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Appendix

Organization. In Appendix A, we provide an illustrative example to ease through the notations introduced
in Section 2. In Appendix B, we derive the two forms of the conditional density used in Section 3 and provide
lower and upper bounds on the conditional density. In Appendix C, we provide the proof of Theorem 4.1. In
Appendix D, we provide the proof of Theorem 4.2. In Appendix E, we state the two key lemmas required in
the proof of Theorem 4.3 and 4.4 — Lemma E.1 provides error bounds on edge parameter estimation using
GRISE and Lemma E.2 provides error bounds on node parameter estimation using the three-step procedure
from Section 3. In Appendix F, we provide the proof of Theorem 4.3 that relies on Lemma E.1. In Appendix G,
we provide the proof of Theorem 4.4 that relies on Lemma E.1 and Lemma E.2. In Appendix H, we provide the
proof of Proposition 4.1. In Appendix I, we state the two key propositions required in the proof of Lemma E.1
— Proposition I.1 bounds the gradient of the GISO and Proposition I.2 shows that the GISO obeys a restricted
strong convexity like property. In Appendix J, we provide the proof of Lemma E.1. In Appendix K, we provide
the proof of Proposition I.1 In Appendix L, we provide the proof of Proposition I.2. In Appendix M, we provide
the Generalized Interaction Screening algorithm (Algorithm 1) and its computational complexity (Proposition
M.1). In Appendix N, we present a robust variation of the sparse linear regression. In Appendix O, we state the
two key propositions required in the proof of Lemma E.2 — Proposition O.1 provides guarantees for learning
the conditional mean parameter vector and Proposition O.2 provides guarantees for learning the conditional
canonical parameter vector. In Appendix P, we provide the proof of Lemma E.2. In Appendix Q, we provide
the proof of Proposition O.1. In Appendix R, we discuss the theoretical properties of Algorithm 3 (used in the
proof of Proposition O.2). In Appendix S, we provide the proof of Proposition O.2. In Appendix T, we discuss a
few examples of distributions that naturally satisfy Condition 4.1. In Appendix U, we provide a few discussions.

A Notations via an example

In this appendix, we will provide an illustrative example to ease through the notations introduced in Section 2.

Let ∀i ∈ [p], Xi = [−b, b]. Therefore bl = bu = 2b. Consider the density as shown below.
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[θ
∗(i)
1 xi + θ

∗(i)
2 x2i ] +

∑
i∈[p]

∑
j>i

[θ
∗(ij)
1,1 xixj + θ

∗(ij)
1,2 xix

2
j + θ

∗(ij)
2,1 x2ixj + θ

∗(ij)
2,2 x2ix

2
j ]

)
.

For this density, we have the following.
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ϕmax = max{b, b2}
ϕ̄max = max{1, 2b}

γ = θmax(4d+ 2)

φmax = 2max{b, b4}.

For node-wise notations, let us fix i = 1. Then, we have
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ϕ(1)(x1) = (x1, x
2
1 − b2/3)
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φ(1)(x) = (x1, x
2
1 − b2/3, x1x2, x1x22, (x21 − b2/3)x2, (x21 − b2/3)x22, · · · , x1xp, x1x2p, (x21 − b2/3)xp, (x21 − b2/3)x2p).

B Conditional density

In this appendix, we derive the two forms of the conditional density of xi for i ∈ [p] i.e., fxi(xi|x−i = x−i;ϑ
∗(i))

used in Section 3. We further obtain lower and upper bounds on this conditional density.

B.1 Derivation of the two forms of conditional density

We will first derive the form of conditional density in (5). For any i ∈ [p], the conditional density of node xi
given the values taken by all other nodes is obtained by applying Bayes’ theorem to fx(x;θ∗) and is given by

fxi(xi|x−i = x−i;ϑ
∗(i)) =

exp
(
θ∗(i)

T

ϕ(xi) +
∑

j∈[p],j ̸=i θ
∗(ij)Tψ(xi, xj)

)
∫
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(
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∑
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∗(ij)Tψ(xi, xj)
)
dxi

, (13)

where x−i := x \ xi and x−i := x \ xi. Recall definition of locally centered basis functions in (3) and (4) from
perspective of i ∈ [p], j ∈ [p]\{i}. For x ∈ Xi, x′ ∈ Xj

ϕ(i)(x) := ϕ(x)−
∫
y∈Xi

ϕ(y)UXi
(y)dy,

ψ(ij)(x, x′) := ψ(x, x′)−
∫
y∈Xi

ψ(y, x′)UXi
(y)dy.

where UXi(y) denotes the uniform density on Xi. We can rewrite (13) as

fxi(xi|x−i = x−i;ϑ
∗(i)) =

exp
(
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T
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∑
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)
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.

Recalling notation of ϑ∗(i) and φ(i)(xi;x−i) from Section 2, this results in

fxi(xi|x−i = x−i;ϑ
∗(i)) =

exp
(
ϑ∗(i)Tφ(i)(xi;x−i)

)
∫
xi∈Xi

exp
(
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)
dxi

. (14)

We will now derive the form of conditional density in (9). Using the definition of Kronecker product, the
conditional density in (13) can also be written as:

fxi(xi|x−i = x−i;ϑ
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Recalling notation of λ∗(x−i) from Section 3, this results in

fxi(xi|x−i = x−i;ϑ
∗(i)) =

exp
(
λ∗T (x−i)ϕ(xi)

)
∫
xi∈Xi

exp
(
λ∗T (x−i)ϕ(xi)

)
dxi

.

B.2 Bounds on conditional density

We will now provide lower and upper bounds on the conditional density of xi for i ∈ [p]. Let us first bound
the locally centered basis functions in (3) and (4). For any i ∈ [p], r ∈ [k], let ϕ(i)

r (·) denote the rth element of
ϕ(i)(·). We have ∀i ∈ [p],∀r ∈ [k]∣∣∣ϕ(i)

r (xi)
∣∣∣ (a)≤ ∣∣∣ϕr(xi)∣∣∣+ ∣∣∣ ∫
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ϕr(yi)UXi
(yi)dyi

∣∣∣ (b)≤ |ϕr(xi)|+ ∫
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|ϕr(yi)|UXi
(yi)dyi

(c)

≤ 2ϕmax.
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where (a) follows by applying the triangle inequality, (b) follows because the absolute value of an integral is
smaller than or equal to the integral of an absolute value and UXi(·) is strictly positive, and (c) follows because
|ϕr(x)| ≤ ϕmax ∀r ∈ [k], x ∈ ∪i∈[p]Xi and the integral of UXi

(·) over Xi is 1. Therefore,

∥ϕ(i)(·)∥∞ ≤ 2ϕmax.

Similary,

∥ψ(ij)(·)∥∞ ≤ 2ϕ2max.

Recall the definition of φmax. We now have

∥φ(i)(x)∥∞ ≤ φmax. (15)

Also, recall that ∥ϑ∗(i)∥1 ≤ γ. Using this and (15), we have

exp
(
− γφmax

)
≤ exp

(
ϑ∗(i)Tφ(i)(x)

)
≤ exp

(
γφmax

)
. (16)

As a result, we can lower and upper bound the conditional density in (14) as,

fL :=
exp

(
− 2γφmax

)
bu

≤ fxi(xi|x−i = x−i;ϑ
∗(i)) ≤ fU :=

exp
(
2γφmax

)
bl

. (17)

C Proof of Theorem 4.1

In this appendix, we prove Theorem 4.1. Consider i ∈ [p]. For any ϑ ∈ Λ, recall that the population version of
GISO is given by

S(i)(ϑ) = E
[
exp

(
− ϑTφ(i)(x)

)]
.

Also, recall that the parametric distribution m
(i)
x (x;ϑ) under consideration has the following density:

m(i)
x (x;ϑ) ∝ fx(x;θ∗)× exp

(
− ϑTφ(i)(x)

)
,

and the density u(i)x (x) is given by:

u(i)x (x) ∝ fx(x;θ∗)× exp
(
− ϑ∗(i)Tφ(i)(x)

)
.

We show that minimizing S(i)(ϑ) is equivalent to minimizing the KL-divergence between the distribution with
density u(i)x (·) and the distribution with density m(i)

x (·;ϑ). In other words, we show that, at the population level,
the GRISE is a “local” maximum likelihood estimate. We further show that the true parameter vector ϑ∗(i) for
i ∈ [p] is a unique minimizer of S(i)(ϑ). We restate the Theorem below and then provide the proof.
Theorem 4.1. Consider i ∈ [p]. Then, with D(· ∥ ·) representing KL-divergence,

argmin
ϑ∈Λ:∥ϑ∥1≤γ

D(u(i)x (·) ∥ m(i)
x (·;ϑ)) = argmin

ϑ∈Λ:∥ϑ∥1≤γ

S(i)(ϑ).

Further, the true parameter ϑ∗(i) for i ∈ [p] is a unique minimizer of S(i)(ϑ).

Proof of Theorem 4.1. We will first write m(i)
x (·;ϑ) in terms of S(i)(ϑ). We have

m(i)
x (x;ϑ) =

fx(x;θ
∗) exp

(
− ϑTφ(i)(x)

)
∫
x∈X fx(x;θ

∗) exp
(
− ϑTφ(i)(x)

)
dx
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(a)
=

fx(x;θ
∗) exp

(
− ϑTφ(i)(x)

)
S(i)(ϑ)

,

where (a) follows from definition of S(i)(ϑ).

Now let us write an alternative expression for u(i)x (x) which does not depend on xi functionally. We have

u(i)x (x)
(a)
∝ fx−i(x−i;θ

∗)× fxi(xi|x−i = x−i;ϑ
∗(i))× exp

(
− ϑ∗(i)Tφ(i)(x)

)
(b)
∝

fx−i
(x−i;θ

∗)∫
xi∈Xi

exp
(
ϑ∗(i)Tφ(i)(x)

)
dxi

, (18)

where (a) follows from fx(·;θ∗) = fx−i(·;θ∗)× fxi(·|x−i = x−i;ϑ
∗(i)) and (b) follows from (14).

We will now simplify the KL-divergence between u(i)x (·) and m(i)
x (·;ϑ). For any l ∈ [k+ k2(p− 1)], let ϑl denote

the lth component of ϑ and φ(i)
l (x) denote the lth component of φ(i)(x).

