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Abstract

Multiple proposal Markov chain Monte Carlo
(MP-MCMC) as introduced by |Calderhead
(2014) allow for computationally efficient
and parallelisable inference, whereby mul-
tiple states are proposed and computed si-
multaneously. In this paper, we improve
the resulting integral estimators by sequen-
tially using the multiple states within a Rao-
Blackwellised estimator. We further pro-
pose a novel adaptive Rao-Blackwellised MP-
MCMC algorithm, which generalises the adap-
tive MCMC algorithm introduced by [Haario
et al. (2001) to allow for multiple proposals.
We prove its asymptotic unbiasedness, and
demonstrate significant improvements in sam-
pling efficiency through numerical studies.

1 Introduction

Markov chain Monte Carlo methods still act in practice
as the workhorse for performing Bayesian inference over
sophisticated mathematical models (Foreman-Mackey,
et al.l [2013; [Martin et al.| [2011). As model complexity
and data volume increases, so it becomes more impor-
tant to develop scalable and computationally efficient
approaches for asymptotically exact inference. Multiple
proposal MCMC offers an enticing way forward by al-
lowing for a parallelisable MCMC framework, whereby
multiple proposals may be made and computed in par-
allel before being subsampled in such a way that the
correct stationary distribution is targeted (Calderhead|
2014). A straightfoward extension of this involves the
construction of a weighted estimator that makes use of
all proposed states; this may simply be considered as a
Rao-Blackwellised version.

Rao-Blackwellisation can be seen as a version of the
Waste-Recycling method by [Frenkel (2006]) or similar
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(Ceperley et al.l [1977; |Tjelmeland! [2004; [Frenkel, |2004;
Delmas and Jourdainl 2009; Yang et al.l 2018); its
name arising due to the fact that every proposal is
used, including the ones rejected by MCMC. For in-
stance, [Tjelmeland| (2004) proposes to take a weighted
mean between several proposals in Metropolis-Hastings
which otherwise would have been discarded except the
single accepted proposal. [Delmas and Jourdain| (2009)
propose a control variates approach, in which the correc-
tion term uses all proposed states of a Metropolis algo-
rithm. [Yang et al.| (2018)) suggest an alternative, slightly
more complex algorithm inspired by that presented in
(Calderhead! |2014) and apply Waste-Recycling to con-
struct a “locally-weighted” estimator.

In this paper, we take the original algorithm by |Calder
head| (2014) as our starting point. We develop the
theoretical justification for such a construction and
carefully prove that it targets the correct stationary
distribution; noting that this is not straightforward as
we are essentially defining a Markov chain that operates
on a product space, and thus the balance and detailed
balance conditions must be defined accordingly.

We then proceed to elucidate the application of Rao-
Blackwellisation to such an algorithm in Section [3} us-
ing a different heuristic to that in the Waste-Recycling
literature. We clarify its relationship to the original
algorithm in (Calderhead, |2014)) and to previously pre-
sented approaches, making explicit the variables that
are Rao-Blackwellised. We provide a formal derivation
and proof of its correctness in terms of unbiasedness
of the resulting estimator for integrals with respect
to the target, and give conditions under which the
estimate exhibits lower asymptotic variance than the
original.

Finally, in Section [4] we develop this approach further
by proposing a non-trivial adaptive version of this par-
allelisable and Rao-Blackwellised MCMC method and
prove asymptotic unbiasedness for a selection of com-
mon classes of proposal distributions. We demonstrate
the resulting improvements in computational efficiency
and in particular consider the comparison with multiple
single Markov chains running in parallel.
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Figure 1: MP-MCMC in two steps: Step 1, based on a current proposal state y; for say, I = 1, multiple states
Y2, ...,Yn+1 are proposed in parallel via a kernel x (left). Step 2, consider the collection of proposals y1.n41 as
states of a Markov chain with transition probabilities [A(¢, j)]; ; and sample from it (right)

