds on the work of Dhurandhar et al. (2018); Joshi
et al. (2019); Van Looveren and Klaise (2019), as we
discuss in detail in Section 4.1. In short, explanations
which are likely under the distribution of the training
data will appear familiar to the user and thus realistic.
Specifically, we should consider the distribution for
the target class, i.e. pD(x′ | y′), in order to generate
examples which look realistic for the particular target
class y′. For example, it would not be realistic for a
house classified as expensive to be very small and in a
cheap area.

Given this definition of realistic, Bayes’ rule gives us
the following expression for the un-normalized density,

pD(x′|y′) =
pD(y′|x′)pD(x′)

pD(y′)
(2)

∝ pD(y′|x′)pD(x′). (3)

If we use a standard classification model with a softmax
output, then pD(y′|x′) is estimated by the output of
the model. To compute pD(x′), the likelihood of x′

under the training data distribution, we have several
choices. One option would be to use a separate genera-
tive model to estimate pD(x′). This would lead us to
a similar objective to that introduced by Dhurandhar
et al. (2018) and Van Looveren and Klaise (2019).

Instead, we note that we can approximate pD(x′) with-
out the need for an additional model by using a classifier
that offers estimates of uncertainty over its predictions
(Smith and Gal, 2018; Grathwohl et al., 2020). In
particular, we can use the estimate of epistemic un-
certainty. This is uncertainty about which function is
most suitable to explain the data, because there are
many possible functions which fit the finite training
data available. Considering the input space, a Bayesian
classifier will have lower epistemic uncertainty on points
which are close to the training data, and the uncer-
tainty will increase as we move away from it. Thus
epistemic uncertainty should be negatively correlated
with pD(x′). Gal and Smith (2018) show empirically
that this is in fact the case for Bayesian neural networks
implemented using deep ensembles. Thus, given a clas-
sifier which offers estimates of epistemic uncertainty

we can compute an un-normalized value for pD(x′|y′).

Second, we consider how to generate unambiguous CEs.
To capture ambiguity, we use aleatoric uncertainty.
This type of uncertainty arises due to inherent noisiness,
or stochasticity, in the data distribution (Smith and
Gal, 2018). To generate unambiguous CEs, we generate
explanations in areas of the input space where the
classifier has low aleatoric uncertainty.

3.2 Uncertainty in Practice

There are several different approaches for obtaining
classifiers that offer estimates of epistemic and aleatoric
uncertainty. For the experiments in this paper we
choose to use an ensemble of deep neural networks,
as this is a simple method for computing high quality
uncertainty estimates (Lakshminarayanan et al., 2017).
Contrary to other methods for estimating uncertainty
in deep learning, deep ensembles place no constraints
on the architecture class of the classifier. Note that
our approach will work with any model that offers
uncertainty estimates.

We define h(x′) as the predictive entropy of the clas-
sifier when evaluated on input x′. Predictive entropy
captures both aleatoric and epistemic uncertainty, and
both are low when the predictive entropy is low. Specif-
ically, the predictive entropy estimated using ensembles
is

h(x′) = −
∑
y∈Y

p̄(y|x′) log p̄(y|x′) (4)

p̄(y|x′) =
1

M

∑
m

pm(y|x′), (5)

where we have M models in the ensemble (Smith and
Gal, 2018). Here, pm(y|x′) is the softmax output of
the mth model in the ensemble.

Having defined h(x′) as the predictive entropy, we note
that the term λh(x′) in Equation (1) is redundant.
This is because a counterfactual that minimizes the
cross-entropy (i.e., that maximizes the probability to be
assigned to a class) must also minimize the predictive
entropy (i.e., be likely under our approximation of the
data distribution). Formally,

Proposition 1. For a classification model f ,
arg minx′ `(f, x′, y′) ∈ arg minx′ h(x′), where l(·) is
cross-entropy and h(·) is predictive entropy.