D(u(i)x (x) ∥ m(i)
x (x;ϑ))

=

∫
x∈X

u(i)x (x) log

(
u
(i)
x (x)S(i)(ϑ)

fx(x;θ∗) exp
(
− ϑTφ(i)(x)

))dx
(a)
=

∫
x∈X

u(i)x (x) log

(
u
(i)
x (x)

fx(x;θ∗)

)
dx+

∫
x∈X

u(i)x (x)× ϑTφ(i)(x)dx+ logS(i)(ϑ)

=

∫
x∈X

u(i)x (x) log

(
u
(i)
x (x)

fx(x;θ∗)

)
dx+

∑
l

[
ϑl

∫
x∈X

u(i)x (x)×φ(i)
l (x)dx

]
+ logS(i)(ϑ)

(b)
=

∫
x∈X

u(i)x (x) log

(
u
(i)
x (x)

fx(x;θ∗)

)
dx+

∑
l

[
ϑl

∫
x−i∈

∏
j ̸=i Xj

u(i)x (x)
[ ∫

xi∈Xi

φ
(i)
l (x)dxi

]
dx−i

]
+ logS(i)(ϑ)

(c)
=

∫
x∈X

u(i)x (x) log

(
u
(i)
x (x)

fx(x;θ∗)

)
dx+ logS(i)(ϑ),

where (a) follows because log(ab) = log a + log b and S(i)(ϑ) is a constant, (b) follows because u(i)x (·) does not
functionally depend on xi ∈ Xi as shown in (18), and (c) follows because for any l ∈ [k + k2(p − 1)] the basis
function φ(i)

l (·) is locally centered from perspective of i i.e.,
∫
xi∈Xi

φ
(i)
l (x)dxi = 0. Observing that the first term

in the above equation is independent on ϑ, we can write
argmin

ϑ∈Λ:∥ϑ∥1≤γ

D(u(i)x (·) ∥ m(i)
x (·;ϑ)) = argmin

ϑ∈Λ:∥ϑ∥1≤γ

logS(i)(ϑ) = argmin
ϑ∈Λ:∥ϑ∥1≤γ

S(i)(ϑ).

Further, the KL-divergence between u
(i)
x (·) and m

(i)
x (·;ϑ) is minimized when u

(i)
x (·) = m

(i)
x (·;ϑ). Recall that

the basis functions are such that the exponential family is minimal. Therefore, u(i)x (·) = m
(i)
x (·;ϑ) only when

ϑ = ϑ∗(i). Thus,
ϑ∗(i) ∈ argmin

ϑ∈Λ:∥ϑ∥1≤γ

S(i)(ϑ),

and it is a unique minimizer of S(i)(ϑ).

Similar analysis works for MRFs with discrete variables as well i.e., the setting considered in Vuffray et al.
(2019).

D Proof of Theorem 4.2

In this appendix, we prove Theorem 4.2. We will use the theory of M-estimation. In particular, we observe that
ϑ̂
(i)
n is an M-estimator and invoke Theorem 4.1.1 and Theorem 4.1.3 of Amemiya (1985) for consistency and

normality of M-estimators respectively. We restate the Theorem below and then provide the proof.
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Theorem 4.2. Given i ∈ [p] and n independent samples x(1), . . . ,x(n) of x, let ϑ̂(i)
n be a solution of

(7). Then, as n → ∞, ϑ̂(i)
n

p→ ϑ∗(i). Further, under the assumptions that B(ϑ∗(i)) is invertible, and
that none of the true parameter is equal to the boundary values of θmax or θmin+

, we have
√
n(ϑ̂

(i)
n −

ϑ∗(i))
d→ N (0, B(ϑ∗(i))−1A(ϑ∗(i))B(ϑ∗(i))−1) where N (µ,Σ) represents multi-variate Gaussian with mean µ

and covariance Σ.

Proof of Theorem 4.2. Consistency. We will first show that the GRISE is a consistent estimator i.e., as
n→∞, ϑ̂(i)

n
p→ ϑ∗(i).

Recall (Amemiya, 1985, Theorem 4.1.1): Let y1, · · · , yn be i.i.d. samples of a random variable y . Let q(y ;ϑ) be
some function of y parameterized by ϑ ∈ Θ. Let ϑ∗ be the true underlying parameter. Define

Qn(ϑ) =
1

n

n∑
i=1

q(yi;ϑ), (19)

and

ϑ̂n ∈ argmin
ϑ∈Θ

Qn(ϑ). (20)

The M-estimator ϑ̂n is consistent for ϑ∗ i.e., ϑ̂n
p→ ϑ∗ as n→∞ if,

(a) Θ is compact,

(b) Qn(ϑ) converges uniformly in probability to a non-stochastic function Q(ϑ),

(c) Q(ϑ) is continuous, and

(d) Q(ϑ) is uniquely minimzed at ϑ∗.

Comparing (6) and (7) with (19) and (20), we only need to show that the above regularity conditions (a)-(d)
hold for Qn(ϑ) := S(i)n (ϑ) in order to prove that ϑ̂(i)

n
p−→ ϑ∗(i) as n→∞. We have the following:

(a) The parameter space Λ is bounded and closed. Therefore, we have compactness.

(b) Recall (Jennrich, 1969, Theorem 2): Let y1, · · · , yn be i.i.d. samples of a random variable y . Let g(y ;ϑ)
be a function of ϑ parameterized by ϑ ∈ Θ. Suppose (a) Θ is compact, (b) g(y , ϑ) is continuous at each
ϑ ∈ Θ with probability one, (c) g(y , ϑ) is dominated by a function G(y) i.e., |g(y , ϑ)| ≤ G(y), and (d)
E[G(y)] <∞. Then, n−1

∑
t g(yt, ϑ) converges uniformly in probability to E[g(y , ϑ)].

Using this theorem with y := x, yt := x(t), Θ := Λ, g(y , ϑ) := exp
(
− ϑTφ(i)(x)

)
, G(y) := exp(γφmax), we

conclude that S(i)n (ϑ) converges to S(i)(ϑ) uniformly in probability.

(c) exp
(
−ϑTφ(i)(x)

)
is a continuous function of ϑ ∈ Λ. Therefore, we have continuity of S(i)n (ϑ) for all ϑ ∈ Λ.

Further, fx(·;θ∗) does not functionally depend on ϑ. Therefore, we have continuity of S(i)(ϑ) for all ϑ ∈ Λ.

(d) From Theorem 4.1, ϑ∗(i) is a unique minimizer of S(i)(ϑ).

Therefore, we have asymptotic consistency for GRISE.

Normality. We will now show that the GRISE is asymptotically normal i.e.,
√
n(ϑ̂

(i)
n − ϑ∗(i))

d→
N (0, B(ϑ∗(i))−1A(ϑ∗(i))B(ϑ∗(i))−1).

Recall (Amemiya, 1985, Theorem 4.1.3): Let y1, · · · , yn be i.i.d. samples of a random variable y . Let q(y ;ϑ) be
some function of y parameterized by ϑ ∈ Θ. Let ϑ∗ be the true underlying parameter. Define

Qn(ϑ) =
1

n

n∑
i=1

q(yi;ϑ), (21)
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and

ϑ̂n ∈ argmin
ϑ

Qn(ϑ). (22)

The M-estimator ϑ̂n is normal for ϑ∗ i.e.,
√
n(ϑ̂n − ϑ∗)

d→ N (0, B−1(ϑ∗)A(ϑ∗)B−1(ϑ∗)) if

(a) ϑ̂n, the minimzer of Qn(·), is consistent for ϑ∗,

(b) ϑ∗ lies in the interior of the parameter space Θ,

(c) Qn is twice continuously differentiable in an open and convex neighbourhood of ϑ∗,

(d)
√
n∇Qn(ϑ)|ϑ=ϑ∗

d→ N (0, A(ϑ∗)), and

(e) ∇2Qn(ϑ)|ϑ=ϑ̂n

p→ B(ϑ∗) with B(ϑ) finite, non-singular, and continuous at ϑ∗,

Comparing (6) and (7) with (21) and (22), we only need to show that the above regularity conditions (a)-(e)
hold for Qn(ϑ) := S(i)n (ϑ) in order to prove that the GRISE is asymptotically normal. We have the following:

(a) We have already established that ϑ̂(i)
n is consistent for ϑ∗(i).

(b) We assume that none of the parameter is equal to the boundary values of θmin+ or θmax. Therefore, ϑ∗(i)

lies in the interior of Λ.

(c) From (6), we have

S(i)n (ϑ) =
1

n

n∑
t=1

exp
(
− ϑTφ(i)(x(t))

)
.

For any l ∈ [k + k2(p − 1)], let ϑl denote the lth component of ϑ and φ(i)
l (x(t)) denote the lth component

of φ(i)(x(t)). For any l1, l2 ∈ [k + k2(p− 1)], we have

∂2S(i)n (ϑ)

∂ϑl1∂ϑl2

=
1

n

n∑
t=1

φ
(i)
l1
(x(t))φ

(i)
l2
(x(t)) exp

(
− ϑTφ(i)(x(t))

)
.

Thus, ∂2S(i)n (ϑ)/∂ϑl1∂ϑl2 exists. Using the continuity of φ(i)(·) and exp
(
− ϑTφ(i)(·)

)
, we see that

∂2S(i)n (ϑ)/∂ϑl1∂ϑl2 is continuous in an open and convex neighborhood of ϑ∗(i).

(d) For any l ∈ [k + k2(p− 1)], define the following random variable:

xi,l := −φ(i)
l (x) exp

(
− ϑ∗(i)Tφ(i)(x)

)
.

The lth component of the gradient of the GISO evaluated at ϑ∗(i) is given by

∂S(i)n (ϑ)

∂ϑl

∣∣∣∣∣
ϑ=ϑ∗(i)

=
1

n

n∑
t=1

−φ(i)
l (x(t)) exp

(
− ϑ∗(i)Tφ(i)(x(t))

)
.