2 MP-MCMC

2.1 Deriving MP-MCMC

During one iteration of MP-MCMC (Calderhead) 2014)
we subsample from states yi,...,yn+1 € R?, which
comprise the current state y; and N new i.i.d. proposed
states y\;, where y\; = (Y1, ..., Yi—1, Yis1, - YN+1)- A
subsample y; is collected according to an auxiliary ran-
dom variable I = 1,..., N + 1, that is, we collect y; as a
sample if I = ¢, while I is sampled in sequence M times
per iteration. Here, y1,...,yn+1 and I are related via

Y1, Yn+1, 1) = Fppr(Yn, o ynga) and
pr(yint1) = (YR (Y, Y1), (1)

where £(yr, y\r) = [ 1,27 5(yr, ¥:) and £ is the proposal
kernel. In other words, I determines the factorisation

of the joint distribution of (y1.nx+1,1).

We iterate between sampling I given yi, ..., yn+1, col-
lecting M samples of y;, and then sampling N new
states y\; via the kernel s(yr,-) evaluated at the cur-
rent yy. The algorithm thus takes on a structure similar
to Gibbs sampling, which mirrors the accept /reject step
(i.e. sampling I) and proposal steps (i.e. sampling y\s)
in standard Metropolis-Hastings.

Samples of I are generated according to a finite state
Markov chain. That is, given I = ¢ and y1,..., Yn+1
we sample I = j, and hence collect y; as a new state,
according to a transition probability A(Z,j), which
satisfies,

N+1
> YRy, w ) AG ) = T(y)R(yi ). (2)

j=1

A single iteration of this algorithm is visualised in Fig-
ure [1} Concretely, |Calderhead| (2014) suggests

. L min(1, R(3,7)) if j#1
Al ) =97 A T 77 3)
— > ;2 A(i,j)  otherwise,

where R(4, j) = 7(y;)R(y;, y\;)/[7(¥:)E(yi, yri)]. For
N = 1, A reduces to the acceptance probability is
Metropolis-Hastings. Another option is A(-, j) = w; o
7(y;)R(Y;,y\;), where the normalising constant is eas-
ily found summing over j. For N = 1, A reduces to
Barker’s acceptance probability (Barker, (1965)).

Whereas in Metropolis-Hastings or Barker’s method a
single sample is drawn per iteration, we sample M > 1
times due to the increased coverage of the state space
and degree of freedom from multiple proposals. The
last sample per iteration becomes the initial state of
the subsequent iteration. The procedure is repeated
until a required number of samples is achieved, see
Algorithm [1] for details.

Algorithm 1: Multiple proposal MCMC (MP-
MCMC)

Input: Starting point o = y; € R¢, number
of proposals N, number of accepted
samples per iteration M, auxiliary
variable I = 1 and counter n = 0;

for each MCMC iteration ¢ = 1,2, ... do

2 Draw N new points ¥\, conditioned on I,

independently from the proposal kernel

K(Yr,°);

3 Calculate the transition probabilities A(i, )

foré,5 =1,..., N + 1 satisfying the balance

condition , which can be done in parallel;
for m=1,....M do

Sample I’ via A(1,-);

Set I =1';

Set new sample X(y_1)rr4m] = YI;
end

=

© 0w N o ook

end




Tobias Schwedes*, Ben Calderhead

Likelihood calculations occur only when sampling
new states, and therefore can be straightforwardly
parallelised. = We note that MP-MCMC versions
of Metropolis-adjusted Langevin, Riemann manifold
Metropolis-adjusted Langevin as well as Hamiltonian
MCMC are implied in the formulation of the algorithm
due to a free choice of the proposal kernel «.

2.2 Invariance of the stationary
distribution

We now prove that the stationary distribution 7 is
indeed preserved under MP-MCMC updates. This is a
new result as|Calderhead| (2014)) did not provide any
formal proof for this.

Lemma 2.1. If the balance condition in equation 18
fulfilled, then updates according to Algorithm[d] preserve
.

