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A Proofs and derivations

A.1 Proof of Lemma 2.1

Proof. In every iteration, MP-MCMC generates a set of N new samples which, together with the current state,
constitute the N + 1 proposed states y1:N+1 from which M samples are drawn in sequence. Based at a current
state and last accepted sample x from the current iteration, say x = yi ∈ Rd for some i = 1, ..., N + 1, the
probability of the mth such sample (m = 1, ...,M) being in B ∈ B(Rd) can be expressed by the transition kernel
P (m)(yi, B), given by

∫
κ̃(yi,y\i)

∑
i1,...,im

A(i, i1)

m−1∏
j=1

A(ij , ij+1)1B(yim)dy\i.

Any transition from the current iteration into the next has this form. Hence, it is sufficient to prove that updates
of this type preserve π. For arbitrary m = 1, ...,M , we compute,∫

Rd
P (m)(x, B)π(x)dx

=
1

N + 1

∫
R(N+1)d

N+1∑
i=1

κ̃(yi,y\i)

N+1∑
i1,...,im=1

A(i, i1)

M∏
j=2

A(ij−1, ij)1B(yim)π(yi)dy1:N+1

=
1

N + 1

∫
R(N+1)d

N+1∑
i1=1

N+1∑
i=1

π(yi)κ̃(yi,y\i)A(i, i1)

N+1∑
i2,...,im=1

M∏
j=2

A(ij−1, ij)1B(yim)dy1:N+1

=
1

N + 1

∫
R(N+1)d

N+1∑
i1=1

π(yi1)κ̃(yi1 ,y\i1)

N+1∑
i2,...,im=1

M∏
j=2

A(ij−1, ij)1B(yim)dy1:N+1

= · · ·

=
1

N + 1

N+1∑
im=1

∫
R(N+1)d

π(yim)κ̃(yim ,y\im)1B(yim)dy1:N+1

=

∫
B

π(x)dx.

where we used condition (2) repeatedly, and that κ is a kernel.

A.2 Proof of Lemma 3.1

Proof. Using the variance decomposition formula,

Var
(
µ̂

(f)
L,M,N

)
= Var

(
E
[
µ̂

(f)
L,M,N

∣∣∣y(`)
1:N+1, ` = 1, ..., L

])
+ E

[
Var

(
µ̂

(f)
L,M,N

∣∣∣y(`)
1:N+1, ` = 1, ..., L

)]
≥ Var

(
1

LM

L∑
`=1

M∑
m=1

E
[
f
(
x(`)
m

) ∣∣∣y(`)
1:N+1

])
= Var

(
µ̂

(f)
L,N

)
,

where we used Var(µ̂
(f)
L,M,N |y

(`)
1:N+1, ` = 1, ..., L) ≥ 0, the fact that f(x

(`)
m )|y(k)

1:N+1, k = 1, ..., L, is independent of

y
(k)
1:N+1 for k 6= `, and equations (8)-(11).

A.3 Proof of Lemma 3.2

Proof. Ergodicity of the chain underlying Algorithm 2 follows as π is preserved (Lemma 2.1) and the chain is
positive Harris (Meyn and Tweedie, 1993, Chapter 13). Since the asymptotic behaviour of the chain is independent
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of its initial distribution we may assume the stationary distribution π as initial distribution. Let y1 ∼ π denote
the starting point of Algorithm 2. It follows,

E
[
µ̂

(f)
L,N

]
= E

[
N+1∑
i=1

wif(yi)

]

=

∫
R(N+1)d

∑
i 6=1

wif(yi) + w1f(y1)

π(y1)κ̃(y1,y\1)dy1:N+1

=

∑
i6=1

∫
R(N+1)d

f(yi)π(y1)κ̃(y1,y\1)widy1:N+1

+

∫
R(N+1)d

f(y1)π(y1)κ̃(y1,y\1)w1dy1:N+1

=

∑
i6=1

∫
R(N+1)d

f(yi)π(yi)κ̃(yi,y\i)w1dy1:N+1

+

∫
R(N+1)d

f(y1)π(y1)κ̃(y1,y\1)w1dy1:N+1

=

∑
i6=1

∫
R(N+1)d

f(y1)π(y1)κ̃(y1,y\1)widy1:N+1

+

∫
R(N+1)d

f(y1)π(y1)κ̃(y1,y\1)w1dy1:N+1

=

∫
R(N+1)d

f(y1)π(y1)κ̃(y1,y\1)

