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3 Princeton University and the Voleon Group 4 Institute of Mathematics, EPFL

Abstract

Quasi-Newton (qN) techniques approximate
the Newton step by estimating the Hessian
using the so-called secant equations. Some
of these methods compute the Hessian us-
ing several secant equations but produce non-
symmetric updates. Other quasi-Newton
schemes, such as BFGS, enforce symmetry
but cannot satisfy more than one secant
equation. We propose a new type of quasi-
Newton symmetric update using several se-
cant equations in a least-squares sense. Our
approach generalizes and unifies the design of
quasi-Newton updates and satisfies provable
robustness guarantees.

1 Introduction

We consider second-order methods for unconstrained
minimization of a smooth, possibly non-convex func-
tion f : Rd → R. Despite a locally quadratic conver-
gence rate, the well-known Newton method iteration

xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk) (1)

is not suitable for large-scale problems, in part because
it requires solving a d × d linear system involving the
Hessian at every iteration. To address this issue, quasi-
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Newton algorithms replace the update rule (1) by

xk+1 = xk −B−1
k ∇f(xk) or

xk+1 = xk −Hk ∇f(xk), (2)

where Bk ≈ ∇2f(xk) and Hk ≈
[
∇2f(xk)

]−1
are ap-

proximations of the Hessian and its inverse (respec-
tively) at xk. Choosing the right approximation has
drawn considerable attention in the optimization lit-
erature, notably the DFP update [Davidon, 1959],
Broyden method [Broyden, 1965], SR1 update [Byrd
et al., 1996] and the well-known BFGS method [Broy-
den, 1970], [Fletcher, 1970], [Goldfarb, 1970] [Shanno,
1970]. In general, those methods estimate a matrix Bk

or Hk satisfying the secant equation

∇f(xk)−∇f(xk−1) = Bk(xk − xk−1) or

Hk(∇f(xk)−∇f(xk−1)) = xk − xk−1, (3)

then perform the quasi-Newton step (2). It is also pos-
sible to satisfy several secant equations. For instance,
the multisecant Type-I and Type-II Broyden methods
[Fang and Saad, 2009] find a non-symmetric matrix
Bk or Hk satisfying a block of secants: for a memory
size m and for i = k −m+ 1 . . . k,

∇f(xi)−∇f(xi−1) = Bk[xi − xi−1] or

Hk[∇f(xi)−∇f(xi−1)] = xi − xi−1.

By contrast, other methods like BFGS and DFP en-
force the symmetry of the update, but they satisfy
only one secant equation, in which case Powell [1986]
showed their high dependence in the step size. Indeed,
while BFGS and DFP enjoy an optimal convergence
rate on quadratics using exact line-search [Nocedal
and Wright, 1999], Powell [1986] showed that with a
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unitary step size, these updates converge particularly
slowly on a simple quadratic function with just two
variables. Moreover, it was also observed that BFGS
updates are sensitive to gradient noise, and design-
ing quasi-Newton methods for stochastic algorithms is
still a challenge [Byrd et al., 2016, Bollapragada et al.,
2018, 2019, Berahas et al., 2020].

Unfortunately, except for quadratic functions [Schn-
abel, 1983], it is usually impossible to find a symmetric
matrix that satisfies more than one secant equation.
Gower et al. [2016] adopted Hessian-vector products
instead of the secant equations. Moreover, line search
has been shown to be computationally expensive. Fi-
nally, the stabilisation procedure for stochastic BFGS
usually requires a growing batch size to reduce the
gradient noise, making it unpractical in many applica-
tions.

In this paper, we tackle those problems by proposing
a symmetric multisecant update, that satisfies the se-
cant equations in a least-squares sense. We show their
optimality on quadratics with unitary step size, and
prove their robustness to gradient noise, making them
good candidates in the context of stochastic optimiza-
tion.

1.1 Notation

We use boldface small letters, like x, to refer to vectors
and boldface capital letters, like A, for matrices. We
use d to refer to the dimension of the problem, and m
for the memory of the algorithm (we will see later that
m is the number of secant equations). For a function
f : Rd → R, its gradient and Hessian at x are denoted
by ∇f(x) and ∇2f(x) respectively. Consistently with
the notations in the literature, we use H to denote an
approximation of the inverse of the Hessian, while we
use B to denote an approximation of the Hessian. We
denote the usual Frobenius norm as ‖·‖. Moreover, for
any square matrix A ∈ Rd×d and any positive definite
matrix W ∈ Rd×d, we define the norm ‖A‖W as

‖A‖W = ‖W
1
2 AW

1
2 ‖. (4)

We often use the matrices X, G ∈ Rd×m+1, that con-
catenates the iterates and their gradients as follow,

X = [xi, . . . ,xi+m], G = [∇f(xi), . . . ,∇f(xi+m)].