Proof. See Appendix A.1. O

3 Rao-Blackwellised MP-MCMC

Estimating integrals of the form [ f(x)r(x)de can
readily be achieved by MP-MCMC when averaging
f(x;) of samples x;. We now introduce a provably
more efficient estimate to that, based exactly on the
same iterations of MP-MCMC. The improvement we
achieve is hence for free. More precisely, instead of
subsampling proposals, we use Rao-Blackwellisation
which incorporates all proposals per iteration and as-
signs each one a suitable weight so that the resulting
estimator is asymptotically unbiased. For clarity, an
estimator (J7)r for ¥ is asymptotically unbiased if
E(JL) — ¥ for L — oc.

We first provide some intuition for this approach, posi-
tion it with regards to existing literature, then give a
more formal derivation, followed by a brief numerical
study.

3.1 Intuition

Assuming stationarity in the underlying MP-MCMC,
the relative frequency of subsamples y; among all N +1
proposed points in one iteration approaches the station-
ary probability w; oc 7(y;)&(yi, y\;) for M becoming
large. In the limit, M — oo, subsampling from pro-
posed points is equivalent to accepting each y; and
weighting it according to w;. In particular,

1 M " N+1
i Do f@m) =) wif (i) (4)

m=1 i=1

In other words, the arithmetic mean of collected
subsamples from MP-MCMC converges to a Rao-
Blackwellised estimate. We formalise this limiting case

as Rao-Blackwellised multiple proposal MCMC (RB-
MP-MCMC) in Algorithm [2| A single iteration of this
algorithm is visualised in Figure [2|

Algorithm 2: Rao-Blackwellised multiple
proposal MCMC (RB-MP-MCMC)

Input: Starting point (proposal) y; € R,
number of proposals N, auxiliary
variable I = 1, integrand f;

for each MCMC iteration ¢ = 1,2, ... do

=

2 Draw N new points g\, conditioned on I,
independently from the proposal kernel
H(yb ');

3 Calculate the stationary distribution of I

conditioned on yi.n41, i.€. V
i=1,..N+1 p(=ilyr.ns1) =
m(Yi)E(Yi, Y\i)/ 22, m(Y;)E(Ys, Y\;), which
can be done in parallel;

a | Compute i =32, p(I = ilyrn41)f (yi);

5 Update Rao-Blackwell estimate

/A‘z(’fjif = ﬂgji)l,N + %(ﬁ% - ﬂ@@l, ~ ), Where
M((sz)v =0;
6 Sample new I via the stationary

distribution p(-|y1.n+1);
7 end

Note that Algorithm [2] implicitly generates a Markov
chain: in every iteration, we sample one point from the
N +1 proposals via sampling I (line 6), conditioned on
which N new proposals are drawn in the subsequent
iteration (line 2). The chain defined by the subsamples
from each iteration corresponds to Algorithm [T] with
M =1 and A(-,j) = w;. This is the Markov chain we
refer to when speaking of the chain underlying RB-MP-
MCMC.

3.2 Relation to Waste-Recycling

We note that similar methods can be found in the liter-
ature in the context of Waste-Recycling (Frenkel, 2006}
Ceperley et all 1977} |Tjelmeland, 2004} [Frenkel, | 2004}
Delmas and Jourdain) 2009; |[Yang et al.l 2018). For in-
stance, [Tjelmeland| (2004) suggests a Waste-Recycling
estimator based on Metropolis-Hastings, where out of
multiple proposed states per iteration only one is ac-
cepted. He proposes to take the weighted mean of both
accepted and rejected states according to a general
weight matrix function, of which the weights associ-
ated with the Rao-Blackwell estimate discussed in this
work are a special case. Delmas and Jourdain| (2009))
consider a control variates approach: their estimator
is the sum of the classic arithmetic mean of accepted
samples in Metropolis-Hastings and a correction term
depending on some function ¥. Using multiple propos-
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als in a special case of Metropolis-Hastings they call
Boltzmann algorithm, and the specific choice of ¥ = f
in the correction term, their control variate estimator
reduces to our Rao-Blackwell estimator.