Each term in the above summation is distributed as the random variable xi,l. The random variable xi,l has
zero mean (see Lemma K.1). Using this and the multivariate central limit theorem (Van der Vaart, 2000),
we have

√
n∇S(i)n (ϑ)|ϑ=ϑ∗(i)

d−→ N (0, A(ϑ∗(i))),

where A(ϑ∗(i)) is the covariance matrix of φ(i)(x) exp
(
− ϑ∗(i)Tφ(i)(x)

)
.
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(e) We will first show that the following is true:

∇2S(i)n (ϑ)|
ϑ=ϑ̂

(i)
n

p−→ ∇2S(i)(ϑ)|ϑ=ϑ∗(i) . (23)

To begin with, using the uniform law of large numbers (Jennrich, 1969, Theorem 2) for any ϑ ∈ Λ results in

∇2S(i)n (ϑ)
p−→ ∇2S(i)(ϑ). (24)

Using the consistency of ϑ̂(i)
n and the continuous mapping theorem, we have

∇2S(i)(ϑ)|
ϑ=ϑ̂

(i)
n

p−→ ∇2S(i)(ϑ)|ϑ=ϑ∗(i) . (25)

Let l1, l2 ∈ [k+ k2(p− 1)]. From (24) and (25), for any ϵ > 0, for any δ > 0, there exists integers n1, n2 such
that

P(|
[
∇2S(i)n (ϑ̂(i)

n )
]
l1,l2
−
[
∇2S(i)(ϑ̂(i)

n )
]
l1,l2
| > ϵ/2) ≤ δ/2 if n ≥ n1

P(|
[
∇2S(i)(ϑ̂(i)

n )
]
l1,l2
−
[
∇2S(i)(ϑ∗(i))

]
l1,l2
| > ϵ/2) ≤ δ/2 if n ≥ n2.

Now for n ≥ max{n1, n2}, we have

P(|
[
∇2S(i)n (ϑ̂(i)

n )
]
l1,l2
−
[
∇2S(i)(ϑ∗(i))

]
l1,l2
| > ϵ)

≤P(|
[
∇2S(i)n (ϑ̂(i)

n )
]
l1,l2
−
[
∇2S(i)(ϑ̂(i)

n )
]
l1,l2
| > ϵ/2) + P(|

[
∇2S(i)(ϑ̂(i)

n )
]
l1,l2
−
[
∇2S(i)(ϑ∗(i))

]
l1,l2
| > ϵ/2)

≤δ/2 + δ/2 = δ.

Thus, we have (23). Using (10), we have

[
∇2S(i)(ϑ∗(i))

]
l1,l2

= E
[
φ

(i)
l1
(x)φ

(i)
l2
(x) exp

(
− ϑ∗(i)Tφ(i)(x)

)]
(b)
= E

[
φ

(i)
l1
(x)φ

(i)
l2
(x) exp

(
− ϑ∗(i)Tφ(i)(x)

)]
− E

[
φ

(i)
l1
(x)

]
E
[
φ

(i)
l2
(x) exp

(
− ϑ∗(i)Tφ(i)(x)

)]

= cov
(
φ

(i)
l1
(x),φ

(i)
l2
(x) exp

(
− ϑ∗(i)Tφ(i)(x)

))
,

where (b) follows because E[φ(i)
l (x) exp

(
− ϑ∗(i)Tφ(i)(x

)
] = 0 for any l ∈ [k + k2(p− 1)] (see Lemma K.1).

Therefore, we have

∇2S(i)n (ϑ)|
ϑ=ϑ̂

(i)
n

p−→ B(ϑ∗(i)),

where B(ϑ∗(i)) is the cross-covariance matrix of φ(i)(x) and φ(i)(x) exp
(
− ϑ∗(i)Tφ(i)(x)

)
. Finiteness and

continuity of φ(i)(x) and φ(i)(x) exp
(
− ϑ∗(i)Tφ(i)(x)

)
implies the finiteness and continuity of B(ϑ∗(i)).

Therefore, under the assumption that the cross-covariance matrix of φ(i)(x) and φ(i)(x) exp
(
− ϑ∗(i)Tφ(i)(x)

)
is invertible, and that none of the parameter is equal to the boundary values of θmax or θmin+

, we have the
asymptotic normality of GRISE i.e.,

√
n(ϑ̂(i)

n − ϑ∗(i))
d−→ N (0, B(ϑ∗(i))−1A(ϑ∗(i))B(ϑ∗(i))−1).
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E Supporting lemmas for Theorem 4.3 and 4.4

In this appendix, we will state the two key lemmas required in the proof of Theorem 4.3 and 4.4. Lemma E.1
provides error bounds on edge parameter estimation using GRISE and Lemma E.2 provides error bounds on
node parameter estimation using the three-step procedure from Section 3. The proof of Theorem 4.3 is given in
Appendix F and the proof of Theorem 4.4 is given in Appendix G. Recall the definitions of γ = θmax(k + k2d),
φmax = 2max{ϕmax, ϕ

2
max}, and c1(α) from Section 2. Also, define

c3(α) =
220π4e4k2(d+ 1)4γ4φ4

max(1 + γφmax)
4 exp(8γφmax)

κ4α8
= O

(
exp(Θ(k2d))

κ4α8

)
.

E.1 Error Bound on Edge Parameter Estimation with GRISE

The following lemma shows that, with enough samples, the parameters associated with the edge potentials can
be recovered, within small error, with high probability using the GISO for continuous variables from Section 3.
Lemma E.1. Let Condition 4.1 be satisfied. Given n independent samples x(1), . . . ,x(n) of x, for each i ∈ [p],
let ϑ̂(i)

ϵ be an ϵ-optimal solution of (7). Let ϑ̂(i)
ϵ,E = (θ̂ij , j ̸= i, j ∈ [p]) be its components corresponding to all

possible p− 1 edges associated with node i. Let α1 > 0 be the prescribed accuracy level. Then, for any δ ∈ (0, 1),

∥ϑ∗(i)
E − ϑ̂(i)

ϵ,E∥2 ≤ α1, ∀i ∈ [p]

with probability at least 1− δ as long as

n ≥ c1
(
α1

)
log

(
2pk√
δ

)
= Ω

(
exp(Θ(k2d))

κ2α4
1

log

(
pk√
δ

))
.

The number of computations required scale as

c3(α1)× log

(
2pk√
δ

)
× log (2k2p)× p2 = Ω

(
exp(Θ(k2d))

κ4α8
1

log2
(
pk√
δ

)
p2

)
.

The proof of Lemma E.1 is given in Appendix J.

E.2 Error Bound on Node Parameter Estimation

The following lemma shows that, with enough samples, the parameters associated with the node potentials can
be recovered, within small error, with high probability using the three-step procedure from Section 3.
Lemma E.2. Let Condition 4.1 be satisfied. Given n independent samples x(1), . . . ,x(n) of x, for each i ∈ [p],
let θ̂(i) be an estimate of θ∗(i) obtained using the three-step procedure from Section 3. Then, for any α2 ∈ (0, 1),

∥θ∗(i) − θ̂(i)∥∞ ≤ α2, ∀i ∈ [p]

with probability at least 1− α4
2 as long as

n ≥ max
[
c1

(
min

{
θmin+

3
,

α2

2dkϕmax

})
log

(
25/2pk

α2
2

)
, c2(α2)

]
= Ω

(
exp(Θ

(
k2d+ d log

(
dk

α2qs

))
)

κ2α4
2

× log

(
pk

α2
2

))
.

The number of computations required scale as

c3

(
min

{θmin+

3
,

α2

2dkϕmax

})
× log

(
25/2pk

α2
2

)
× log (2k2p)× p2 = Ω

(
exp(Θ(k2d))

κ4α8
2

log2
(
pk

α2
2

)
p2

)
.

The proof of Lemma E.2 is given in Appendix P.
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F Proof of Theorem 4.3

In this appendix, we prove Theorem 4.3. See Appendix E.1 for the key lemma (Lemma E.1) required in the
proof. Recall the definitions of γ = θmax(k + k2d), φmax = 2max{ϕmax, ϕ

2
max} and c1(α) from Section 2. We

restate the Theorem below and then provide the proof.
Theorem 4.3. Let Condition 4.1 be satisfied. Given n independent samples x(1), . . . ,x(n) of x, for each i ∈ [p],
let ϑ̂(i)

ϵ be an ϵ-optimal solution of (7) and ϑ̂(i)
ϵ,E be the associated edge parameters. Let

Ê =

{
(i, j) : i < j ∈ [p],

(∑
r,s∈[k]

1{|θ̂(ij)r,s | > θmin+
/3}
)
>0

}
.

Let Ĝ = ([p], Ê). Then for any δ ∈ (0, 1), G(θ∗) = Ĝ with probability at least 1− δ as long as

n ≥ c1
(θmin+

3

)
log

(
2pk√
δ

)
=Ω

(
exp(Θ(k2d))

κ2
log

(
pk√
δ

))
.

The number of computations required scale as Ō(p2).

Proof of Theorem 4.3. The graph Ĝ = ([p], Ê) is such that:

Ê =

{
(i, j) : i < j ∈ [p],

( ∑
r,s∈[k]

1{|θ̂(ij)r,s | > θmin+/3}
)
> 0

}
.

The graph G(θ∗) = ([p], E(θ∗)) is such that E(θ∗) = {(i, j) : i < j ∈ [p], ∥θ∗(ij)∥0 > 0}.

Let the number of samples satisfy

n ≥ c1
(θmin+

3

)
log

(
2pk√
δ

)
.

Recall that ϑ̂(i)
ϵ ∈ Λ is an ϵ-optimal solution of GRISE and ϑ̂(i)

ϵ,E is the component of ϑ̂(i)
ϵ associated with the

edge potentials. Using Lemma E.1 with α1 = θmin+
/38 and any δ ∈ (0, 1), we have with probability at least

1− δ,

∥ϑ∗(i)
E − ϑ̂(i)

ϵ,E∥2 ≤
θmin+

3
, ∀i ∈ [p]

=⇒ ∥ϑ∗(i)
E − ϑ̂(i)

ϵ,E∥∞
(a)

≤
θmin+

3
, ∀i ∈ [p] (26)

where (a) follows because ∥v∥∞ ≤ ∥v∥2 for any vector v.

From Section 2, we have ∥ϑ∗(i)∥min+
≥ θmin+

. This implies that ∥ϑ∗(i)
E ∥min+

≥ θmin+
. Combining this with (26),

we have with probability at least 1− δ,

θ∗(ij)r,s = 0 ⇐⇒ |θ̂(ij)r,s | ≤ θmin+
/3, ∀i ∈ [p],∀j ∈ [p] \ {i},∀r, s ∈ [k].

Therefore, with probability at least 1− δ, E(θ∗) = Ê.