We provide a formal derivation in Appendix A. The in-
tuition behind this proposition is that the cross-entropy
is minimized (equal to 0) when the target class has a
probability 1 and all other classes have probability 0. In
this scenario, predictive entropy will also be minimized
at 0.
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As a result, we drop the term λh(·) from Equation (1)
and objective becomes simply

x′ = arg min
x′

`(f, x′, y′). (6)

This simplification of the objective makes it cheaper
and easier to generate CEs. We avoid the minimax op-
timization of the parameter λ, which might otherwise
increase the computational cost of the optimization.
Additionally, it eliminates the hyperparameter Λ, which
would otherwise need to be tuned. As we discuss in
detail in Section 4.1, this is an improvement over ex-
isting approaches such as Wachter et al. (2017), which
requires both minimax optimization and tuning of Λ,
and Van Looveren and Klaise (2019), which uses an
objective with several hyperparameters.

3.3 A Greedy Algorithm for Generating
Minimal CEs

Above, we propose an objective function for generat-
ing realistic CEs, and show that it can be implicitly
minimized by minimizing the cross-entropy loss. If we
optimize the loss function directly, we will generate a
sample in class y′. However, this does not incorporate
the minimality or realistic perturbation properties. Our
approach to ensuring both of these properties are sat-
isfied is to constrain the optimization process through
the optimization algorithm. Specifically, we extend
the Jacobian-based Saliency Map Attack (JSMA), orig-
inally introduced by Papernot et al. (2016) for the
purpose of generating adversarial examples. We adapt
this algorithm to generate meaningful perturbations.

JSMA is an iterative algorithm that updates the most
salient feature, i.e. the feature that has the largest
influence on the classification, by δ at each step. To
generate realistic CEs rather than adversarial examples,
we replace the original definition of saliency by defining
the most salient feature as that which has the largest
gradient with respect to the objective in Equation (6):

most salient feature(x′) = arg max
j

∇x′
j

[`(f, x′, y′)] ,

(7)
where ∇ denotes the partial derivative and x′j denotes
the jth feature of x. Updating each feature iteratively
by δ acts as a heuristic for minimising the L0 distance
between the original input and the CE (Papernot et al.,
2016). The algorithm terminates when the input is
classified as the target class with high confidence, or
after reaching the maximum number of iterations. Al-
ternatively, the algorithm can be configured to fail if
the explanation does not reach the predefined confi-
dence level. This enforces that generated explanations
are those on which the classifier has low uncertainty,

Algorithm 1 Generating Counterfactuals
(For more detail, see Appendix B)

1: Input original observation x; target class y′; en-
semble of models {fm}Mm=1; maximum number of
iterations N ; minimum confidence of target class
γ; perturbation size δ; maximum number of times
each feature is changed n; optional: a function that
clips the values to a permitted pre-defined range
clip.

2: Output counterfactual x′

3: x′ ← x
4: c← 0
5: P = 0np , where np is the number of input features
6: while 1

M

∑
m pm(y′|x′) ≤ γ and c ≤ N do

7: Compute forward derivative
S(x′, y′) = ∇x′

1
M

∑M
m `(fm, x

′, y′)
8: i = argmaxi:i∈P,P [i]<nS(x′, y′)[i]
9: x′[i] = x′[i] + sign(S(x′, y′)[i]) · δ

10: x′ = clip(x′)
11: P [i]← P [i] + 1
12: c← c+ 1
13: end while
14: return x′

which may be important for certain applications. We
give pseudocode in Algorithm 1.

This is a fast algorithm for generating realistic and un-
ambiguous explanations using minimal perturbations.
We also want to ensure that the perturbation is real-
istic and actionable. In many cases, we can manually
identify the features a user cannot change, and lock
these features to prevent the algorithm from perturbing
them. For example, we might prevent the algorithm
from changing the location of a house. This simple ap-
proach assumes that we are explicitly aware of factors
that can be changed, which is often but not always
the case. We leave a detailed investigation into other
approaches for generating realistic perturbations for
future work.