Also, we define C, and ∆X and ∆G as

∆X = XC, ∆G = GC,

where C ∈ Rm+1×m is a matrix of rank m − 1 such
that 1Tm+1C = 0, 1m+1 being a vector of size m+1 full

of ones. Typically, C is the column-difference matrix

C =


−1 0 0 ...

1 −1 0 ...
0 1 −1 ...

. . .
. . .

1 −1
0 1

 .

1.2 Related work

The idea of updating an approximation of the Hes-
sian or its inverse can be traced back to Davidon
[1959, 1991] with the DFP update. Several updates,
such as the Broyden method [Broyden, 1965] or the
BFGS method [Broyden, 1970, Fletcher, 1970, Gold-
farb, 1970, Shanno, 1970] have been proposed since
then. Notably, Dembo et al. [1982], Dembo and Stei-
haug [1983] proposed to approximately invert the Hes-
sian using a Conjugate Gradient method. Limited
memory BFGS (L-BFGS) [Liu and Nocedal, 1989],
where a limited number of vectors are stored for the
approximation of the Hessian, has proven to be a
powerful type of quasi-Newton method. The use of
multisecant equations has also been used in a differ-
ent context by Gower and Gondzio [2014] and Hen-
nig [2015], and their connection with Anderson Ac-
celeration [Anderson, 1965] was studied by [Fang and
Saad, 2009]. This connection, combined with recent
results on Anderson Acceleration [Toth and Kelley,
2015, Walker and Ni, 2011, Rohwedder and Schnei-
der, 2011, Scieur et al., 2016, 2018], especially in the
stochastic [Scieur et al., 2017] and non-smooth [Zhang
et al., 2018] settings, may indicates that multisecant
methods also enjoy some good theoretical properties.
To scale up second-order methods, recent works fo-
cus on stochastic quasi-Newton methods. The use
of stochastic quasi-Newton updates has been inves-
tigated by Schraudolph et al. [2007], Mokhtari and
Ribeiro [2015], Moritz et al. [2016], Byrd et al. [2016]
and Gower et al. [2016], while approximating the Hes-
sian through sampling methods has been proposed
by Erdogdu and Montanari [2015], Xu et al. [2016]
and Agarwal et al. [2017], among others. In contrast
to Gower et al. [2016] and Jahani et al. [2020], our
approach never compute the exact Hessian. We now
present two popular quasi-Newton updates: the BFGS
method, and the multi-secant Broyden method. They
will serve as a basis to motivate the needs of general-
ization of quasi-Newton updates.

1.2.1 Single secant DFP/BFGS updates

The BFGS update finds a symmetric matrix Hk that
satisfies the secant equation (3). Among the many
possible solutions, it selects the one closest to Hk−1 in
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a weighted Frobenius norm (4), specifically,

Hk = argmin
H=HT

‖H−Hk−1‖W

s.t. H(∇f(xk)−∇f(xk−1)) = xk − xk−1.
(5)

where W is any positive definite matrix such that
W(∇f(xk) − ∇f(xk−1)) = xk − xk−1 [Nocedal and
Wright, 1999, §8.1] — a similar claim holds for the
update formula of Bk, known as DFP, whose update
reads

Bk = argmin
B=BT

‖B−Bk−1‖W−1

s.t. B(xk − xk−1) = ∇f(xk)−∇f(xk−1).
(6)

The matrix is then inverted using the Woodbury ma-
trix identity. In the two update rules, the matrices W
and W−1 are used implicitly, i.e., we do not need to
form W to evaluate Hk nor Bk.

Solving (5) repeatedly, BFGS builds a sequence
H1,H2, . . . of matrices such that each Hk satisfies the
kth secant equation. While it may satisfy the k − 1
other secants approximately, the update rule offers no
such guarantees. The same holds for the DFP update.

1.2.2 Multi-secant Broyden updates

In the case of Broyden updates, we seek a matrix B
for the type-I, or H for the type-II, that satisfies the
secant equations only, without any restriction on the
symmetry of the estimate. The update of the standard
Broyden method reads, for i = k −m, . . . , k,

Bk = argmin
B
‖B−Bk−m‖

s.t. B(xi − xi−1) = ∇f(xi)−∇f(xi−1),

Hk = argmin
H
‖H−Hk−m‖

s.t. H
(
∇f(xi)−∇f(xi−1)

)
= xi − xi−1.