Further, from Lemma E.1, the number of computations required for generating ϑ̂(i)
ϵ,E scale as Ō(p2). Also,

the number of computations required for generating Ê scale as O(p2). Therefore, the overall computational
complexity is Ō(p2).

8The threshold θmin+/3 could be replaced by any positive constant smaller than θmin+/2. Any threshold smaller than
θmin+/2 sufficies as it ensures separation between the non-zero parameters and the zero parameters.
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G Proof of Theorem 4.4

In this appendix, we prove Theorem 4.4. See Appendix E.1 and Appendix E.2 for two key lemmas (Lemma E.1
and Lemma E.2) required in the proof. Recall the definitions of γ = θmax(k + k2d), φmax = 2max{ϕmax, ϕ

2
max}

and c1(α) from Section 2. We restate the Theorem below and then provide the proof.
Theorem 4.4. Let Condition 4.1 be satisfied. Given n independent samples x(1), . . . ,x(n) of x, for each i ∈ [p],
let ϑ̂(i)

ϵ be an ϵ-optimal solution of (7) and ϑ̂(i)
ϵ,E ∈ Rk2(p−1) be the associated edge parameters. Let θ̂(i) ∈

Rk, i ∈ [p] be estimates of node parameters obtained through the three-step procedure involving robust Lasso. Let
θ̂ = (θ̂(i); ϑ̂

(i)
ϵ,E : i ∈ [p]) ∈ Rkp+

k2p(p−1)
2 be their appropriate concatenation. Then, for any α ∈ (0, 1)

∥θ̂ − θ∗∥∞ ≤ α,

with probability at least 1− α4 as long as

n ≥max

[
c1

(
min

{
θmin+

3
,α,

α

2
5
4 dkϕmax

})
log

(
8pk

α2

)
,c2

( α
2

1
4

)]
,

= Ω

(exp

(
Θ
(
k2d+ d log

(
dk
αqs

)))
κ2α4

× log

(
pk

α2

))
.

The number of computations required scale as Ō(p2).

Proof of Theorem 4.4. Let the number of samples satisfy

n ≥ max
[
c1

(
min

{
θmin+

3
, α,

α

2
5
4 dkϕmax

})
log

(
8pk

α2

)
, c2(2

− 1
4α)
]
.

For each i ∈ [p], θ̂(i) is the estimate of node parameters obtained through robust Lasso. Using Lemma E.2 with
α2 = 2−

1
4α, the following holds with probability at least 1− α4/2,

∥θ∗(i) − θ̂(i)∥∞ ≤ 2−
1
4α, ∀i ∈ [p]

=⇒ ∥θ∗(i) − θ̂(i)∥∞ ≤ α, ∀i ∈ [p] (27)

For each i ∈ [p], ϑ̂(i)
ϵ is an ϵ-optimal solution of (7) and ϑ̂(i)

ϵ,E = (θ̂ij , j ̸= i, j ∈ [p]) is the estimate of edge
parameters associated with node i. Using Lemma E.1 with α1 = α and δ = α4/2, the following holds with
probability at least 1− α4/2,

∥ϑ∗(i)
E − ϑ̂(i)

ϵ,E∥2 ≤ α, ∀i ∈ [p]

=⇒ ∥ϑ∗(i)
E − ϑ̂(i)

ϵ,E∥∞
(a)

≤ α, ∀i ∈ [p] (28)

where (a) follows because ∥v∥∞ ≤ ∥v∥2 for any vector v.

Now θ̂ is the estimate of θ∗ obtained after appropriately concatenating θ̂(i) and ϑ̂(i)
ϵ,E ∀i ∈ [p]. Combining (27)

and (28), we have

∥θ̂ − θ∗∥∞ ≤ α,

with probability at least 1 − α4. Further, combining the computations from Lemma E.1 and Lemma E.2, the
total number of computations scale as Ō(p2).

H GISO: Special instance of the penalized surrogate likelihood

In this appendix, we show that the GISO is a special case of the penalized surrogate likelihood introduced by
Jeon and Lin (2006). In other words, we provide the proof of Proposition 4.1.
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Consider nonparametric density estimation where densities are of the form fx(x) = eη(x)/
∫
eη(x)dx from i.i.d

samples x(1), · · · ,x(n). To circumvent the computational limitation of the exact likelihood-based functionals,
Jeon and Lin (2006) proposed to minimize penalized surrogate likelihood. The surrogate likelihood is defined as
follows:

Ln(η) =
1

n

n∑
t=1

exp
(
− η(x(t))

)
+

∫
x

ρ(x)× η(x)dx,

where ρ(·) is some known probability density function. As Proposition 4.1 establishes, GISO is a special case of
the surrogate likelihood. We restate the Proposition below and then provide the proof.
Proposition 4.1. For any i ∈ [p], the GISO is equivalent to the surrogate likelihood associated with the conditional
density of xi when ρ(·) is the uniform density on Xi.

Proof of Proposition 4.1. Recall that the conditional density of xi given x−i = x−i is as follows:

fxi(xi|x−i = x−i;ϑ
∗(i)) ∝ exp

(
ϑ∗(i)Tφ(i)(xi;x−i)

)
.

For a given x−i = x−i, estimation of the conditional density of xi is equivalent to estimating ϑ∗(i).

For any ϑ ∈ Rk+k2(p−1), let us denote the surrogate likelihood associated with the conditional density of xi by
L(i)
n (ϑ). We have

L(i)
n (ϑ) =

1

n

n∑
t=1

exp
(
− ϑTφ(i)(x(t))

)
+

∫
xi∈Xi

ρ(xi)×
(
ϑTφ(i)(xi;x−i)

)
dxi, (29)

Let ρ(·) be the uniform density over Xi. Recall that the basis functions, φ(i)(xi;x−i), are locally centered and
their integral with respect to UXi is 0. Therefore, (29) can be written as

L(i)
n (ϑ) =

1

n

n∑
t=1

exp
(
− ϑTφ(i)(x(t))

)
= S(i)n (ϑ).

As we see in the proof above, the equivalence between the GISO and the surrogate likelihood occurs only the
integral in (29) is zero. As stated in Jeon and Lin (2006), ρ(·) can be chosen to be equal to any known density
and the choice typically depends on mathematical simplicity. Therefore, this provides a motivation to locally
center the basis functions to simplify the exposition.

This equivalence provides an association of the GISO to an estimator well-known in the literature and opens up
avenues for future explorations.

I Supporting propositions for Lemma E.1

In this appendix, we will state the two key propositions required in the proof of Lemma E.1. Proposition I.1
bounds the gradient of the GISO and Proposition I.2 shows that the GISO obeys a restricted strong convexity
like property. The proof of Lemma E.1 is given in Appendix J. Recall the definitions of γ = θmax(k + k2d) and
φmax = 2max{ϕmax, ϕ

2
max} from Section 2. For any i ∈ [p], let ∇S(i)n (ϑ∗(i)) denote the gradient of the GISO for

node i evaluated at ϑ∗(i).

I.1 Bounds on the gradient of the GISO

The following proposition shows that, with enough samples, the ℓ∞-norm of the gradient of the GISO is bounded
with high probability.
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Proposition I.1. Consider any i ∈ [p]. For any δ1 ∈ (0, 1), any ϵ1 > 0, the components of the gradient of the
GISO are bounded from above as

∥∇S(i)n (ϑ∗(i))∥∞ ≤ ϵ1,

with probability at least 1− δ1 as long as

n >
2φ2

max exp(2γφmax)

ϵ21
log

(
2p2k2

δ1

)
= Ω

(
exp(Θ(k2d))

ϵ21
log

(
pk√
δ1

))
.

The proof of proposition I.1 is given in Appendix K.

I.2 Restricted Strong Convexity for GISO

Consider any ϑ ∈ Λ. Let ∆ = ϑ− ϑ∗(i). Define the residual of the first-order Taylor expansion as

δS(i)n (∆,ϑ∗(i)) = S(i)n (ϑ∗(i) +∆)− S(i)n (ϑ∗(i))− ⟨∇S(i)n (ϑ∗(i)),∆⟩. (30)

Recall that ϑ∗(i)
E denote the component of ϑ∗(i) associated with the edge potentials. Let ϑE denote the component

of ϑ associated with the edge potentials and let ∆E denote the component of ∆ associated with the edge potentials
i.e., ∆E = ϑE − ϑ∗(i)

E .

The following proposition shows that, with enough samples, the GISO obeys a property analogous to the restricted
strong convexity with high probability.
Proposition I.2. Consider any i ∈ [p]. For any δ2 ∈ (0, 1), any ϵ2 > 0, the residual of the first-order Taylor
expansion of the GISO satisfies

δS(i)n (∆,ϑ∗(i)) ≥ exp(−γφmax)

κ
2πe(d+1)∥∆E∥22 − ϵ2∥∆∥21

2 + φmax∥∆∥1
,

with probability at least 1− δ2 as long as

n >
2φ4

max

ϵ22
log
(2p3k4

δ2

)
= Ω

(
1

ϵ22
log

(
p3k4

δ2

))
.

The proof of proposition I.2 is given in Appendix L.

J Proof of Lemma E.1

In this appendix, we prove Lemma E.1. See Appendix I.1 and Appendix I.2 for two key propositions
(Proposition I.1 and Proposition I.2) required in the proof. Recall the definitions of γ = θmax(k + k2d),
φmax = 2max{ϕmax, ϕ

2
max} and c1(α) from Section 2 and the definition of c3(α) from Appendix E. Recall

that ϑ̂(i)
ϵ is an ϵ-optimal solution of the GISO.

For any i ∈ [p], let ∇S(i)n (ϑ∗(i)) denote the gradient of the GISO for node i evaluated at ϑ∗(i). Define ∆ =

ϑ̂
(i)
ϵ − ϑ∗(i) and let ∆E denote the component of ∆ associated with the edge potentials i.e., ∆E = ϑ̂

(i)
ϵ,E − ϑ

∗(i)
E .