Our work adds to the existing results by using a heuris-
tic based on Rao-Blackwellisation, by extending Algo-
rithm[2]to allow for adaptivity in proposed samples, and
by proving theoretical statements, e.g., on the improve-
ment on MP-MCMC by Rao-Blackwellisation, Lemma
[B:I or the asymptotic unbiasedness of the adaptive
Rao-Blackwellised estimate, see Theorem

3.3 Formal derivation

In what follows we formally derive Algorithm [2] as
Rao-Blackwellision of MP-MCMC. Let a superscript
(¢) denote variables associated to the fth out of L
iterations, e.g., m%) denote the mth collected sample in
the /th iteration in MP-MCMC. The arithmetic mean

follows as,

1,...., M, and nm =

?

If ul) ~ Uu0,1), for m =
for i = 1,. := 0, then

Z; 1w( 5N + 1, and 7
(6)

the samples x,,” can be written as

N+1

4
03 10 o) ()7 ©

where we assume that for the underling MP-MCMC

acceptance probability in iteration ¢, A(-,j) =
(&)

w;

While in stationarity, « ( )~ 7 holds, and hence u(Lfﬁw N

is an unbiased estimate for E,[f(x )}, that is,

Er [ 2 v] = Ex /()] (7)

For any iteration ¢, we note that ygz])v 41 1s sufficient

for E;[f(x)], that is, the conditional distribution of the
samples z) for m = 1,..., M, depends on E.[f(x)]
only through yiﬂ)\,ﬂ. In particular, the i.i.d. random
variates u't) ~ U0,1) form =1, ..., M, in equation @,

are independent of E.[f(x)]. Therefore, the conditional

expectation of ﬂ(Lf )M N given the proposed states yiej)v 11

produces a Rao-Blackwellisation of u(Lf )M N

/ D/yg} g e41)
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Figure 2: In every iteration of RB-MP-MCMC, pro-
posals yZ@) fori =1,...,N 4+ 1, are generated analo-
gously to MP-MCMC, but are then associated with
the wge) =p(I") = i|y§9\,+1), thereby prioritising pro-
posals that are most informative about the target, to

form the weighted estimate ZNH Z)f( (z))

Note that,
E[f (%) [yiha] (8)
N+1
2[5 () £ (0 ik

/ N+1
0)
0.1) = ”17

= Z wlf (u7). (11)
1=1

N of ﬂ(Lfg\/[ N can there-

(m} (U%)) / (yz(e)) d“%) (10)

The Rao-Blackwellisation u
fore be written as,

f
(Lgv_]E {M(L%\/IN‘leHvé:lv"'?L]

1 N+
IS Wl ().

(=1 i=1

The weights wz@ present a special case of the gen-

eral weight matrix function introduced in the Waste-
Recycling algorithm by |Tjelmeland| (2004).

The following result states that u(g%\, is never a

worse estimate than the original MP-MCMC estimate

~(f
:LLL}\LN'

(12)

Lemma 3.1. Let ,u(f) denote the Rao-Blackwell esti-

mate based on the MP-MCMC mean estimate ﬂ(Lfng
Then,

Var (/) ) < Var () (13)
Proof. See Appendix [A-2] O
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Note that |Delmas and Jourdain| (2009)) prove in their
Proposition 2.3 that Waste-Recycling can degrade
Metropolis-Hastings, using the usual acceptance proba-
bility. However, in the Boltzmann case they show this
never occurs (Proposition 2.5), hence there is no con-
tradiction between the above result and theirs. How-
ever, their results on boundedness of variance only
consider the asymptotic case; their main result, Theo-
rem 3.1, derives asymptotic normality and a formula
for the asymptotic variance. In contrast, we consider
the non-asymptotic case to derive the boundedness of
variance compared to Calderhead’s algorithm, which
implies the Boltzmann result from (Delmas and Jour4
dain}, 2009).

Lemma 3.2 (Asymptotic unbiasedness of RB-MP-M-
CMC estimates). Let the underlying Markov chain de-
scribed by Algorithm be positive Harris. Then, ,&(Lf%\,
for L > 1 defined in (12)) is an asymptotically unbiased
estimate for E. [f(x)].