3.4 Adversarial Training

Our proposed method works with any classifier that
both offers uncertainty estimates and for which we
have access to the gradients (of cross-entropy loss with
respect to some input). However, if it is possible to
retrain the classifier then the realism of the generated
explanations can be improved by applying adversarial
training, as we demonstrate empirically in Section 4.3.
Specifically, we augment the dataset during training
using adversarial examples generated by FGSM (Good-
fellow et al., 2015), see Appendix C for details.

We suggest that adversarial training might improve the
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Figure 2: Gradients of classifiers trained with adver-
sarial training (middle image), versus without (right
image) for an input image (left image). We observe
that adversarial training results in gradients (which can
used to identify a salient features) that are more aligned
with human perception. This example is inspired by
Tsipras et al. (2019, Figure 2).

realism of the generated CEs for two reasons. First,
Lakshminarayanan et al. (2017) demonstrate that ad-
versarial training improves uncertainty estimation, both
on in-distribution and out-of-distribution inputs. This
should improve the performance of our method, as we
generate CEs in areas of input space where the classifier
has low uncertainty.

Second, adversarial training can lead to learning more
robust features (Tsipras et al., 2019; Ilyas et al., 2019).
Augmenting the training set with adversarial examples
during training ensures that the model does not focus
on noise when learning features for classification. As
such, the model is more likely to learn features that are
not noise, and therefore are more interpretable (Tsipras
et al., 2019). An example of the effect of adversarial
training is shown in Figure 2. The saliency of an adver-
sarially trained model, as shown by the middle image,
is more aligned with human interpretation than the
saliency of a regular model (shown by the right image).
We discuss these two effects further in Appendix C.

4 RELATED WORK

4.1 Generating CEs

Below we summarize the different methods used to
generate CEs. We begin with Wachter et al. (2017),
who frame the task of finding a CE x′ in target class
y′ for initial input x as the optimization problem

x′ = arg min
x′

max
λ≤Λ

λ`(f, x′, y′) + d(x, x′), (8)

where f is the classifier, `(·) is a loss function (the au-
thors use MSE loss), and d is some measure of distance
(the authors use a weighted L1 distance), and Λ is a
hyperparameter. This is equivalent to the objective
function we use in our approach, as given in Equa-
tion (1), if h(x′) is defined as distance to the original
input. In comparison to our approach, this definition
of h(x′) does not give any consideration to ensuring

that x′ is realistic, and Wachter et al. (2017) note that
it risks generating adversarial examples.

Various approaches adapt Equation (8) in an attempt
to generate realistic CEs:

• Dhurandhar et al. (2018) include an additional
penalty in the objective to encourage CEs to lie
on the training data manifold. The authors fit
an auxiliary autoencoder model to the training
data. In the objective, they then include the re-
construction loss of applying this autoencoder to
the CE. The assumption is that reconstruction loss
will be higher for CEs which are not likely under
the training distribution, which will encourage the
approach to generate realistic CEs.

• Van Looveren and Klaise (2019) note that the
approach introduced by Dhurandhar et al. (2018)
does not take into account the data distribution
of each class, for example a very large house is
unlikely to also be very cheap. Thus, the authors
include an additional loss term which guides the
search process towards a ‘prototype’ instance of
the relevant class. The prototype for each class is
defined as the average location in a latent space
of all the training points in that class. Again, the
authors use an autoencoder to map inputs into the
latent space. One disadvantage of this approach is
that the objective function contains several terms,
and a hyperparameter must be specified for each
in order to scale them appropriately.