Recall from (30) that δS(i)n (∆,ϑ∗(i)) denotes the residual of the first-order Taylor expansion. We restate the
Lemma below and then provide the proof.
Lemma E.1. Let Condition 4.1 be satisfied. Given n independent samples x(1), . . . ,x(n) of x, for each i ∈ [p],
let ϑ̂(i)

ϵ be an ϵ-optimal solution of (7). Let ϑ̂(i)
ϵ,E = (θ̂ij , j ̸= i, j ∈ [p]) be its components corresponding to all

possible p− 1 edges associated with node i. Let α1 > 0 be the prescribed accuracy level. Then, for any δ ∈ (0, 1),

∥ϑ∗(i)
E − ϑ̂(i)

ϵ,E∥2 ≤ α1, ∀i ∈ [p]
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with probability at least 1− δ as long as

n ≥ c1
(
α1

)
log

(
2pk√
δ

)
= Ω

(
exp(Θ(k2d))

κ2α4
1

log

(
pk√
δ

))
.

The number of computations required scale as

c3(α1)× log

(
2pk√
δ

)
× log (2k2p)× p2 = Ω

(
exp(Θ(k2d))

κ4α8
1

log2
(
pk√
δ

)
p2

)
.

Proof of Lemma E.1. Consider any i ∈ [p]. Let the number of samples satisfy

n ≥ c1(α1)× log

(
2pk√
δ

)
.

We have from (8)

ϵ ≥ S(i)n (ϑ̂(i)
ϵ )− min

ϑ∈Λ:∥ϑ∥≤γ
S(i)n (ϑ)

(a)

≥ S(i)n (ϑ̂(i)
ϵ )− S(i)n (ϑ∗(i))

(b)
= ⟨∇S(i)n (ϑ∗(i)),∆⟩+ δS(i)n (∆,ϑ∗(i))

≥ −∥∇S(i)n (ϑ∗(i))∥∞∥∆∥1 + δS(i)n (∆,ϑ∗(i)),

where (a) follows because ϑ∗(i) ∈ Λ and ∥ϑ∗(i)∥ ≤ γ and (b) follows from (30). Using the union bound on
Proposition I.1 and Proposition I.2 with δ1 = δ

2 and δ2 = δ
2 respectively, we have with probability at least 1− δ,

ϵ ≥ −ϵ1∥∆∥1 + exp(−γφmax)

κ
2πe(d+1)∥∆E∥22 − ϵ2∥∆∥21

2 + φmax∥∆∥1
.

This can be rearranged as

∥∆E∥22 ≤
2πe(d+ 1)

κ

[
exp(γφmax)×

(
ϵ+ ϵ1∥∆∥1

)
×
(
2 + φmax∥∆∥1

)
+ ϵ2∥∆∥21

]
.

Using ∥ϑ∗(i)∥1 ≤ γ, ∥ϑ̂(i)
ϵ ∥1 ≤ γ and the triangle inequality, we see that ∥∆∥1 is bounded by 2γ. By choosing

ϵ ≤ κα2
1 exp(−γφmax)

16πe(d+ 1)(1 + φmaxγ)
, ϵ1 ≤

κα2
1 exp(−γφmax)

32πe(d+ 1)γ(1 + φmaxγ)
, ϵ2 ≤

κα2
1

16πe(d+ 1)γ2
,

and after some algebra, we obtain that

∥∆E∥2 ≤ α1.

Using Proposition M.1, the number of computations required to compute ϑ̂(i)
ϵ scale as

k2γ2φ2
max exp(2γφmax)np

ϵ2
× log (2k2p).

Substituting for ϵ, n and observing that we need to compute the ϵ-optimal estimate for every node, the total
number of computations scale as

c3(α1)× log

(
2pk√
δ

)
× log (2k2p)× p2.
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K Proof of Proposition I.1

In this appendix, we prove Proposition I.1. However, before that, we will provide a supporting Lemma (Lemma
K.1) wherein we show that the expected value of a random variable of interest is zero. Recall the definitions of
γ = θmax(k + k2d) and φmax = 2max{ϕmax, ϕ

2
max} from Section 2. Also, recall the definition of GISO from (6).

For any l ∈ [k+k2(p−1)], let ϑ∗(i)
l denote the lth component of ϑ∗(i) and φ(i)

l (x
(t)
i ;x

(t)
−i) denote the lth component

of φ(i)(x
(t)
i ;x

(t)
−i). Define the following random variable:

xi,l := −φ(i)
l (xi; x−i) exp

(
− ϑ∗(i)Tφ(i)(xi; x−i)

)
. (31)

K.1 Supporting Lemma for Proposition I.1

The following Lemma shows that the expectation of the random variable xi,l defined above is zero.
Lemma K.1. For any i ∈ [p] and l ∈ [k + k2(p− 1)], we have

E[xi,l] = 0,

where the expectation is with respect to fx(x;θ∗).

Proof of Lemma K.1. Fix i ∈ [p] and l ∈ [k + k2(p− 1)]. Using (31) and Bayes theorem, we have

E[xi,l] = −
∫
x∈X

φ
(i)
l (xi;x−i) exp

(
− ϑ∗(i)Tφ(i)(xi;x−i)

)
fxi(xi|x−i = x−i;ϑ

∗(i))fx−i(x−i;θ
∗)dx.

Using (14) results in

E[xi,l] =
−
∫
x∈X φ

(i)
l (xi;x−i)fx−i(x−i;θ

∗)dx∫
xi∈Xi

exp
(
ϑ∗(i)Tφ(i)(xi;x−i)

)
dxi

.

Recall the fact that the basis functions are locally centered with respect to xi i.e.,
∫
xi∈Xi

φ
(i)
l (x)dxi = 0.

Therefore, E[xi,l] = 0.

K.2 Proof of Proposition I.1

We restate the Proposition below and then provide the proof.
Proposition I.1. Consider any i ∈ [p]. For any δ1 ∈ (0, 1), any ϵ1 > 0, the components of the gradient of the
GISO are bounded from above as

∥∇S(i)n (ϑ∗(i))∥∞ ≤ ϵ1,

with probability at least 1− δ1 as long as

n >
2φ2

max exp(2γφmax)

ϵ21
log

(
2p2k2

δ1

)
= Ω

(
exp(Θ(k2d))

ϵ21
log

(
pk√
δ1

))
.

Proof of Proposition I.1. Fix i ∈ [p] and l ∈ [k + k2(p − 1)]. We start by simplifying the gradient of the GISO
evaluated at ϑ∗(i). The lth component of the gradient of the GISO evaluated at ϑ∗(i) is given by

∂S(i)n (ϑ∗(i))

∂ϑ
∗(i)
l

=
1

n

n∑
t=1

−φ(i)
l (x

(t)
i ;x

(t)
−i) exp

(
− ϑ∗(i)Tφ(i)(x

(t)
i ;x

(t)
−i)
)
. (32)

Each term in the above summation is distributed as the random variable xi,l. The random variable xi,l has zero
mean (Lemma K.1) and is bounded as follows:∣∣∣xi,l∣∣∣ = ∣∣∣φ(i)

l (xi; x−i)
∣∣∣× exp

(
− ϑ∗(i)Tφ(i)(xi; x−i)

) (a)

≤ φmax exp(γφmax),
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where (a) follows from (15) and (16). Using the Hoeffding’s inequality, we have

P
(∣∣∣∣∂S(i)n (ϑ∗(i))

∂ϑ
∗(i)
l

∣∣∣∣ > ϵ1

)
< 2 exp

(
− nϵ21

2φ2
max exp(2γφmax)

)
. (33)

The proof follows by using (33), the union bound over all i ∈ [p] and l ∈ [k + k2(p − 1)], and the fact that
k + k2(p− 1) ≤ k2p.

L Proof of Proposition I.2

In this appendix, we prove Proposition I.2. We start by introducing the notion of correlation between the locally
centered basis functions and provide a supporting Lemma (Lemma L.1) wherein we will bound the deviation
between the true correlation and the empirical correlation. Next, we provide the proof of Proposition I.2. Recall
the definitions of γ = θmax(k + k2d) and φmax = 2max{ϕmax, ϕ

2
max} from Section 2.

For any l ∈ [k + k2(p − 1)], let φ(i)
l (xi; x−i) denotes the lth component of φ(i)(xi; x−i). For any ϑ ∈ Λ, let

∆ = ϑ − ϑ∗(i). Let ∆E denote the component of ∆ associated with the edge potentials. Recall from (30) that
δS(i)n (∆,ϑ∗(i)) denotes the residual of the first-order Taylor expansion.

L.1 Correlation between locally centered basis functions

For any l1, l2 ∈ [k + k2(p− 1)] let Hl1l2 denote the correlation between φ(i)
l1
(x) and φ(i)

l2
(x) defined as

Hl1l2 = E
[
φ

(i)
l1
(x)φ

(i)
l2
(x)
]
, (34)

and let H = [Hl1l2 ] ∈ R[k+k2(p−1)]×[k+k2(p−1)] be the corresponding correlation matrix. Similarly, we define Ĥ

based on the empirical estimates of the correlation i.e., Ĥl1l2 = 1
n

∑n
t=1φ

(i)
l1
(x(t))φ

(i)
l2
(x(t)).

The following lemma bounds the deviation between the true correlation and the empirical correlation.
Lemma L.1. Consider any i ∈ [p] and l1, l2 ∈ [k + k2(p− 1)]. Then, we have for any ϵ2 > 0,

|Ĥl1l2 −Hl1l2 | < ϵ2,

with probability at least 1− 2p3k4 exp
(
− nϵ22

2φ4
max

)
.

Proof of Lemma L.1. Fix i ∈ [p] and l1, l2 ∈ [k+k2(p−1)]. The random variable defined as Yl1l2 := φ
(i)
l1
(x)φ

(i)
l2
(x)

satisfies |Yl1l2 | ≤ φ2
max. Using the Hoeffding inequality we get

P
(
|Ĥl1l2 −Hl1l2 | > ϵ2

)
< 2 exp

(
− nϵ22
2φ4

max

)
.

The proof follows by using the union bound over all i ∈ [p] and l1, l2 ∈ [k + k2(p − 1)], and the fact that
k + k2(p− 1) ≤ k2p.

L.2 Supporting Lemma for Proposition I.2

The following Lemma provides a lower bound on the residual defined in (30) i.e., δS(i)n (∆,ϑ∗(i)).
Lemma L.2. Consider any i ∈ [p]. The residual of the first-order Taylor expansion of the GISO satisfies

δS(i)n (∆,ϑ∗(i)) ≥ exp(−γφmax)
∆T Ĥ∆

2 + φmax∥∆∥1
.