(7)

As for the DFP update, the matrix Bk can also be in-
verted cheaply. In [Fang and Saad, 2009], the authors
show how to extend this update to the case where we
want to satisfy more than one secant equation. How-
ever, its solution is generally not symmetric.

1.3 Contributions

Quasi-Newton methods approximate the Hessian. The
previous section shows they do this in very different
ways that seem incompatible given the work of Schn-
abel [1983]. Despite their differences, they share sim-
ilarities, such as the idea of secant equations. This
leads to the following questions:

Is it possible to design a generalized frame-
work for quasi-Newton updates encompassing
Broyden’s, DFP and BFGS schemes?

Can Symmetric and Multisecant techniques
be combined into a single update?

Our work proposes a positive answer to these questions
trough the following contributions.

• We propose a general framework that models and
generalizes previous quasi-Newton updates.

• We derive new quasi-Newton update rules (Algo-
rithm 1), which are symmetric and take into ac-
count several secant equations. The bottleneck is
an (economic size) Singular Value Decomposition
(SVD), whose complexity is linear in the dimen-
sion of the problem d and quadratic in the mem-
ory size m (this term is minor since we assume
m � d), therefore comparable to other quasi-
Newton methods.

• We show the optimality of the convergence rate
of any multisecant quasi-Newton update built us-
ing our framework, on quadratic functions with-
out line search. This improves over the BFGS and
DFP updates as they are inefficient with unitary
step size on quadratics [Powell, 1986], and subop-
timal if exact line-search is not used.

• We introduce novel robust updates, that provably
reduce the sensitivity to the noise of our quasi-
Newton schemes. This robustness property is a
direct consequence of considering several secant
equations at once.

Organization of the paper In Section 2 we list the
desirable properties of quasi-Newton schemes, and end
with a generic quasi-Newton update. The choice of its
parameters, like the loss/regularization functions, the
preconditioner, the number of secants or the initial-
ization leads to different, existing methods but also
to potentially new ones. Then, Section 3 proposes a
novel quasi-Newton scheme (Algorithm 1) based on
our framework, combining the ideas of DFP/BFGS
and multisecant Broyden methods. This algorithm
has the advantage of presenting a regularization term,
which controls the stability of the update.

2 Generalization of Quasi-Newton

We have seen in the previous section two different
quasi-Newton (qN) updates: one that focuses on the
symmetry of the estimate, the other on the number of
satisfied secant equations. The idea presented in Sec-
tions 2.1 and 2.2, if taken separately, are not novel.
However, we propose a framework that unifies exist-
ing and new qN schemes in Section 2.3. This gener-
alization gives a novel view on how qN updates are
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Algorithm 1 Type-I Symmetric Multisecant step

(See Appendix A for the type-II version)
Input: Function f and gradient ∇f , initial approxi-

mation of the Hessian Bref, maximum memory m
(can be ∞), relative regularization parameter λ̄.

1: Compute g0 = ∇f(x0) and perform the initial step

x1 = x0 −B−1
0 g0

2: for t = 1, 2, . . . do
3: Form the matrices ∆X and ∆G (see Section 1.1)

using the m last pairs (xi,∇f(xi)).
4: Compute the quasi-Newton direction d as

dt = −Z−1
? gt,

see (Inv-RSP) with A = ∆X, D = ∆G,
Zref = Bref, λ = λ̄‖A‖.

5: Perform an approximate-line search

xt+1 = xt + htdt, ht ≈ arg min
h

f
(
xt + htdt

)
.

6: end for

built. We also provide a unified convergence result on
quadratics in Section 2.5

2.1 Generalized (Multi-)Secant Equations

The central part of qN methods is the secant equation.
The idea follows from the linearization of the gradient
of the objective function. Indeed, consider the func-
tion f(x), assumed to be smooth, strongly convex and
twice differentiable. The linearization of its gradient
around the minimum x? satisfies

∇f(x) ≈ ∇f(x?)︸ ︷︷ ︸
=0

+∇2f(x?)(x− x?). (8)

After a “Newton step”, we get

x− [∇2f(x?)]−1∇f(x) ≈ x?.

Unfortunately, we do not have access to the matrix
∇2f(x?) as we do not know x?. Moreover, solving the
linear system [∇2f(x?)]−1∇f(x) may be costly when
d is large.