• The methods above generate CEs by searching in
input space. In contrast, Joshi et al. (2019) search
in a latent space, and use a generative model to
map instances from this latent space into the input
space in order to evaluate them. The objective is

x′ = arg min
z∼p(z)

min
λ≤Λ

λ`(f(G(x′)), y′) + c(x, x′), (9)

where p(z) is a distribution over the latent space,
G(·) is the generative model mapping the latent
space to input space, and c(·) is a cost function
(which we can view the same as the distance func-
tion). One limitation of this approach is that the
CEs are produced by the generative model, thus
suffer from the pathologies of that model. For
example, a VAE is likely to generate blurry expla-
nations.

We claim that our approach has several advantages
over these methods. First, we avoid the engineering,
and potential computational, overheads of implement-
ing, training, and maintaining an auxiliary generative
model. Second, we have a simple objective function
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which does not involve minimax optimization or speci-
fying hyperparameters, both of which incur additional
computational cost.

The weakness of our method is that it requires a classi-
fier which offers uncertainty estimates. This is likely to
have higher computational cost, and in particular the
ensemble of classifiers that we use in our experimental
work is more expensive to train and evaluate than a
single model. However, our method can be used with
any classifier that offers both epistemic and aleatoric
uncertainty, and several fast approaches are available
for deep learning models (Gal and Ghahramani, 2016;
Liu et al., 2020; Van Amersfoort et al., 2020). Addi-
tionally, we argue that many applications where the
machine learning system must offer the user recourse,
estimates of the uncertainty in the classification will
also be required, and so will already be available from
the classifier. For example, when using a machine learn-
ing tool to make a decision, estimates of the uncertainty
in the predictions are very important to be able to act
cautiously, or defer to a human expert, when the model
is unsure.

4.2 Adversarial examples

Counterfactual examples are closely related to adver-
sarial examples. Adversarial examples are crafted by
finding the minimal perturbations required to change
the classification of an image Szegedy et al. (2013).
Mathematically, this can be formulated as

min
x′

d(x′, x)

s.t. f(x′) = y′,
(10)

where x is the original input, x′ is the adversarial
example, y′ is the target class, d(·) is a distance metric
and f(·) is the classifier.

This is very similar to the mathematical formulation
used to generate CEs in Equation (8). In literature,
the distinguishing feature between the two fields is
interpretability. While we want counterfactual exam-
ples to be interpretable, adversarial examples need not
be. Our work focuses on this distinguishing feature;
we design an algorithm that leverages uncertainty to
generate interpretable CEs.

4.3 Evaluation metrics

To evaluate CE generation algorithms, we evaluate
the realism and minimality of the CEs generated. To
measure minimality, we report the L1 distance between
the original input and the explanation. Realism is more
difficult to measure because it is poorly defined. In the
literature there are several approaches:

Human evaluation Dhurandhar et al. (2018) use
subject experts to evaluate the CEs generated by their
approach by hand. This provides ground-truth data
on human interpretability. We choose not to use this
approach because it is not automated, and so difficult to
perform at scale and not suitable for frequent evaluation
when tuning hyperparameters.

Vulnerability evaluation (Laugel et al., 2019)
This approach is based on the concept of justifica-
tion: a CE is justified if there is a path in input space
between the CE and a point in the training set that
does not cross the decision boundary between classes.
The authors introduce an algorithm which evaluates
what fraction of the CEs generated by an algorithm are
justified. We choose not to use this approach because
the algorithm does not scale to high dimensional input
spaces, as it relies on populating an epsilon ball around
the explanation with points. Additionally, it is not
clear if the notion of justification relates to the same
definition of human interpretability as we use in this
work.

IM1 / IM2 (Van Looveren and Klaise, 2019)
Two metrics based on the reconstruction losses of au-
toencoders are

IM1(x′, y, y′) =
‖x′ −AEy′(x

′)‖22
‖x′ −AEy(x′)‖22 + ε

(11)

IM2(x′, y′) =
‖AEy(x′)−AE(x′)‖22

‖x′‖1 + ε
(12)

where AEy is an autoencoder trained only on instances
from class y, and AE is an autoencoder trained on
instances from all classes. We can see that IM1 is
the ratio of the reconstruction loss of an autoencoder
trained on the counterfactual class divided by the loss
of an autoencoder trained on all classes. IM2 is the
normalized difference between the reconstruction of the
CE under an autoencoder trained on the counterfactual
class, and one trained on all classes.