Proof of Lemma L.2. Fix any i ∈ [p]. Substituting (6) and (32) in (30), we have

δS(i)n (∆,ϑ∗(i)) =
1

n

n∑
t=1

exp
(
− ϑ∗(i)Tφ(i)(x

(t)
i ;x

(t)
−i)
)
×
(
exp

(
−∆Tφ(i)(x

(t)
i ;x

(t)
−i)
)
− 1 + ∆Tφ(i)(x

(t)
i ;x

(t)
−i)
)
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(a)

≥ exp(−γφmax)
1

n

n∑
t=1

(
∆Tφ(i)(x

(t)
i ;x

(t)
−i)
)2

2 + |∆Tφ(i)(x
(t)
i ;x

(t)
−i)|

(b)

≥ exp(−γφmax)
∆T Ĥ∆

2 + φmax∥∆∥1
,

where (a) follows by using (16) and e−z − 1 + z ≥ z2

2+|z| ∀z ∈ R (z = ∆Tφ(i)(x
(t)
i ;x

(t)
−i) is used here), and (b)

follows by using (15), the defintion of Ĥ, and observing that ∀ t ∈ [n], |∆Tφ(i)(x
(t)
i ;x

(t)
−i)| ≤ φmax∥∆∥1.

L.3 Proof of Proposition I.2

We restate the Proposition below and then provide the proof.
Proposition I.2. Consider any i ∈ [p]. For any δ2 ∈ (0, 1), any ϵ2 > 0, the residual of the first-order Taylor
expansion of the GISO satisfies

δS(i)n (∆,ϑ∗(i)) ≥ exp(−γφmax)

κ
2πe(d+1)∥∆E∥22 − ϵ2∥∆∥21

2 + φmax∥∆∥1
,

with probability at least 1− δ2 as long as

n >
2φ4

max

ϵ22
log
(2p3k4

δ2

)
= Ω

(
1

ϵ22
log

(
p3k4

δ2

))
.

Proof of Proposition I.2. Consider any i ∈ [p]. Using Lemma L.2 we have

δS(i)n (∆,ϑ∗(i)) ≥ exp(−γφmax)
∆T Ĥ∆

2 + φmax∥∆∥1

= exp(−γφmax)
∆TH∆+∆T (Ĥ−H)∆

2 + φmax∥∆∥1
.

Let the number of samples satisfy

n >
2φ4

max

ϵ22
log
(2p3k4

δ2

)
.

Using Lemma L.1 and the triangle inequality, we have the following with probability at least 1− δ2.

δS(i)n (∆,ϑ∗(i)) ≥ exp(−γφmax)
∆TH∆− ϵ2∥∆∥21
2 + φmax∥∆∥1

, (35)

Now we will lower bound ∆TH∆. First, let us unroll the vector ∆ such that ∆(i) ∈ Rk is associated with ϕ(i)(xi)

and ∀j ∈ [p] \ {i}, ∆(ij) ∈ Rk2 is associated with ψ(ij)(xi, xj). Recall that ∆E is the component of ∆ associated
with the edge potentials i.e.,

∆E = [∆(ij) ∈ Rk2

: j ∈ [p], j ̸= i]. (36)

Using (34) we have

∆TH∆ = E
[(

∆Tφ(i)(x)
)2] (a)

≥ Var
[
∆Tφ(i)(x)

]
, (37)

where (a) follows from the fact that for any random variable Z,E[Z2] ≥ Var[Z].

Now consider the graph G−i(θ
∗) obtained from the graph G(θ∗) by removing the node i and all the edges

associated with it. We will next choose an independent set of the graph G−i(θ
∗) with a special property. Let

r1 ∈ [p] \ {i} be such that ∥∆(ir1)∥2 ≥ ∥∆(ij)∥2 ∀j ∈ [p] \ {i, r1}. Let r2 ∈ [p] \ {i, r1,N (r1)} be such that
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∥∆(ir2)∥2 ≥ ∥∆(ij)∥2 ∀j ∈ [p] \ {i, r1,N (r1), r2}, and so on. Denote by m ≥ p/(d+ 1) the total number of nodes
selected in this manner, and let R = {r1, · · · , rm}. It is easy to see that R is independent set of the graph
G−i(θ

∗) with the following property:∑
j∈R
∥∆(ij)∥22 ≥

1

d+ 1

∑
j∈[p],j ̸=i

∥∆(ij)∥22. (38)

Let Rc = [p] \ {i,R}. Using the law of total variance and conditioning on Rc, we can rewrite (37) as

∆TH∆ ≥ E
[
Var

[
∆Tφ(i)(x)

∣∣xi, xRc

]]
(a)
= E

[
Var

[
∆(i)Tϕ(i)(xi) +

∑
j∈[p],j ̸=i

∆(ij)Tψ(ij)(xi, xj)
∣∣xi, xRc

]]
(b)
= E

[
Var

[∑
j∈R

∆(ij)Tψ(ij)(xi, xj)
∣∣xi, xRc

]]
(c)
= E

[∑
j∈R

Var
[
∆(ij)Tψ(ij)(xi, xj)

∣∣xi, xRc

]]
(d)
=
∑
j∈R

E
[
Var

[
∆(ij)Tψ(ij)(xi, xj)

∣∣xi, xRc

]]
(e)
=
∑
j∈R

E
[
Var

[
∆(ij)Tψ(ij)(xi, xj)

∣∣xN (j)

]]
(f)
=
∑
j∈R

E
[
Var

[
∆(ij)Tψ(ij)(xi, xj)

∣∣x−j

]]
(g)

≥ 1

2πe

∑
j∈R

E
[
exp

{
2h
[
∆(ij)Tψ(ij)(xi, xj)

∣∣x−j

]}]
(h)

≥ κ

2πe

∑
j∈R
∥∆(ij)∥22

(i)

≥ κ

2πe(d+ 1)

∑
j∈[p],j ̸=i

∥∆(ij)∥22

(j)
=

κ

2πe(d+ 1)
∥∆E∥22,

where (a) follows from the definition of φ(i)(x) from Section 2, (b) follows because we have conditioned on xi and
xRc (note (xj)j∈Rc are constant given xRc), (c) follows because (xj)j∈R are conditionally independent given xRc

(note that R is an independent set in G−i(θ
∗), i.e. there is no edge connecting two vertices in R), (d) follows

from linearity of expectation, (e) follows because xN (j) ⊆ xRc ∪ xi ∀j ∈ R, (f) follows from the global Markov
property, (g) follows from monotonicity of expectation and Shannon’s entropy inequality (h(·) ≤ log

√
2πeVar(·)),

(h) follows from (12), (i) follows from (38) and (j) follows from (36).

Plugging this back in (35) we have

δS(i)n (∆,ϑ∗(i)) ≥ exp(−γφmax)

κ
2πe(d+1)∥∆E∥22 − ϵ2∥∆∥21

2 + φmax∥∆∥1
.

M The Generalized Interaction Screening algorithm

In this appendix, we describe the Generalized Interaction Screening algorithm (Algorithm ??) for the setup
in Section 2 and also provide its computational complexity (Proposition M.1). Recall the definitions of γ =
θmax(k + k2d) and φmax = 2max{ϕmax, ϕ

2
max} from Section 2.
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M.1 The Generalized Interaction Screening algorithm

Vuffray et al. (2019) showed that an ϵ-optimal solution of GRISE could be obtained by first finding an ϵ-optimal
solution of the unconstrained GRISE using a variation of the Entropic Descent Algorithm and then projecting
the solution onto Λ. See Lemma 4 of Vuffray et al. (2019) for more details.

For ϵ > 0, ϑ̂(i)
ϵ,unc is an ϵ-optimal solution of the unconstrained GRISE for i ∈ [p] if

S(i)n (ϑ̂(i)
ϵ,unc) ≤ min

ϑ:∥ϑ∥1≤γ
S(i)n (ϑ) + ϵ. (39)

The iterative Algorithm 1 outputs an ϵ-optimal solution of GRISE without constraints in (39). This algorithm
is an application of the Entropic Descent Algorithm introduced in Beck and Teboulle (2003) to a reformulation
of (7) as a minimization over the probability simplex.

Algorithm 1 Entropic Descent for unconstrained GRISE
1: Input: k, p, γ, φmax,S(i)n (·), T
2: Output: ϑ̂(i)

ϵ,unc
3: Initialization:
4: w

(1)
l,+ ← e/(2k2(p− 1) + 2k + 1), ∀l ∈ [k2(p− 1) + k]

5: w
(1)
l,− ← e/(2k2(p− 1) + 2k + 1), ∀l ∈ [k2(p− 1) + k]

6: y(1) ← e/(2k2(p− 1) + 2k + 1)
7: η(1) ←

√
log (2k2(p− 1) + 2k + 1)/2γφmax exp(γφmax)

8: for t = 1, · · · , T do
9: w

(t)
+ = (w

(t)
l,+ : l ∈ [k2(p− 1) + k])

10: w
(t)
− = (w

(t)
l,− : l ∈ [k2(p− 1) + k])

11: vl = γ
∂S(i)n (γ(w

(t)
+ −w

(t)
− ))

∂ϑl
, ∀l ∈ [k2(p− 1) + k]

12: xl,+ = w
(t)
l,+ exp(−ηtvl), ∀l ∈ [k2(p− 1) + k]

13: xl,− = w
(t)
l,− exp(ηtvl), ∀l ∈ [k2(p− 1) + k]

14: z = y(t) +
∑

l∈[k2(p−1)+k]

(xl,+ + xl,−)

15: w
(t+1)
l,+ ← xl,+/z, ∀l ∈ [k2(p− 1) + k]

16: w
(t+1)
l,− ← xl,−/z, ∀l ∈ [k2(p− 1) + k]

17: y(t+1) ← y(t)/z
18: η(t+1) ← ηt

√
t/t+ 1

19: s = argmins=1,...,T S
(i)
n (γ(w

(s)
+ −w

(s)
− ))

20: ϑ̂(i)
ϵ,unc ← γ(w

(s)
+ −w

(s)
− )

M.2 Computational Complexity of Algorithm 1

The following proposition provides guarantees on the computational complexity of unconstrained GRISE.
Proposition M.1. Let ϵ > 0 be the optimality gap. Let the number of iterations satisfy

T ≥ γ2φ2
max exp(2γφmax)

ϵ2
× log (2k2(p− 1) + 2k + 1) = Ω

(
exp(Θ(k2d))

ϵ2
log(k2p)

)
.