Proof. See Appendix [A-3] O

Hence, RB-MP-MCMC produces unbiased estimates
for E, [f(x)] when in equilibrium, which includes pos-
terior mean estimates. We now show that the same
holds true for posterior covariance estimates.

Proposition 3.3. Let the underlying Markov chain
described by Algom'thm@ be positive Harris. Then, the
covariance estimate X1, n for L > 1 given by

P&,
3 0 (0 - ¢
YLN =T Z Z w; (yl( ) l"L,N) <y1( )

{=1 i=1

R T
- HL,N)

where fir, N = % 25:1 Zf\fl_l wy)yi(e), s an asymptot-

ically unbiased estimate for the target covariance.
Proof. For a proof, we refer to Appendix [A-4] O

3.4 Numerical effect of increasing M in
multiple proposal MCMC

In what follows we analyse the impact of an increasing
number of subsamples M per iteration in MP-MCMC
on the MSE of resulting estimates numerically. Due
to a decrease in empirical variance with increasing M,
a reduction in the MSE for increasing M is expected,
with a lower bound given by the limiting case M — oo
represented by Rao-Blackwellised MP-MCMC.

Our experiments consist of sampling a standard Gaus-
sian N(0,1) target, using MP-MCMC with the inde-
pendence proposal kernel k = N(0,2.4%). In each
iteration M = aN states are generated by subsam-
pling from proposals, which leads to a total number

of n, = an = aLN samples per simulation; here we
choose L = 511. The target mean is estimated via
the arithmetic mean of samples. Further, we apply
RB-MP-MCMC to estimate the target mean, using the
same ~ as before, and compare both outcomes.

According to Figure [3] increasing the number of sub-
samples per iteration leads to an improvement in the
MSE convergence rate. More precisely, for increasing «
the constant ¢(«v) in the MSE rate ¢(a)N ! is reduced
and approaches the limiting lowest value ¢(co) &~ 3¢(1)
associated with RB-MP-MCMC.

Algorithm 3: Adaptive Rao-Blackwellised
multiple proposal MCMC (RB-MP-MCMC)
All code altered compared to RB-MP-MCMC,
Algorithm [2] is highlighted
Input: Initialise starting point (proposal)
y1 € R, number of proposals N,
auxiliary variable I = 1, integrand f
and adaptation parameter Yi;
for each MCMC iteration £ = 1,2, ... do
2 Draw N new points y\ 7, conditioned on I
and Y, independently from the proposal
kernel s, (yr,-);
3 Calculate the stationary distribution of I
conditioned on yy.y+1 and Yy, i.e. V
1= 1, veny N + 1, p([ = i|y1:N+1,Tg):
()R, (Yis i)/ 22, (Y5 R, (Ui, Y\)s
which can be done in parallel;
4 | Compute ﬂ%{, =>, (I =ilyi.n41,
To) f(yi);

5 Update Rao-Blackwell estimate

/:‘éflzf = ﬂéi)l,N + %(ﬁ%{r - ﬂg{)l, ~)» where

il = 0;

6 Sample new [ via the stationary
distribution p('|y1:N+17 T(‘);

7 Update adaptation parameter
Y1 =Go(Yo,y1:n41);

8 end

=

4 Adaptive Rao-Blackwellised
multiple proposal MCMC

It is widely known that adaptively learning the proposal
distribution may significantly increase the performance
of an underlying sampling method, see (Haario et al.|
2001} |Atchadé and Rosenthal, [2005; Haario et al., |2006};
Giordani and Kohn, [2008; |Roberts and Rosenthal, |2009)
for MCMC, and (Au and Beckl, [1999; (Cappé et al.,
2008; |(Cornuet et al., 2012) for importance sampling.
In what follows, we extend Algorithm [2| to incorporate
adaptivity and we prove asymptotic unbiasedness for
two common classes of proposal distributions.
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Figure 3: MSE of empirical means for a Gaussian in d = 1 for an increasing number of proposals N and sample
size n = LM with L = 511 in MP-MCMC; considered is an increase in number of subsamples M = aN per
iteration for « € {1,2,4,8,16,00} (left), where a = oo represents RB-MP-MCMC. The error bars correspond to
three standard deviations. Displayed is also the reduction factor in the MSE convergence rate compared to a = 1

