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A Proofs and derivations
A.1 Proof of Lemma 2.1

Proof. In every iteration, MP-MCMC generates a set of N new samples which, together with the current state,
constitute the N 4 1 proposed states y;.y+1 from which M samples are drawn in sequence. Based at a current
state and last accepted sample a from the current iteration, say = y; € R? for some i = 1,..., N + 1, the

probability of the mth such sample (m = 1,..., M) being in B € B(R?) can be expressed by the transition kernel
P (y;, B), given by
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Any transition from the current iteration into the next has this form. Hence, it is sufficient to prove that updates
of this type preserve w. For arbitrary m = 1, ..., M, we compute,
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where we used condition repeatedly, and that « is a kernel. O

A.2 Proof of Lemma [3.1]

Proof. Using the variance decomposition formula,
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where we used Var(ji}, MN\yl N+1’£ =1,..,L) >0, the fact that f(w%))|y§]f])v+1, k=1,..., L, is independent of

y%kj)\u_l for k # ¢, and equations (] —. O
A.3 Proof of Lemma [3.2]

Proof. Ergodicity of the chain underlying Algorithm [2| follows as 7 is preserved (Lemma and the chain is
positive Harris (Meyn and Tweedie, {1993, Chapter 13). Since the asymptotic behaviour of the chain is independent
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of its initial distribution we may assume the stationary distribution 7 as initial distribution. Let y; ~ 7 denote
the starting point of Algorithm [2 It follows,
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where in line 4 we used the balance condition,

i . (YR (Yi, Y\i)
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The statement now follows by the ergodic theorem. O

A.4 Proof of Proposition

Proof. Let the ith component of an arbitrary vector € R? be denoted by [x];. Due to ergodicity, and since the
asymptotic behaviour of the Markov chain is independent of its initial distribution we may assume the stationary
distribution 7 as initial distribution. For j,k € {1, ...,d} we have
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) )

= Cov, ([&];, [2]x) — Cov (x5 (L, N]K) -

In the last line we applied Lemma For L — oo, fir,n converges to the constant mean vector p. Hence, for
any j, k € {1, ...,d},

Cov ([prr, N5, [r,N]k) = 0 for L — oo.

Applying the ergodic theorem concludes the proof. O

A.5 Proof of 4.1]

Proof. The key is to show ergodicity of the underlying adaptive chain. If it is ergodic, we may assume the
stationary distribution 7 as initial distribution, and proceed analogously to the proof of Lemma[3.2] The ergodicity
proof uses (Roberts and Rosenthal, 2007, Theorem 2), which relies on coupling the underlying adaptive chain
with another chain that is adaptive only up to a certain iteration. The theorem requires two conditions: the first
is diminishing adaptation, that is,
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The second is called containment condition, which is satisfied due to (Bai et al.,|2011) if the family {P](rl) :Te)}
is simultaneous strongly aperiodic geometric ergodic (SSAGE), that is, there is C' € B(R?), V : R? — [1, 00) and
0>0,p<1,b<ooso that sup,c V(x) < 0o, and

1. V' T € Y 3 a probability measure vy on C such that Pa(rl)(:c, ) > dvy(-) for all € C, and
2. POV (@) < pV(x) + ble(a) for all T € Y, @ € RY,

where Pa(rl)V(:c) = EP@ V(x1)|zo = x].

If the chain is SSAGE and if holds, then it is ergodic.

A.5.1 Continuity assumption

We proceed by proving the two above conditions.

(I) Diminishing adaptation: There are two types of adaptation parameters T € {3, (u, X)}, which result in
two cases to consider. The case T = (u,Y), i.e. where sy states an independence kernel is covered in
Hence, let T = 3.

Let B € B(R?) and « € R? be arbitrary. Without loss generality, = y;, for some ig € {1,..., N + 1}. Then,
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where we used that A(ig,41) < 1. Let us now differentiate between the two choices of proposal distributions.