Then, Algorithm 1 is guaranteed to produce an ϵ-optimal solution of GRISE without constraints in (39) with
number of computations of the order

k2γ2φ2
max exp(2γφmax)np

ϵ2
× log (2k2(p− 1) + 2k + 1) = Ω

(
exp(Θ(k2d))

ϵ2
np log(k2p)

)
.
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Proof of Proposition M.1. We first show that the minimization of GRISE when Λ = Rk2(p−1)+k (the
unconstrained case) is equivalent to the following lifted minimization,

min
ϑ,w+,w−,y

S(i)n (ϑ) (40)

s.t. ϑ = γ(w+ −w−) (41)

y +
∑

l∈[k2(p−1)+k]

(wl,+ + wl,−) = 1 (42)

y ≥ 0, wl,+ ≥ 0, wl,− ≥ 0,∀l ∈ [k2(p− 1) + k], (43)

where w+ = (wl,+ : l ∈ [k2(p− 1) + k]) and w− = (wl,− : l ∈ [k2(p− 1) + k]).

We start by showing that for all ϑ ∈ Rk2(p−1)+k such that ∥ϑ∥1 ≤ γ, there exists w+,w−, y satisfying constraints
(41), (42), (43). This is easily done by choosing ∀l ∈ [k2(p−1)+k], wl,+ = max(ϑl/γ, 0) , wl,− = max(−ϑl/γ, 0)
and y = 1− ∥ϑ∥1/γ.

Next, we trivially see that for all ϑ,w+,w−, y satisfying constraints (41), (42), (43), it implies that ϑ also satisfies
∥ϑ∥1 ≤ γ. Therefore, any ϑ that is an ϵ-minimizer of (40) is also an ϵ-minimizer of (7) without constraints. The
remainder of the proof is a straightforward application of the analysis of the Entropic Descent Algorithm in Beck
and Teboulle (2003) to the above minimization where ϑ has been replaced by w+,w−, y using (41).

The computational complexity of the projection step is usually insignificant compared to the computational
complexity of Algorithm 1 provided in Proposition M.1.

N Robust LASSO

In this appendix, we present a robust variation of the sparse linear regression. More specifically, we show that
even in the presence of bounded additive noise, the Lasso estimator is ‘prediction consistent’ under almost no
assumptions at all.

N.1 Setup

Suppose that v1, · · · , vp̃ (where p̃ ≥ 1) are (possibly dependent) random variables, and suppose c̃1 is a constant
such that |vr| ≤ c̃1 almost surely for each r ∈ [p̃]. Let

y =

p̃∑
r=1

β∗
r vr + η̃ + ϵ̃,

where η̃ is bounded noise with |η̃| ≤ η̃0, ϵ̃ is sub-Gaussian noise with mean 0 and variance proxy σ̃2, and ϵ̃ is
independent of the vr’s and η̃. Define β∗ := (β∗

1 , · · · , β∗
p̃). We also have the ‘sparsity’ condition that ∥β∗∥1 ≤ c̃2.

Here β∗
1 , · · · , β∗

p̃ , c̃2, and σ̃ are unknown constants.

N.2 Data

Let v denote the random vector (v1, · · · , vp̃). Let v1, · · · ,vn be n i.i.d copies of v and let y := (y1, · · · , yn) denote
the corresponding true values of y . Let V be a n× p̃ matrix such that the jth row is vj .

Suppose that our task is to predict y given the value of v. If the parameter vector β∗ was known, then the
predictor of y , of interest, based on v would be ŷ :=

∑p̃
r=1 β

∗
r vr. However, β∗ is unknown, and we need to

estimate it from the data (V, y). Let β̃ be the output of Algorithm 2. Let ŷ := (ŷ1, · · · , ŷn) where

ŷj = β
∗Tvj . (44)

Let ỹ := (ỹ1, · · · , ỹn) where

ỹj = β̃
Tvj . (45)

The step 3 of Algorithm 2 below can be solved using Coordinate Descent.
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Algorithm 2 Robust LASSO
1: Input: V,y, c̃2
2: Output: β̃
3: β̃ ← argminβ:∥β∥1≤c̃2 [y −V · β]T [y −V · β]

N.3 Prediction error

Definition N.1. The ‘mean square prediction error’ of any estimator β̃ := (β̃1, · · · , β̃p̃) is defined as the expected
squared error in estimating ŷ using β̃, that is,

MSPE(β̃) := Ev(ŷ − ỹ)2,

where ỹ :=
∑p̃

r=1 β̃rvr.
Definition N.2. The ‘estimated mean square prediction error’ of any estimator β̃ := (β̃1, · · · , β̃p̃) is defined

M̂SPE(β̃) := 1

n

∑
j∈[n]

(ŷj − ỹj)2.

The following Lemma shows that the Lasso estimator of Algorithm 2 is ‘prediction consistent’ even in presence
of bounded noise if c̃2 is correctly chosen and n≫ p̃.
Lemma N.1. Let β̃ be the ouput of Algorithm 2. Then,

E[M̂SPE(β̃)] ≤ 4η̃20 + 4c̃1c̃2σ̃

√
2 log 2p̃

n
,

MSPE(β̃) ≤ 4η̃20 + 4c̃1c̃2σ̃

√
2 log 2p̃

n
+ 8c̃21c̃

2
2

√
2 log(2p̃2)

n
.

Proof of Lemma N.1. ŷ is the vector of the best predictions of y based on V and ỹ is the vector of predictions
of y using Algorithm 2. Let v(j) denote the jth column of V ∀j ∈ [p̃]. Let vh,r denote the hth element of v(r)

∀h ∈ [n], r ∈ [p̃]. Let η̃h (ϵ̃h) denote the bounded (sub-Gaussian) noise associated with yh ∀h ∈ [n].

Define the set

Y :=
{ p̃∑

r=1

β̃rv
(r) :

p̃∑
r=1

|β̃r| ≤ c̃2
}
.

Note that Y is a compact and convex subset of Rn. By definition, ỹ is the projection of y on to the set Y.
Because Y is convex and ŷ ∈ Y, we have from the Pythagorean theorem for projection onto a convex set,

(ŷ − ỹ)T (y − ỹ) ≤ 0.

Adding and subtracting ŷ in the second term we get,

∥ŷ − ỹ∥22 ≤ (y − ŷ)T (ỹ − ŷ)

(a)
=

n∑
h=1

(
η̃h + ϵ̃h

)( p̃∑
r=1

(β̃r − β∗
r )vh,r

)
=

n∑
h=1

η̃h
( p̃∑
r=1

(β̃r − β∗
r )vh,r

)
+

n∑
h=1

ϵ̃h
( p̃∑
r=1

(β̃r − β∗
r )vh,r

)
=

n∑
h=1

η̃h
( p̃∑
r=1

(β̃r − β∗
r )vh,r

)
+

p̃∑
r=1

(β̃r − β∗
r )
( n∑
h=1

ϵ̃hvh,r,
)

(46)
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where (a) follows from (44), (45) and definitions of y and ŷ .

Let us first focus on only the first term in (46).

n∑
h=1

η̃h
( p̃∑
r=1

(β̃r − β∗
r )vh,r

) (a)

≤
n∑

h=1

|η̃h|
∣∣( p̃∑

r=1

(β̃r − β∗
r )vh,r

)∣∣
(b)

≤ η̃0

n∑
h=1

∣∣∣∣ p̃∑
r=1

(β̃r − β∗
r )vh,r,

∣∣∣∣ (47)

where (a) follows from the triangle inequality and (b) follows because |η̃h| ≤ η̃0 ∀h ∈ [n]. Notice that∑n
h=1

∣∣∑p̃
r=1(β̃r − β∗

r )vh,r
∣∣ is the ℓ1 norm of the vector ŷ − ỹ.

Let us now focus on the second term in (46). Using the facts that ∥β∗∥1 ≤ c̃2 and ∥β̃∥1 ≤ c̃2, we have

p̃∑
r=1

(β̃r − β∗
r )
( n∑
h=1

ϵ̃hvh,r
)
≤ 2c̃2 max

1≤r≤p̃
|ur|, (48)

where

ur :=

n∑
h=1

ϵ̃hvh,r.

Now plugging back the upper bounds from (47) and (48) in (46) we get,

∥ŷ − ỹ∥22 ≤ η̃0∥ŷ − ỹ∥1 + 2c̃2 max
1≤r≤p̃

|ur|

(a)

≤ η̃0
√
n∥ŷ − ỹ∥2 + 2c̃2 max

1≤r≤p̃
|ur|

(b)

≤ 2max
{
η̃0
√
n∥ŷ − ỹ∥2, 2c̃2 max

1≤r≤p̃
|ur|
}

where (a) follows from the fact that ∥ŷ − ỹ∥1 ≤
√
n∥ŷ − ỹ∥2 and (b) follows from the fact a + b ≤ 2max{a, b}

for any a, b ≥ 0. Looking at the two cases separately, we have

∥ŷ − ỹ∥22 ≤ 2η̃0
√
n∥ŷ − ỹ∥2, ∥ŷ − ỹ∥22 ≤ 4c̃2 max

1≤r≤p̃
|ur|

∥ŷ − ỹ∥2 ≤ 2η̃0
√
n, ∥ŷ − ỹ∥22 ≤ 4c̃2 max

1≤r≤p̃
|ur|

Combining the two cases, we have

∥ŷ − ỹ∥22 ≤ max{4η̃20n, 4c̃2 max
1≤r≤p̃

|ur|}

(a)

≤ 4η̃20n+ 4c̃2 max
1≤r≤p̃

|ur|, (49)

where (a) follows from the fact max{a, b} ≤ a+ b for any a, b ≥ 0.

Let F be the sigma-algebra generated by (vh,r)1≤h≤n,1≤r≤p̃. Let EF denote the conditional expectation given
F . Conditional on F , ur is sub-Gaussian with variance proxy σ̃2

(∑n
h=1 v

2
h,r

)
. Since vh,r ≤ c̃1 almost surely for

all h, r, it follows from the maximal inequality of the sub-Gaussian random variables (see Lemma 4 in Chatterjee
(2013)) that

EF ( max
1≤r≤p̃

|ur|) ≤ c̃1σ̃
√
2n log(2p̃).