(right). The results are based on 500 simulations

Let (kv)yey denote a collection of proposal kernels
indexed over some parameter space ). Given an initial
T, the proposal kernel in iteration ¢ + 1, sy,,,, is
determined according to an update function G, : Y x
RNV 5 via Yoyq = Gg(Tg,ygVH) based on T,
and the current proposals y%\, 41- This results in an
adaptive Rao-Blackwellised multiple proposal MCMC
(ARB-MP-MCMC) method, see Algorithm

4.1 Choice of proposal kernels

For adaptivity of proposal kernels we distinguish be-
tween two options. First, T = ¥ with the parame-
ter ¥ denoting the covariance of the kernel. Second,
T = (u,X), where the parameter g denotes the mean
of the kernel. We adapt X via Gy by ¥pp1 = ¥ +
751 (Zer1 =) and p by per = pe+ g (fesr — o),
where
N+1
fiess = > p (1= ilyih Te)
i=1
N+1
Sei=Y_p (I = i|y§9\,+1,T2) [yzm - Hz+1]

=1
T
4
ol — o]

4.1.1 Gaussian kernel

Let NV (z|p, X) denote the multivariate Gaussian PDF
with mean g and covariance 3, evaluated at = € R?.
IfYT = (%), we set kux)(®,y) = Ko (y) =
N(y|p,X), i.e. an independence sampler. If T = ¥, we
set ky(x,y) = N(y|z,X). For the latter, where only
the covariance is updated, our algorithm generalises
the adaptive MCMC algorithm introduced by [Haario
et al.| (2001) allowing for multiple proposals. How-
ever, in this instance we choose to employ a slightly

(14)

(15)

different covariance estimator than the standard em-
pirical covariance used in (Haario et all |2001): the
proposal covariance in iteration £ + 1 is itself based on
a Rao-Blackwell estimate, since it has been shown that
this exhibits lower asymptotic variance (Frenkel, 2006}
Ceperley et al.|, [1977]).

4.1.2 T-distribution kernel

The generalisation of the Student t-distribution to mul-
tiple dimensions introduced in (Kotz and Nadarajah),
2004)) has the PDF,

t(w‘uaz) =

for any = € R?, where p and ¥ denote the mean and
covariance, respectively. Here, I' denotes the Gamma-
function. Further, v > 2 is called the degree of freedom
and determines how much heavier the tails of the t-
distribution are relative to a Normal distribution. The
latter is recovered for v — oco.

IfY = (uaz)v then ”(/.L,E)(mvy) = H(M,Z)(y =
t(ylp, ), i.e. an independence kernel.
then ky(x,y) = t(ylx, X).

4.2 Asymptotic unbiasedness

We derive conditions under which the adaptive RB-
MP-MCMC, Algorithm [3] produces asymptotically un-
biased estimates. Practically speaking, this means that
after having discarded a sufficiently large burn-in period
Lp < L of weighted estimates {[Lészzi {=1,.., L},
we may assume the underlying chain is in stationarity,
and the Rao-Blackwellised estimator defined by the

remaining samples is unbiased.
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Table 1: Summary of models and data in Bayesian logistic regression from (Michie et al. [1994; [Ripley, (1996])

Name # Covariates D # Data points M Dimension d
Ripley 2 250 3
Pima Indian 7 532 8
Heart 13 270 14
Australian 14 690 15
German 24 1000 25
Throughout this section we assume that for each fixed X, = (Xm1,.»Xm,p). The conditional probabil-

T, the chain underlying Algorithm [3] has the correct
stationary distribution 7, and that each individual
update of the chain preserves 7. Further, let the target
7 be absolutely continuous with respect to the Lebesgue
measure A, and assume that any covariance matrix as
part of the adaptation space is symmetric and positive
definite. We say a set of covariance matrices S C R4¥¢
is bounded if there are 0 < ¢; < ¢ < oo such that
cly <Y < coly for any ¥ € S, where the “<” is
understood in the usual way for matrices: For two
matrices A, B € R?*? A < B means that B — A is
positive semi-definite. We distinguish between two
different assumptions.