(A) kg = Ns: Setting Ay(s) = 3 + s(Xep1 — X¢) leads to
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For the first of the two individual terms of derivatives of the product on the right hand side of , we have

‘% [det (Aé(s))_N/z] ’ ‘ det (As(s))™ E det(Ag(s)) tr (Ar(s) ™ (Ser1 — =) ’
< const [|X41 — Xel (26)

where we used Jacobi’s formula, and in the last line we used 0 < ¢; < det(Ay(s)) < ¢a < oo for any £ € N, which
is a consequence of ¢ < ¥ < ¢oI for any ¥ € Y, i.e. the boundedness of ). Moreover, we used

tr (Ae(s) ™ (Zep1 — B0)) = (Ae(s) ™, o1 — B p < JAe(s) ol Ber1 — Selle (27)

where (-, -)p denotes the Frobenius inner product and || - ||z the associated Frobenius norm, for which we made
use of the Cauchy-Schwarz inequality. Further, ||A,(s)~!||p < const, since A,(s) > ¢;I and hence, A;'(s) < ;'
We do not need to further define the norm used in since all norms are equivalent over finite-dimensional
linear spaces. For the second term of derivatives on the right hand side of we have
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where we used c; Ir< A[l(s) < cl_ll . Finally, using Fubini for interchanging integration and the boundedness of
(second) moments of the Normal distribution, we conclude

|

1
Yoy, (@, B) — P%)(a:,B)H < const [|Xp41 — X¢|| < const 7 0 for £ — oo. (30)
(B) kx = ts: We proceed as in the Gaussian case. Replacing (25)) by the respective t-distribution density, using
7 and taking its derivative leads to similar estimates as in (26| and . Using the boundedness of moments
of the t-distribution leads to the respective equation .

(IT) SSAGE: Let C = R%. We need to find § > 0 and vy such that Py(z, B) > dvy(B) for all B € B(R?) and
for all z € R%, YT € ). Since 7 is continuous on S and A(S) > 0, there is S C S closed, S # S and A(S) > 0
Since S is compact, ) is bounded, and 7 and the Gaussian and t-distribution PDFs are continuous and positive
on 5’, there is a ¢4 > 0 such that

m(Yi) Ry (Yi, Yri)
T M )R (v )

(31)

for all y1,...,yny1 € S and all Y € Y. Similarly, there is a ¢y > 0 such that ey < Ry (yi, y\;) for all
Y1, -, YN+1 € S and all T € Y. Without loss of generality let & = Y, for some ig € {1,..., N + 1}. Then,

N+1
1 ..
P (x,B) = /R Rt (i W) Y Alio, i) Ly )dyy,

i1=1
N+1

> CNCA Z / 1p( yl1 dy\m

211
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Set 0 := exca(N 4+ 1)AN(S) and vy(B) = v(B) := AN(BN S)/AN(S). This concludes the first condition for
SSAGE. The second one follows by setting p=1/2,b=1and V = 1.



Tobias Schwedes*, Ben Calderhead

A.5.2 Independence assumption

0] Diminishing adaptation: Due to the independence sampler we need to consider T = (u, X). The analogue
to (23)) for T = (p, X)) reads as,
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The determinant term can be bounded via . Using the product rule, the derivative of the exponential term
follows as
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Due to the boundedness of first and second moments of the Normal distribution, we have
| P @, ) = P (@, B)| < const (1801 = Sell + llness — pael) (32)

1
< const 7 0 for ¢ — oo. (33)

The case (B) ky = ty follows again analogously to the computations of derivatives in the Gaussian case and by
using the boundedness of moments of the t-distribution.

(IT) SSAGE: Set C = R? and V = 1. Since the proposal distribution is independent of previous samples except
for their effect on T, we may set § = 1, vy = Py. With p =1/2 and b = 1 we have Pnsm)V(a:) =1<p-14+b=
pV(x) + blc(x).
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