We choose to evaluate the realism of the explanations
generated by our method using IM1. We omit IM2
because it fails to pass a sanity check. In particular,
we find that IM2 scores are not significantly different
for out-of-distribution data (i.e., ‘junk data’) than in-
distribution data. See Appendix D for further details.

5 EMPIRICAL ANALYSIS

Appendix E gives full details of the configuration we
use in each experiment.
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5.1 Datasets

We perform our analysis on three datasets: MNIST
(LeCun et al., 2010), the Breast Cancer Wisconsin Di-
agnostic dataset (Dua and Graff, 2017), and the Boston
Housing dataset (Dua and Graff, 2017). We choose
MNIST as it is easy to visualize, which allows non-
experts to evaluate the interpretability of the generated
CEs. We consider the two tabular datasets because this
type of data is frequently used in the interpretability
literature2.

MNIST dataset This dataset contains gray-scale
images of handwritten digits ranging between 0 and 9.
The goal of the CE explanation is to find a perturbation
that changes the image classification from, e.g., a 1 to
a 7. We consider MNIST, as image-based data allows
us to visually inspect the quality of the CEs. Our
classifiers obtain an accuracy of 98.5% on the test set.

Breast Cancer Wisconsin Diagnostic dataset
A tabular dataset where each row contains various
measurements of a cell sample from a tumour, along-
side a binary diagnosis of whether the tumour is benign
or malignant. A CE for a particular input changes the
classification from benign to malignant, or vice-versa.
Our classifiers obtain an accuracy of 96.9% on the
validation set.

Boston Housing dataset A tabular dataset where
each row contains statistics about a suburb of Boston,
alongside the median house value. To construct a clas-
sification problem, we divide the dataset into suburbs
where the price is below the median, and those where
it is above. A CE for a particular input changes the
classification from below the median to above, or vice-
versa. Our classifiers obtain an accuracy of 86.3% on
the validation set.

5.2 Compared Methods

We benchmark the performance of our method against
Van Looveren and Klaise (2019), a state-of-the-art
approach for generating CEs. We also compare against
JSMA, the adversarial attack from which we draw
inspiration for our algorithm. JSMA provides a baseline
for interpretatability. We include JSMA for two reasons:
[1] to determine that we are able to generate more
interpretable counterfactuals, and [2] to validate that
JSMA can efficiently create minimal perturbations.

2We could not find one consistently used benchmark; a
similar conclusion is drawn by Verma et al. (2020).

5.3 Results

Comparison to other approaches In Table 1 we
compare our method to Van Looveren and Klaise (2019)
and JSMA, reporting both the realism of the CEs and
the size of the perturbation. We find that our approach
generates more realistic CEs than Van Looveren and
Klaise (2019), despite not requiring an auxiliary gener-
ative model, as can be seen from the lower IM1 scores.

Table 1: Realism (IM1) and minimality (L1) of gen-
erated explanations. IM1 is a proxy for the distance
to the class data manifold, by using reconstruction
errors (see Section 4.3). A lower value is better. The
L1 distance is that between the original input and the
explanation. We compute the mean of each metric
for 100 randomly selected test points. We report the
mean of this mean over 10 seeds, and in brackets the
standard deviation over the seeds. See Appendix E for
details. VLK is the method introduced by Van Loov-
eren and Klaise (2019). Note, the reported scores for
VLK are based on our experiments and differ from
those reported in their paper. We improve on their re-
ported results for MNIST, but find worse performance
for the Breast Cancer dataset. We discuss the steps we
took to reproduce their results in Appendix E.2.