Assumption 1 (Continuity). Suppose that the target
7 is continuous on a subset S € R? with \(S) > 0 and
strictly positive on S.

The former assumption is met if the target is continuous.
We now consider the case where proposals are generated
independently of previous samples, except through their
dependence via the adaptation parameters. In that
case, the continuity assumption is not required.

Assumption 2 (Independence). Suppose that T =
(1, X) and that ky € {Nv,tr} represents an indepen-
dence kernel.

Theorem 4.1. Let T € Y be bounded. If either of the
conditions in Assumption[1] or[3 are satisfied, then the
sequence of estimators (‘LAL(L]?V)L21 from Algorithm |3 is

asymptotically unbiased.

Proof. For a proof we refer to Appendix [A.5] O

5 Evaluation of
ARB-MP-MCMC

5.1 Bayesian logistic regression

We consider the example of logistic regression for bi-
nary classification problems ((Robert and Casella, |1999;
Gelman et all [2013)), whereby categorical variables
ym € {0,1} for m = 1,.., M depend on explana-
tory variables, which can be summarised by the de-
sign matrix X = (Xi.,..., Xar.) € RM*P | where

ity of y,, is defined by

P(ym = 1|X7 0) = U((laXm,~)T0)7 (17)

and P(y,, = 0/X,0) = 1 — P(y, = 1|X,8), where
0 ¢ R? with d = D + 1 and o denotes the logistic
function. We are interested in the statistical inference
of the regression parameter @, which by introducing the
Gaussian prior 8 ~ N(0, aly), with a = 100, becomes
a Bayesian inverse problem. The log likelihood of y
can be derived from as

M
log(y|X,0) = 67X y — 3" log (1+ exp(6” X1n,))
m=1

where X.J = X. j_1 for any j > 2 and )~(i71 = 1. The
five data sets used are summarised in Table (1| (Michie
et al., [1994; [Ripley, (1996]).

5.2 Algorithmic Setup

We compare the performance of RB-MP-MCMC and
ARB-MP-MCMC in the context of the Bayesian lo-
gistic regression model introduced above employing
a multivariate Gaussian independence sampler. In
the non-adaptive case we utilise a fixed mean p =
arg max, 7(x), which is determined numerically. The
covariance matrix is set equal to the Riemannian metric
tensor (Girolami and Calderhead) 2011]),

Gur(e) = ~Eya [ logrlue)] . (19

evaluated at the posterior mode p. Here, n(y,z) de-
notes the joint probability of observations and parame-
ters.

In the adaptive version the proposal mean and covari-
ance matrix are determined according to equations ((14))
and . As a reference we consider the standard,
i.e. single proposal, random-walk Metropolis-Hastings
algorithm. The associated proposals are multivariate
Gaussian with covariance equal to the identity matrixEl,

!The seemingly better choice of the scaled Fisher-
information evaluated at the posterior mode arg max, 7(x)
only yields slight improvement. For the Australian Credit
data set it actually leads to slightly larger variances
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Table 2: Average reduction in empirical variance estimates from RB-MP-MCMC and adaptive RB-MP-MCMC,
compared to SmMMALA Metropolis-Hastings (M-H SmMALA) and standard Metropolis-Hastings (M-H) for the
Bayesian logistic regression. The results are based on 25 MCMC simulations

M-H Factor of variance reduction
VS Ripley  Pima Indian Heart Australian German
M-H 1 1 1 1 1
M-H SmMALA 3.6 9.6 3.3 28,8 11.5
RB-MP-MCMC 13.1 27.9 26.8 148.0 18.7
ARB-MP-MCMC 10.3 21.1 22.3 202.7 57.6

and a step size chosen such that the asymptotically
optimal acceptance rate of 20-25% is attained. As a
further reference, we consider the simplified manifold
Metropolis-adjusted Langevin (SmMALA) algorithm
introduced in (Girolami and Calderhead} [2011]), which
makes use of the local metric tensor at each step.
The step size is tuned such that an approximately
optimal acceptance rate of 50-60% is achieved.