(
N+1∑
i=1

wi

)
dy1:N+1

=

∫
Rd
f(y1)π(y1)

(∫
RNd

κ̃(y1,y\1)dy\1

)
dy1

= Eπ [f(x)] ,

where in line 4 we used the balance condition,

π(y1)κ̃(y1,y\1)wi = π(y1)κ̃(y1,y\1)
π(yi)κ̃(yi,y\i)∑N+1

k=1 π(yk)κ̃(yk,y\k)
(19)

= π(yi)κ̃(yi,y\i)
π(y1)κ̃(y1,y\1)∑N+1
k=1 π(yk)κ̃(yk,y\k)

(20)

= π(yi)κ̃(yi,y\i)w1. (21)

The statement now follows by the ergodic theorem.

A.4 Proof of Proposition 3.3
Proof. Let the ith component of an arbitrary vector x ∈ Rd be denoted by [x]i. Due to ergodicity, and since the
asymptotic behaviour of the Markov chain is independent of its initial distribution we may assume the stationary
distribution π as initial distribution. For j, k ∈ {1, ..., d} we have
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=
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(
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(
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− E
[(

[µ̂L,N ]j − [µ]j

)(
[µ̂L,N ]k − [µ]k

)])
= Covπ ([x]j , [x]k)− Cov ([µ̂L,N ]j , [µ̂L,N ]k) .

In the last line we applied Lemma 3.2. For L→∞, µ̂L,N converges to the constant mean vector µ. Hence, for
any j, k ∈ {1, ..., d},

Cov ([µ̂L,N ]j , [µ̂L,N ]k)→ 0 for L→∞.

Applying the ergodic theorem concludes the proof.

A.5 Proof of 4.1
Proof. The key is to show ergodicity of the underlying adaptive chain. If it is ergodic, we may assume the
stationary distribution π as initial distribution, and proceed analogously to the proof of Lemma 3.2. The ergodicity
proof uses (Roberts and Rosenthal, 2007, Theorem 2), which relies on coupling the underlying adaptive chain
with another chain that is adaptive only up to a certain iteration. The theorem requires two conditions: the first
is diminishing adaptation, that is,

sup
x∈Rd

∥∥∥P (1)
Υ`+1

(x, B)− P (1)
Υ`

(x, B)
∥∥∥→ 0 for `→∞. (22)

The second is called containment condition, which is satisfied due to (Bai et al., 2011) if the family {P (1)
Υ : Υ ∈ Y}

is simultaneous strongly aperiodic geometric ergodic (SSAGE), that is, there is C ∈ B(Rd), V : Rd → [1,∞) and
δ > 0, ρ < 1, b <∞ so that supx∈C V (x) <∞, and

1. ∀ Υ ∈ Y ∃ a probability measure νΥ on C such that P (1)
Υ (x, ·) ≥ δνΥ(·) for all x ∈ C, and

2. P (1)
Υ V (x) ≤ ρV (x) + b1C(x) for all Υ ∈ Y,x ∈ Rd,

where P (1)
Υ V (x) := E

P
(1)
Υ

[V (x1)|x0 = x].

If the chain is SSAGE and if (22) holds, then it is ergodic.

A.5.1 Continuity assumption
We proceed by proving the two above conditions.

(I) Diminishing adaptation: There are two types of adaptation parameters Υ ∈ {Σ, (µ,Σ)}, which result in
two cases to consider. The case Υ = (µ,Σ), i.e. where κΥ states an independence kernel is covered in A.5.2.
Hence, let Υ = Σ.