To overcome such issues, consider a sequence
{x0, . . . ,xm} of points at which we have computed the
gradients. Then, (8) can be stated as

G = ∇2f(x?)(X−X?),

where X? = x?1
T
m+1, i.e., the matrix concatenating

m+ 1 copies of the vector x?. Matrices X and G are
defined in Section 1.1.

Ideally, the estimate B of the Hessian, or the estimate
of its inverse H, has to satisfy the condition

G = B(X−X?) or HG = (X−X?).

However, the dependency on x? makes the problem of
estimating B or H intractable. To remove this prob-
lematic dependency, consider a matrix C ∈ Rm+1×m

of rank m such that 1Tm+1C = 0 (see Section 1.1 for
an example). After multiplying by x? on the right,
we simplify X?C = 0 and we obtain the multisecant
equations

∆G = B∆X, or H∆G = ∆X, (9)

where ∆X and ∆G are defined in Section 1.1. In
the specific case where we have only one secant equa-
tion, (9) corresponds exactly to the standard secant
equation in (5). In the case where C is the column-
difference operator, we obtain the multisecant equa-
tions usually used in multisecant Broyden methods.

2.2 Regularization and Constraints

The matrices B (Broyden Type-I and DFP updates)
and H (Broyden Type-II and BFGS) are selected so as
to minimize the distances w.r.t. the reference matrices,
called Bref and Href respectively, as shown in (7). In
the case where there is only a sequence of single secant
equations, the reference matrix is taken as being the
previous estimate, with an arbitrary initialization. In
the case of a multisecant update, the reference matrix
is arbitrary. Moreover, in the case of DFP and BFGS,
we have in addition a symmetry constraint, restraining
even more the search space for the estimate of the
Hessian. For simplicity, we will consider only the type-
I update here, i.e., the estimate B. The formulation
for estimate H can be easily derived by swapping ∆G
and ∆X.

The intuition behind the regularization term is due
to the number of degrees of freedom in the problem.
The secant equation B∆X = ∆G defines the behav-
ior of the operator B, mapping from span{∆X} to
span{∆G}. However, the dimension of these two
spans is as most m < d. This means we have to define
the behavior of B outside span{∆X} and span{∆G},
i.e., from span{∆X}⊥ to span{∆G}⊥.

Since B outside the span is not driven by the secant
equations, we have to define an operator Bref, charac-
terizing the default behavior of B outside the span of
secant equations. This means, that in the case where
B satisfies exactly the secant equations, B reads

B = [∆G∆X†] + Θ(I−P),

where P is the projector to the span of ∆X, ∆X† is
a pseudo-inverse of ∆X, and Θ depends on Bref and
constraints (different Θ lead to different qN updates).
In this way, B satisfies the secant equation, since mul-
tiplying B by ∆X gives ∆G,

B∆X = ∆G∆X†∆X + Θ(I−P)∆X.
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We have P∆X = ∆X, thus (I − P)∆X = 0 (by con-
struction of P). Moreover, ∆G∆X†∆X = ∆G by
definition of the pseudo-inverse.

The way B behaves outside the span is thus driven
by Θ, which depends on the regularization, the initial-
ization Bref and the constraints. To make a parallel
with machine learning problems, Θ can be seen as the
“generalization” (or “out-of-sample”) term. We give
example choices for Θ in Appendix E.6.

Consider the regularisation function R(·,Bref), as-
sumed to be strictly-convex, whose minimum is at-
tained at Bref, and the convex constraint set C. We
can write the qN update estimation problem as

min
B∈C
R(B,Bref) subject to B∆X = ∆G. (10)

This approach generalizes the way we define qN up-
dates. Indeed, for instance, we recover DFP by setting
R = ‖B − Bref‖W−1 , C = Sd×d (the set of symmet-
ric matrices), m = 1 and Bref = Bk−1 in (10). We
also recover the Type-I Broyden method by setting
R = ‖B−Bref‖ and C = Rd×d.

2.3 Generalized QN Update

A natural extension, given the updates of DFP/BFGS
and multisecant Broyden, would be the symmetric
multi-secant update. This update would read, for an
arbitrary regularization function,

min
B∈Sd×d

R(B,Bref) subject to B∆X = ∆G.

In the case where m > 1, this multisecant technique
seems promising as it combines the advantages of mul-
tisecant Broyden and symmetric updates.

Assuming ∆X,∆G have full column rank, these equa-
tions always have a solution B. However, there exists
a symmetric solution if and only if ∆XT∆G is sym-
metric [Schnabel, 1983, Henk Don, 1987].