We compare each multiple proposal algorithm with L
iterations and N proposals, to N independent single
proposal chains of each reference method, from which
L samples per chain after burn-in are collected. Hence,
we compare parallelisable multiple proposal methods
to parallelisable single proposal methods. The number
of likelihood evaluations n = LN required for the
simulation after burn-in is equal for both single and
multiple proposal methods.

A burn-in of between 1024-8192 samples, increasing
with dimensionality d, was discarded for all methods,
the lengths of which were identified by an analysis of
trace plots and histograms, to ensure that asymptotic
regime had been reached.

5.3 Empirical Results

We analyse the empirical variance for posterior mean
estimates of the proposed methods. For Metropolis-
Hastings and SmMALA the arithmetic sample mean
is used as an estimate. The outcomes of experiments
for the two highest-dimensional cases among the data
sets in Table [T] are displayed in Figure [d] For these
two datasets, both multiple proposal Rao-Blackwellised
methods outperform the reference algorithms, while the
adaptive RB-MP-MCMC outperforms its non-adaptive
counterpart. Numerical values for the reduction in
MSE compared to Metropolis-Hastings are presented
in Table 2

For the lower-dimensional examples similar outcomes
were achieved, although the variance in adaptive RB-
MP-MCMC compared to the non-adaptive version was
slightly higher, which is due to the fact that the metric

tensor evaluated at the mode is an already good approx-
imation of the actual posterior covariance. Hence, the
adaptive learning process does not achieve additional
information about the posterior covariance.

Since we remove a burn-in for each of the N indepen-
dent single proposal chains the majority of likelihood
evaluations in their simulation happens during burn-in.
Therefore, a less costly reference method in this exam-
ple corresponds to a single chain with a single proposal
and n = LN collected samples after a single burn-in.
Again, the number of likelihood evaluations between
this single proposal method and the multiple proposal
methods are equal.

We also performed this comparison (not displayed),
which lead to qualitative similar outcomes for the ref-
erence methods. Indeed, we typically observe slightly
larger variances in the single chain case compared to
multiple chains, which can be explained by an increased
correlation among n collected samples from a single
chain, compared to N sets of L collected samples from
multiple independent chains, where n = LN. The re-
duction of variance due to using independent chains
ranges from 0 — 15% for SmMMALA, and from 9 — 63%
for Metropolis-Hastings in the above example. As a
result, the variance reduction by using the multiple
proposal methods is even larger compared to the more
economical single chain reference methods.

6 Conclusions

We have introduced an extension of the parallel
MCMC method derived in (Calderhead, [2014]) by Rao-
Blackwellising the arithmetic mean of collected samples.
We have proven that the resulting algorithm produces
an asymptotically unbiased estimate for integrals with
respect to the target, with an asymptotic variance
that is bounded from above by the asymptotic vari-
ance of the original estimator. Furthermore, we have
derived a generalisation of Haario’s adaptive MCMC
algorithm (Haario et al. [2001]) allowing for multiple
proposals within a Rao-Blackwellised scheme, consider-
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Figure 4: Empirical variance estimates from (A)RB-MP-MCMC and (SmMALA) Metropolis-Hastings for the
Bayesian logistic regression; results are displayed for increasing n = LN of likelihood evaluations, where n is the
total number of samples of the single-proposal methods, L = 511 and N the number of proposals in the respective
multiple-proposal method. The results are based on 25 MCMC simulations, and the errors bands correspond to

three standard deviations

ing two common choices of adaptive proposal kernels.
We formulated simple conditions that are easy to ver-
ify and that guarantee asymptotic unbiasedness of the
resulting Rao-Blackwell estimates. In simulations the
Rao-Blackwellised methods outperform reference meth-
ods. Further, the proposed adaptive Rao-Blackwellised
method outperforms the original one in problems of
higher dimensions, in which adaptivity leads to a more
accurate approximation of posterior mean and covari-
ance in the proposal kernel than for a fixed proposal
kernel.
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