Let B ∈ B(Rd) and x ∈ Rd be arbitrary. Without loss generality, x = yi0 for some i0 ∈ {1, ..., N + 1}. Then,∥∥∥P (1)
Υ`+1

(x, B)− P (1)
Υ`

(x, B)
∥∥∥

=

∫
RNd

[
κ̃Σ`+1

(yi0 ,y\i0)− κ̃Σ`(yi0 ,y\i0)
]N+1∑
i1=1

A(i0, i1)1B(yi1)dy\i0 (23)

≤ (N + 1)

∫
RNd

∣∣∣ N∏
n=1

κ(0,Σ`+1)(yn)−
N∏
n=1

κ(0,Σ`)(yn)
∣∣∣dy1:N

≤ (N + 1)

∫
RNd

∫ 1

0

∣∣∣ d

ds

N∏
n=1

κ(0,Σ`+s(Σ`+1−Σ`))(yn)
∣∣∣ds dy1:N , (24)

where we used that A(i0, i1) ≤ 1. Let us now differentiate between the two choices of proposal distributions.

(A) κΣ = NΣ: Setting A`(s) = Σ` + s(Σ`+1 − Σ`) leads to

N∏
n=1

N(0,Σ`+s(Σ`+1−Σ`))(yn) = (2π)d
N
2 det (A`(s))

−N2 exp

(
−1

2

N∑
n=1

yTnA`(s)
−1yn

)
. (25)
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For the first of the two individual terms of derivatives of the product on the right hand side of (25), we have∣∣∣ d

ds

[
det (A`(s))

−N/2
] ∣∣∣ =

∣∣∣N
2

det (A`(s))
−N2 −1

det(A`(s)) tr
(
A`(s)

−1(Σ`+1 − Σ`)
) ∣∣∣

≤ const ‖Σ`+1 − Σ`‖ , (26)

where we used Jacobi’s formula, and in the last line we used 0 < c1 ≤ det(A`(s)) ≤ c2 <∞ for any ` ∈ N, which
is a consequence of c1I ≤ Σ ≤ c2I for any Σ ∈ Y, i.e. the boundedness of Y. Moreover, we used

tr
(
A`(s)

−1(Σ`+1 − Σ`)
)

= 〈A`(s)−1,Σ`+1 − Σ`〉F ≤ ‖A`(s)−1‖F ‖Σ`+1 − Σ`‖F (27)

where 〈·, ·〉F denotes the Frobenius inner product and ‖ · ‖F the associated Frobenius norm, for which we made
use of the Cauchy-Schwarz inequality. Further, ‖A`(s)−1‖F ≤ const, since A`(s) ≥ c1I and hence, A−1

` (s) ≤ c−1
1 I.

We do not need to further define the norm used in (26) since all norms are equivalent over finite-dimensional
linear spaces. For the second term of derivatives on the right hand side of (25) we have

∣∣∣ d

ds

[
exp

(
−1

2

N∑
n=1

yTnA`(s)
−1yn

)] ∣∣∣ (28)

=
∣∣∣ exp

(
−1

2

N∑
n=1

yT` A`(s)
−1yn

)
N∑
n=1

yTnA`(s)
−1(Σ`+1 − Σ`)A`(s)

−1yn

∣∣∣
≤ const ·

N∑
n=1

yTnyn exp

(
− 1

2c21

N∑
n=1

yTnyn

)
‖Σ`+1 − Σ`‖, (29)

where we used c−1
2 I ≤ A−1

` (s) ≤ c−1
1 I. Finally, using Fubini for interchanging integration and the boundedness of

(second) moments of the Normal distribution, we conclude∥∥∥P (1)
Υ`+1

(x, B)− P (1)
Υ`

(x, B)
∥∥∥ ≤ const ‖Σ`+1 − Σ`‖ ≤ const ·1

`
−→ 0 for `→∞. (30)

(B) κΣ = tΣ: We proceed as in the Gaussian case. Replacing (25) by the respective t-distribution density, using
(16), and taking its derivative leads to similar estimates as in (26) and (29). Using the boundedness of moments
of the t-distribution leads to the respective equation (30).