When ∆XT∆G is symmetric, Schnabel [1983] derived
a multisecant BFGS update rule. This assumption in-
deed holds for quadratic objectives, but not for general
objective functions when m ≥ 2, that is, when we con-
sider more than one secant condition [Schnabel, 1983,
Example 3.1]. Hence, a naive extension of symmetric
quasi-Newton update leads to infeasible problems.

To tackle the problem of infeasible updates, we can
relax the constraint on the secant equations by a loss
function L(·,∆X,∆G). We finally end up with the
generalized (type-I and type-II) qN update

Bk = lim
λ→0

arg min
B∈C

L(B,∆X,∆G) +
λ

2
R(B,Bref)

(GQN-I)

Hk = lim
λ→0

arg min
H∈C

L(H,∆G,∆X) +
λ

2
R(H,Href)

(GQN-II)
where we assume that L andR are strictly convex, and
sufficiently simple to have an explicit formula for Hk.
The limits here simply state that we first minimize the
loss function, then with the remaining degrees of free-
dom we minimize the regularization term. In the case
where the update (10) is feasible, (GQN-I)/(GQN-II)
and (10) are equivalent.

2.4 Preconditioning

As shown for instance in DFP and BFGS, it is common
to use a preconditioner to reduce the dependence of
the update to the units of the Hessian. We give here
the example for type-II update. The type-I follows
immediately by considering W−1 instead of W.

The idea of preconditioning is, instead of considering
H, to set

M = W(1−α)HWα,

where W ideally has the same units as the Hessian
of the function f . For example, in BFGS, W is any
matrix such that W∆X = ∆G, which always exists in
the case where ∆X and ∆G are vectors. Ideally, the
preconditioner cancels the units in the update rules,
i.e., W has to have the same units as the Hessian.

In the case where we consider a preconditioner,

MW−α∆X = W1−α∆G, Mref = Wα−1HrefW
−α.

We now have the type-II Preconditioned Generalized
Quasi-Newton update

arg min
M∈C̃

L(M,W−α∆X,W(1−α)∆G) +
λ

2
R(M,Mref)

(PGQN-II)

where C̃ = W(1−α)CWα, i.e., the image of the con-
straint after application of the preconditioner. To re-
trieve the update H, it suffices to solve

H = W−(1−α)MW−α.

2.5 Rate of Convergence on Quadratics

Our theorem below shows that generalized qN meth-
ods (GQN-I) and (GQN-II) are optimal on quadratics
under mild assumptions, in the sense that their per-
formance is comparable to conjugate gradients.

Theorem 1. Consider any multisecant quasi-Newton
method (GQN-II) with unitary step size and m =∞,

xk+1 = xk −Hk∇f(xk) (11)
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where f is the quadratic form (x− x?)
T Q

2 (x− x?) for
some Q � 0, and H satisfies exactly the secant equa-
tions. If the update (11) is a preconditioned first-order
method, i.e., there exists a symmetric positive definite
matrix H̃ independent of k such that

xk+1 ∈ x0 + H̃ span{∇f(x0), . . . ,∇f(xk)}

then xk = x? if k ≥ d + 1; for smaller k the method
satisfies the rate

‖∇f(xk)‖ ≤ O
(

1−
√
κ

1+
√
κ

)k
‖∇f(x0)‖,

Where κ is the inverse of the condition number of H̃Q.

Proof. See Appendix E for a detailed proof.

Notice that, for instance, the multisecant Broyden up-
dates (7) or the multisecant BFGS update [Schnabel,
1983] satisfies the assumptions of Theorem 1 if Bref or
Href are symmetric positive definite matrices (see Ap-
pendix E.6). For all these methods, we have H̃ = Href

(or B−1
ref ). This indicates that the initialization is cru-

cial, since a good initial approximation of Q−1 drasti-
cally reduces the condition number κ.

We have now a generic form of qN update, but it raises
some important questions. Specifically, which practi-
cal losses and regularization functions should we use,
and what happens if λ does not go to zero? The next
section addresses the first point by giving an example
that extends (limited memory) DFP and multi-secant
Broyden methods. Then, we analyse the robustness of
the method when λ is non-zero.