Method Realism (IM1) Minimality (L1)
mean std mean std

MNIST
JSMA 1.11 (0.01) 14.4 (2.3)
VLK 1.12 (0.06) 47.7 (4.9)
Ours 0.98 (0.02) 38.3 (3.5)

Breast Cancer Diagnosis

JSMA 1.06 (0.01) 1.23 (0.04)
VLK 2.81 (0.27) 1.27 (0.09)
Ours 0.89 (0.04) 2.57 (0.13)

Boston Housing

JSMA 1.50 (0.00) 0.72 (0.01)
VLK 2.55 (0.08) 0.73 (0.20)
Ours 0.85 (0.00) 1.47 (0.02)

Comparing our method to JSMA, we note that our
method generates larger perturbations but with bet-
ter IM1 scores. This demonstrates that our adapted
loss function is successfully trading off the size of the
perturbation for the realism of the explanation, as de-
sired. JSMA is able to obtain the lowest L1 as it is
an adversarial attack designed to generate minimal
perturbations. We emphasise that we only report the
L1 distance of JSMA to show that it can efficiently
create minimal perturbations, and it does not generate
realistic explanations. This can be seen in Figure 3,
which shows qualitative examples of the explanations
generated by the three methods.
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Original Ours JSMA VLK

Figure 3: Qualitative Examples of Counterfactual Ex-
planations. Each row shows a different example. From
top to bottom, the goal is to change the classification
from a 4 → 9, 4 → 1, and 5 → 8. The left column
shows original images. The following three columns
show examples of generated CEs by the algorithms we
consider. From left to right: our algorithm, JSMA,
VLK. Our algorithm is able to create more realistic
counterfactuals – i.e., images that are likely under the
data distribution. We note that the CEs above gener-
ated by VLK appear less realistic than those shown in
the original paper. This is likely because we consider
targeted CEs, i.e., we randomly specify a target class for
the explanation, whereas in Van Looveren and Klaise
(2019) the explanation can be in any class, which is an
easier task.

Figure 3 also shows one failure mode of our proposed
algorithm: the strokes in the counterfactuals are less
smooth than the strokes in real images. This is due to
the algorithm design, which changes single pixels itera-
tively. Our model does not capture stylistic properties,
which would be important if we want to employ our
method as a generative model. However, our model
is able to grasp high-level changes required, such as
adding a white stroke to 4 to turn it into a 9. This
aspect is more important for explanatory purposes. In
Appendix F, we show more examples of CEs generated
by our method on both MNIST and tabular data, and
provide further insight into which features are altered.

5.4 Ablation Study

Next, we perform an ablation study to investigate the
effects of adversarial training, and the number of mod-
els in the ensemble, on the quality of generated CEs
for MNIST images. The results are shown in Figure 4.
Initially, the interpretability of CEs tends to improve
as the number of ensemble components increases – this
can be seen from the initial downward slopes of IM1

Figure 4: Ablation Study on the MNIST: effect of
adversarial training and number of models in the en-
semble on interpretability (top), as measured by the
IM1 score, and minimality (bottom), as measure by
the mean L1 distance. The shaded areas show 95%
CIs, as estimated over 10 seeds.

in the top graph of Figure 4. However, after 10 ensem-
bles, the improvement in performance saturates; likely
because uncertainty estimation does not improve fur-
ther. Adversarial training improves the interpretability
scores, however leads to less sparse explanations.

6 CONCLUSION

We have introduced a fast method for generating real-
istic, unambiguous, and minimal CEs. In the process,
we collect, define, and discuss the properties which CEs
should have. In comparison to existing methods, our al-
gorithm does not rely on an auxiliary generative model,
reducing the engineering overhead. Nevertheless, we
demonstrate empirically that our approach is able to
match or exceed the performance of existing methods,
with respect to the realism of the CEs generated. In
future work, methodological developments could be
explored by adapting the proposed method to work for
black-box models (Afrabandpey et al., 2020).
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