(II) SSAGE: Let C = Rd. We need to find δ > 0 and νΥ such that PΥ(x, B) ≥ δνΥ(B) for all B ∈ B(Rd) and
for all x ∈ Rd,Υ ∈ Y. Since π is continuous on S and λ(S) > 0, there is S̃ ⊂ S closed, S̃ 6= S and λ(S̃) > 0.
Since S̃ is compact, Y is bounded, and π and the Gaussian and t-distribution PDFs are continuous and positive
on S̃, there is a cA > 0 such that

cA ≤
π(yi)κ̃Υ(yi,y\i)∑N+1

j=1 π(yj)κ̃Υ(yj ,y\j)
, (31)

for all y1, ...,yN+1 ∈ S̃ and all Υ ∈ Y. Similarly, there is a cN > 0 such that cN ≤ κ̃Υ(yi,y\i) for all
y1, ...,yN+1 ∈ S̃ and all Υ ∈ Y. Without loss of generality let x = yi0 for some i0 ∈ {1, ..., N + 1}. Then,

P
(1)
Υ (x, B) =

∫
RNd

κΥ(yi0 ,y\i0)

N+1∑
i1=1

A(i0, i1)1B(yi1)dy\i0

≥ cNcA
N+1∑
i1=1

∫
S̃

1B(yi1)dy\i0

≥ cNcA(N + 1)λN
(
B ∩ S̃

)
.

Set δ := cNcA(N + 1)λN (S̃) and νΥ(B) = ν(B) := λN (B ∩ S̃)/λN (S̃). This concludes the first condition for
SSAGE. The second one follows by setting ρ = 1/2, b = 1 and V ≡ 1.
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A.5.2 Independence assumption
(I) Diminishing adaptation: Due to the independence sampler we need to consider Υ = (µ,Σ). The analogue
to (23) for Υ = (µ,Σ) reads as,∥∥∥P (1)

Υ`+1
(x, B)− P (1)

Υ`
(x, B)

∥∥∥
≤ (N + 1)

∫
RNd

∫ 1

0

∣∣∣ d

ds

N∏
n=1

κ(µ`+s(µ`+1−µ`),Σ`+s(Σ`+1−Σ`))(yn)
∣∣∣ds dy1:N .

(A) κ(µ,Σ) = N(µ,Σ): Setting m`(s) = µ` + s(µ`+1 − µ`), leads to

N∏
n=1

N(µ`+s(µ`+1−µ`),Σ`+s(Σ`+1−Σ`)(yn)

= (2π)d
N
2 det (A`(s))

−N2 exp

(
−1

2

N∑
n=1

(yn −m`(s))
TA`(s)

−1(yn −m`(s))

)

The determinant term can be bounded via (26). Using the product rule, the derivative of the exponential term
follows as ∣∣∣ d

ds
exp

(
−1

2

N∑
n=1

(yn −m`(s))
TA`(s)

−1(yn −m`(s))

)∣∣∣
≤ const

N∑
n=1

∣∣∣( d∑
i=1

[yn]i − [m`(s)]i

)
+ (yn −m`(s))

T (yn −m`(s))
∣∣∣·

exp

(
− 1

2c21

N∑
n=1

(yn −m`(s))
T (yn −m`(s))

)
(‖Σ`+1 − Σ`‖+ ‖µ`+1 − µ`‖) .

Due to the boundedness of first and second moments of the Normal distribution, we have∥∥∥P (1)
Υ`+1

(x, B)− P (1)
Υ`

(x, B)
∥∥∥ ≤ const (‖Σ`+1 − Σ`‖+ ‖µ`+1 − µ`‖) (32)

≤ const ·1
`
−→ 0 for `→∞. (33)

The case (B) κΥ = tΥ follows again analogously to the computations of derivatives in the Gaussian case and by
using the boundedness of moments of the t-distribution.

(II) SSAGE: Set C = Rd and V ≡ 1. Since the proposal distribution is independent of previous samples except
for their effect on Υ, we may set δ = 1, νΥ = PΥ. With ρ = 1/2 and b = 1 we have P (m)

γ V (x) = 1 ≤ ρ · 1 + b =
ρV (x) + b1C(x).