3 Robust Symmetric Multisecant
Updates

This section proposes a novel quasi-Newton scheme,
that extends the BFGS and multisecant Broyden
method into the type-II Symmetric Multisecant Up-
date (12) below, solving the problem (PGQN-II) in
the special case where the loss and the regularization
are Frobenius norms. For simplicity, we do not con-
sider any preconditioner here. The method reads

Hk=arg min
H=HT

‖H∆G−∆X‖2 +
λ

2
‖H−Href‖2 (12)

and its type-I counterpart is B−1
k , where

Bk=arg min
B=BT

‖B∆X−∆G‖2 +
λ

2
‖B−Bref‖2 (13)

Explicit Formula We now solve problem (12) ef-
ficiently. This is an extension of the symmetric Pro-
crustes problem from [Higham, 1988]. Indeed, Higham
[1988] solves the problem

min
Z=ZT

‖ZA−D‖,

where A and D are Rd×m matrices, where m > d. In
our case, we have m� d, and an extra regularization
term, that makes the update formula more compli-
cated. Fortunately, the matrix-vector multiplication
Zv can still be done efficiently even in our case, the
bottleneck being the computation of the SVD of a thin
matrix. The next theorem details the explicit formula
to compute Hk (and its inverse if one wants to use a
type-I method).

Theorem 2. Consider the Regularized Symmetric
Procrustes (RSP) problem

Z? = arg min
Z=ZT

‖ZA−D‖2 +
λ

2
‖Z− Zref‖2, (RSP)

where Zref is symmetric (otherwise, take the symmet-
ric part of Zref), Z, Zref ∈ Rd×d, and A, D ∈ Rd×m,
m ≤ d. Then, the solution Z? is given by

Z? = V1Z1V
T
1 + V1Z2 + ZT2 V

T
1 + (I−P)Zref(I−P)

(Sol-RSP)
where

[U,Σ,V1] = SVD(AT , ’econ’), (economic SVD)

Z1 = S�
[
VT

1

(
ADT + DAT + λZref

)
V1

]
,

S =
1

Σ211T + 11TΣ2 + λ11T
,

P = V1V
T
1 ,

Z2 = (Σ2 + λI)−1VT
1 (ADT+λZref)(I−P).

The fraction in S stands for the element-wise inver-
sion (Hadamard inverse), and the notation � stands
for the element-wise product (Hadamard product). The
inverse Z−1

? reads

Z−1
? =E

(
Z1 − Z2Z

−1
refZ

T
2

)−1

ET + (I−P)Z−1
ref (I−P)

E = V1 − (I−P)Z−1
refZ

T
2 . (Inv-RSP)

Proof. See Appendix F for a detailed proof.

The type-I update uses the matrix Z−1
? , using A =

∆X and D = ∆G. The type-II uses instead Z?, with
A = ∆G and D = ∆X. See Appendix I for an effi-
cient Matlab implementation of the type-I and type-II
updates.

The next proposition shows the complexity of perform-
ing one matrix-vector multiplication with Z? and its
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inverse. The bottleneck of the method is the SVD of a
Rm×d matrix, whose complexity is O(m2d), thus linear
in the dimension.

Proposition 1. The complexity of evaluating Z?v and
Z−1
? v is O(m2d), assuming m � d and that the com-

plexity of Zrefv and Z−1
refv is at most O(m2d).

Robustness The symmetric multisecant update can
be used in two different modes, one that lets λ → 0,
the other, biased but more robust, that sets λ > 0.

The update formula is slightly simpler when λ = 0.
However, due to the presence of matrix inversion, this
may lead to instability issues in some cases, similarly
to the BFGS method when

(xk+1 − xk)T (∇f(xk+1)−∇f(xk)) ≈ 0,

i.e., when the step and difference of gradients are close
to being orthogonal. In BFGS, such issues are tack-
led by a filtering step, discarding the update if the
scalar product goes below some threshold. Unfortu-
nately, when the gradient is corrupted by some noise,
the impact on the BFGS update can be huge.

In the case where λ > 0, we can show that our update
is robust when A and D are corrupted.

Proposition 2. Let Z?(λ) be defined as the solution
of (RSP) for some λ, and Z?(0) = limλ→0 Zλ. Let Ã,
D̃ be a corrupted version of A and D where

‖A− Ã‖ ≤ δA, ‖D− D̃‖ ≤ δD.

Finally, let Z̃?(λ) be the solution of (Sol-RSP) using
Ã and C̃. Then, we have

‖Z̃?(λ)−Z?(0)‖ ≤ ‖Z?(λ)− Z?(0)‖︸ ︷︷ ︸
Bias

+ ‖Z̃?(λ)− Z?(λ)‖︸ ︷︷ ︸
Stability

,

where

‖Z?(λ)− Z?(0)‖ ≤ λ‖Z?(0)− Zref‖
σ2

min(A) + λ
, (14)

‖Z̃?(λ)− Z?(λ)‖ ≤ O
(
δA + δD

λ

)
. (15)

Proof. See Appendix G for a detailed proof.

Proposition 2 suggests that λ should satisfy a trade-off
to achieve the best performing approximation. Notice
that when λ = 0 in the noise-less case, we recover the
optimal Z?, and when λ→∞, we have Z? = Zref.

Our result is called robust as we can bound the max-
imum perturbation without restriction on its magni-
tude. This is not the case in [Higham, 1988], whose
main assumption is δA ≤ σmin(A) (which is extremely

restrictive), where σmin is the smallest non-zero singu-
lar value of A.

Since the singular values of A are, in practice, often
small, it is always recommended to set a small λ: we
will show latter, in the numerical experiments, that
even for quadratic functions (i.e., in the “perturbation-
free regime”), a small value of λ drastically changes
the final result, as this makes the method robust to
numerical noise.

Scaling of λ. The parameter λ has to be scaled
w.r.t. the problem input. It is clear, from Theorem
2, that the role of λ is to regularize the matrix inver-
sion by lower-bounding the eigenvalues of the inverted
matrix. Therefore, we advise to set λ = λ̄‖ATA‖2,
i.e., proportional to ‖ATA‖2. This way, assuming
σmin small, the conditioning of (ATA+λI)−1 is upper-
bounded by 1 + 1/λ̄.

4 Numerical Experiment

This section compares our symmetric multisecant al-
gorithms to existing methods in the literature. We
present in this section only a few experiments concern-
ing stochastic-related experiments: We first compare
the quality of the estimate of the Hessian (and its in-
verse). Then, we compare the speed of convergence
when using this estimate to estimate the Newton-step
in the case where the gradient is stochastic.

Hessian Recovery Consider the problem of recov-
ering the inverse of a symmetric Hessian Q−1 of a
quadratic function, that satisfies

Q−1∆G = ∆X, Q = QT .

However, we have only access to ∆̃G, a corrupted ver-
sion of ∆G. This notably happens when the oracle
provides stochastic gradients.

In our case, we consider the worst-case `2 corruption

∆̃G = U∆G max{Σ∆G − ε · σ1(∆G), 0}VT
∆G,

where U∆GΣ∆GVT
∆G is the SVD of ∆G, and ε is the

relative perturbation intensity. When ε = 1, the ma-
trix ∆̃G is full of zeros.

We estimate Q−1 using different techniques, that we
compare using the relative residual error

error(Q−1
est) = ‖Q−1

est∆G−∆X‖/‖∆X‖.

Note that, in our error function, we use the noise-free
version of ∆G.

Our baseline is the diagonal estimate, corresponding
to the inverse of the Lipchitz constant of Q, typi-
cally used as a step size in the gradient method. We
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compare `-BFGS, Multisecant Broyden updates [Fang
and Saad, 2009] and our Type-1 and Type-2 multi-
secant algorithms, solving respectively (Inv-RSP) and
(Sol-RSP) with A = ∆̃G, D = ∆X, B0 = H−1

0 =
‖Q‖. The number of secant equations is 50 and the
dimension of the problem is 250. The results are re-
ported in Figure 1. In this experiment, we used a
worse-case noise to better show the differences between
the methods. Stochastic noise also works, but makes
the graph more dense and harder to read.

Optimization problem We aim to solve

min
x∈Rd

f(x)
def
=

1

N

N∑
i=0

`(aTi x,bi) +
τ

2
‖x‖2, (16)

where `(·, ·) is a loss function. The pair (A,b) is a
dataset, where ai ∈ Rd is a data point composed by d
features, and bi is the label of the ith data point.

Here, we present the specific cases where ` is either a
quadratic loss or a logistic loss, on the Madelon [Guyon
et al., 2008] dataset.

• Quadratic loss, deterministic gradient.
See Figure 3.

• Logistic loss, deterministic gradient.
See Figure 4.

• Quadratic loss, stochastic gradient.
See Figure 5. We use SAGA [Defazio et al., 2014]
to obtain the stochastic estimates of the gradient,
with a batch size of 64.

We have other experiments on other datasets in Ap-
pendix H. We also show the evolution of the spectrum
of Hk and B−1

k in Figure 6, Appendix H.

5 Discussion and Future Directions

We briefly discuss our contributions and propose pos-
sible improvements. Although our approach performs
sufficiently well to be competitive with current qN up-
dates, the authors believe the method can be improved
in several aspects.

Contrary to BFGS, the update (13) (resp. (12)) does
not guarantee its positive-definiteness when applied to
a smooth and strongly convex function. However, for
large enough λ the matrix is p.s.d. given that Href

(resp. Bref) is also positive-definite. Also, it is pos-
sible to project a small matrix in (Inv-RSP) (resp.
(Sol-RSP)) to ensure positive definiteness. We discuss
this in more details in Appendix B. The ideal way
would be to solve the symmetric Procrustes problem

with a semi-definite constraint, but this is still consid-
ered as an open problem [Higham, 1988].

A direct consequence of the non positive-definiteness
is the lack of robustness guarantees for the Type-I
method, that inverts a matrix that is possibly not pos-
itive definite. Therefore, it is probably impossible to
bound the smallest eigenvalue, unless we use the ro-
bust projection trick in Appendix B. Surprisingly how-
ever, in our experiments the Type-I method seems to
be the most stable among all updates.

Moreover, we considered here a plain method with no
preconditioner. In BFGS and DFP updates, the pre-
conditioner W is any matrix such that W∆X = ∆G
where ∆X and ∆G are vectors. This matrix is used
implicitly in the update: all occurrences of W∆X are
replaced by ∆G, in a way that W disappears. We
cannot use a similar trick here, since such matrices do
not exist in general when ∆X and ∆G are matrices
[Schnabel, 1983]. We propose in Appendix C possi-
ble options to include such preconditioners that may
potentially improve the method.

It is also possible to consider a general qN step, that
takes the direction HGv (or B−1Gv), where v is a
vector that sums to one, instead of taking the direction
computed with the latest gradient, H∇f(xk). In the
special case where v is full of zeros but one as the last
element, this reduces to the standards qN step. We
discuss this strategy in Appendix D, and we suspect
this technique may reduce even more the impact of the
noise on the qN step if v is chosen to be the averaging
vector 1m/m, for instance.

The complexity of the method is somewhat worse than
current qN methods: O(m2d) instead of O(md). The
authors believe it may be possible to reduce the com-
plexity by a factor m by using a low-rank SVD update
[Brand, 2006] and by changing our direct formulas in
Theorem 2 into recursive ones.

Another interesting direction is the study of the the
matrix C that forms ∆X and ∆G. We suspect that, in
the case where those matrices are corrupted, choosing
the right C may affect the stability of the method. For
instance, it is possible to design C to set more weight
on some selected secant equations that may be more
recent, or that contain less noise.

We proposed a novel method with distinct theoret-
ical properties, including symmetry, optimality on
quadratics with unitary step size, and robustness, and
which performs encouragingly well in practice. In
view of the new questions that multisecant methods
raise, we hope our work can add to efforts for the de-
sign of possibly other, better-performing quasi-Newton
schemes.
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Figure 1: Comparison of different methods to estimate
a symmetric matrix. We see that symmetric multise-
cant methods perform well in a small-noise regime,
but quickly get out of control for larger perturbations.
This is not the case for their regularized counterpart
(λ = 10−10), clearly showing a more stable behavior.
BFGS performs poorly compared to multisecant algo-
rithms, since it can only satisfy one secant equation
at a time. The type-II Broyden method seems stable,
but does not recover a symmetric matrix.

Figure 2: Legend for the numerical experiment.
The methods proposed in this paper are Sym.

Multisecant Type I (resp. II) +reg. The reg-
ularization parameter is set to 10−8‖∆X‖ (resp.
10−8‖∆G‖).
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Figure 3: Solving a quadratic regression using the
Madelon Dataset, where the regularization is set such
that the condition number is equal to 1010. Except
for gradient descent, all methods use an unitary step
size and use all previous iterates and gradients. As ex-
pected, all multisecant methods have similar rates of
convergence, as they are optimal - which means that
their rate of convergence is similar to that of conjugate
gradients. On the other side, as there is no line-search,
the BFGS algorithm diverges [Powell, 1986].

83 166 249
10

-4

10
-2

10
0

4 9 13
10

-4

10
-2

10
0

Figure 4: Solving a logistic regression using the Made-
lon Dataset, where the regularization is set such that
the condition number is equal to 1010. Except for
gradient descent, all methods use an approximate
line-search, and use a limited memory of last 25 se-
cant equations. Except for the multisecant Type-II
method, all methods converge at the same speed.
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Figure 5: Comparison of the stability of qN methods
with stochastic gradients on Madelon dataset. We re-
port the function value of the average of the iterates.
The batch size is 64. Since the function is stochastic,
we used only unitary step sizes. The memory is 25,
and the relative regularization λ̄ = 10−2. The con-
dition number is 103. `−BFGS and Broyden methods
are divergent in this situation. With unitary step sizes,
the regularized symmetric multisecant Type-I method
is faster than stochastic gradient.
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