Since the right-hand-side is non-random, taking expectation on both sides with respect to F result in,

E( max
1≤r≤p̃

|ur|) ≤ c̃1σ̃
√
2n log(2p̃). (50)
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Taking expectation on both sides in (49) and using (50), we get

E(∥ŷ − ỹ∥22) ≤ 4η̃20n+ 4c̃1c̃2σ̃
√

2n log(2p̃). (51)

Dividing both sides by n results in

E[M̂SPE(β̃)] ≤ 4η̃20 + 4c̃1c̃2σ̃

√
2 log 2p̃

n
.

Recall that β̃ is computed using the data V and y, and is therefore independent of v and y . Using definitions
of ỹ and ŷ , we have

EF (ŷ − ỹ)2 =

p∑
r,s=1

(β∗
r − β̃r)(β∗

s − β̃s)E(vrvs).

We also have

1

n
∥ŷ − ỹ∥22 =

1

n

n∑
h=1

p∑
r,s=1

(β∗
r − β̃r)(β∗

s − β̃s)vh,rvh,s.

Therefore by defining

ur,s = E(vrvs)−
1

n

n∑
h=1

vh,rvh,s,

we have

EF (ŷ − ỹ)2 − 1

n
∥ŷ − ỹ∥22 =

p∑
r,s=1

(β∗
r − β̃r)(β∗

s − β̃s)ur,s
(a)

≤ 4c̃22 max
1≤r,s≤p̃

|ur,s|, (52)

where (a) follows from the facts that ∥β∗∥1 ≤ c̃2 and ∥β̃∥1 ≤ c̃2. Recall that |vr| ≤ c̃1 ∀r ∈ [p̃]. Using the
triangle inequality, we have E(vrvs)− vh,rvh,s ≤ 2c̃21 for all h, r, and s. It follows by Hoeffding’s inequality (see
Lemma 5 in Chatterjee (2013)) that for any ς ∈ R,

E(eςur,s) ≤ e2ς
2c̃41/n.

Again by the maximal inequality of the sub-Gaussian random variables (see Lemma 4 in Chatterjee (2013)) we
have,

E( max
1≤r,s≤p̃

|ur,s|) ≤ 2c̃21

√
2 log(2p̃2)

n
. (53)

Taking expectation on both sides in (52) and plugging in (51) and (53), we get

E(ŷ − ỹ)2 ≤ 4η̃20 + 4c̃1c̃2σ̃

√
2 log 2p̃

n
+ 8c̃21c̃

2
2

√
2 log(2p̃2)

n
,

and this completes the proof.

O Supporting propositions for Lemma E.2

In this appendix, we will state the key propositions required in the proof of Lemma E.2. Proposition O.1
provides guarantees for learning the conditional mean parameter vector and Proposition O.2 provides guarantees
for learning the conditional canonical parameter vector. The proof of Lemma E.2 is given in Appendix P.
Recall from Section 3 that λ∗(x−i) denotes the conditional canonical parameter vector and µ∗(x−i) denotes the
conditional mean parameter vector of the conditional density fxi(·|x−i = x−i;ϑ

∗(i)). Recall the definition of qs
from Section 2.
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O.1 Learning conditional mean parameter vector

The first step of the algorithm for recovering node parameters from Section 3 provides an estimate of the
conditional mean parameter vector. The following proposition shows that, with enough samples and an estimate
of the graph structure, we can learn the conditional mean parameter vector such that the ℓ∞ error is small with
high probability.
Proposition O.1. Suppose we have an estimate Ĝ of G(θ∗) such that for any δ4 ∈ (0, 1), Ĝ = G(θ∗) with
probability at least 1 − δ4. Given n independent samples x(1) · · · ,x(n) of x, consider x(z)−i where z is chosen
randomly from {1, · · · , n}. There exists an alogrithm that produces an estimate µ̂(x(z)−i ) of µ∗(x

(z)
−i ) such that for

any ϵ4 ∈ (0, 1),

∥µ∗(x
(z)
−i )− µ̂(x

(z)
−i )∥∞ ≤ ϵ4 ∀i ∈ [p],

with probability at least 1− δ4 − kϵ24/4 as long as

n ≥
(
29d+17b2du k

4dd2d+1θ2dmaxϕ
4d+4
max ϕ̄

2d
max

ϵ4d+8
4

)
log(

25.5buk
2dθmaxϕ

2
maxϕ̄max

ϵ24
).

The number of computations required scale as

218d+17b4du k
8d+1d4d+1θ4dmaxϕ

8d+4
max ϕ̄

4d
max

ϵ8d+8
4

× p.

The proof of proposition O.1 is given in Appendix Q.

O.2 Learning canonical parameter vector

The second step of the algorithm for recovering node parameters from Section 3 is to obtain an estimate of the
canonical parameter vector given an estimate of the mean parameter vector. We exploit the conjugate duality
between the canonical and mean parameters and run a projected gradient descent algorithm for this purpose.

We will describe the algorithm using a generic setup in this section and then apply it to the current setting in
the proof of Lemma E.2 in Appendix P.

O.2.1 Setup for the projected gradient descent algorithm

Let X0 be a real interval such that its length is upper (lower) bounded by bu (bl). Suppose that w is a random
variable that takes value in X0 with probability density function as follows,

fw (w;ρ
∗) ∝ exp(ρ∗Tϕ(w)), (54)

where the parameter vector ρ∗ := (ρ∗1, · · · , ρ∗k) is unknown and is such that ∥ρ∗∥∞ ≤ ρmax. Let P := {ρ ∈
Rk : ∥ρ∥∞ ≤ ρmax}. Let υ∗ := (υ∗1 , · · · , υ∗k) denote the mean parameter vector of fw (w;ρ∗) and let υ̂ be an
estimate of υ∗ such that, we have ∥υ∗ − υ̂∥∞ ≤ ϵ5 with probability at least 1 − δ5 for any ϵ5 > 0, and any
δ5 ∈ (0, 1). The goal is to estimate the parameter vector ρ∗ using the projected gradient descent algorithm (Boyd
and Vandenberghe, 2014; Bubeck, 2015).

O.2.2 The projected gradient descent algorithm

Let UX0
denote the uniform distribution on X0. Algorithm 3 is a subroutine that is used in the projected gradient

descent algorithm. This subroutine is a Markov chain and it provides an estimate of the mean parameters of
an exponential family distribution of the form (54) when the underlying canonical parameters are known. See
Appendix R for discussion on the theoretical properties of this subroutine.
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Algorithm 3 Metropolized random walk (MRW)
1: Input: ρ,X0, τ1, τ2, w(0)

2: Output: ν̂(ρ)
3: for m = 1, · · · ,τ2 do
4: for r = 0, · · · ,τ1 do
5: Proposal step: Draw z(r+1) ∼ UX0

6: Accept-reject step:
7: Compute α(r+1) ← min

{
1,

exp(ρTϕ(z(r+1)))

exp(ρTϕ(w(r)))

}
8: With probability α(r+1) accept the proposal: w(r+1) ← z(r+1)

9: With probability 1− α(r+1) reject the proposal: w(r+1) ← w(r)

10: ν̂(ρ)← ν̂(ρ) + ϕ(w(τ1+1))

11: ν̂(ρ)← 1
τ2
ν̂(ρ)

Algorithm 4 Projected Gradient Descent
1: Input: ξ,X0, τ1, τ2, τ3, w(0),ρ

(0), υ̂
2: Output: ρ̂
3: for r = 0, · · · , τ3 do
4: ν̂(ρ(r))←MRW (ρ(r), k,X0, τ1, τ2, w(0))

5: ρ(r+1) ← argminρ∈P ∥ρ(r) − ξ[ν̂(ρ(r))− υ̂]− ρ∥
6: ρ̂← ρ(τ3+1)

O.2.3 Guarantees on the output of the projected gradient descent algorithm

The following Proposition shows that running sufficient iterations of the projected gradient descent (Algorithm
4) results in an estimate, ρ̂, of the parameter vector, ρ∗, such that the ℓ2 error is small with high probability.

Define c̄1 := qs, c̄2 := 2kϕ2max, c̄3 := 4kϵ5(ϵ5+2c̄2ρmax+2ϕmax)
c̄1c̄2

.
Proposition O.2. Let ϵ6 > 0. Let ρ̂ denote the output of Algorithm 4 with ξ = 1/c̄2, τ1 =

8b−2
l exp(12kρmaxϕmax)

[
log 4ϕmax

√
bu

ϵ9
√
bl

+ kρmaxϕmax

]
, τ2 =

8ϕ2
max

ϵ25
log
(
2kτ3
δ5

)
, τ3 = c̄2

c̄1
log

(
kρ2

max

ϵ26−c̄3

)
, w(0) = 0,

ρ(0) = (0, · · · , 0) and υ̂ = (υ̂1, · · · , υ̂k). Then,

∥ρ∗ − ρ̂∥2 ≤ ϵ6,

with probability at least 1− 2δ5.

The proof of proposition O.2 is given in Appendix S.

P Proof of Lemma E.2

In this appendix, we prove Lemma E.2. See Appendix O.1 and Appendix O.2 for two key propositions required in
the proof. Recall from Section 3 that λ∗(x−i) denotes the conditional canonical parameter vector and µ∗(x−i)
denotes the conditional mean parameter vector of the conditional density fxi(·|x−i = x−i;ϑ

∗(i)). Recall the
definitions of γ = θmax(k + k2d), φmax = 2max{ϕmax, ϕ

2
max}, c1(α), and c2(α) from Section 2 and the definition

of c3(α) from Appendix E. We restate the Lemma below and then provide the proof.
Lemma E.2. Let Condition 4.1 be satisfied. Given n independent samples x(1), . . . ,x(n) of x, for each i ∈ [p],
let θ̂(i) be an estimate of θ∗(i) obtained using the three-step procedure from Section 3. Then, for any α2 ∈ (0, 1),

∥θ∗(i) − θ̂(i)∥∞ ≤ α2, ∀i ∈ [p]

with probability at least 1− α4
2 as long as

n ≥ max
[
c1

(
min

{
θmin+

3
,

α2

2dkϕmax

})
log

(
25/2pk

α2
2

)
, c2(α2)

]
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= Ω

(
exp(Θ

(
k2d+ d log

(
dk

α2qs

))
)

κ2α4
2

× log

(
pk

α2
2

))
.

The number of computations required scale as

c3

(
min

{θmin+

3
,

α2

2dkϕmax

})
× log

(
25/2pk

α2
2

)
× log (2k2p)× p2 = Ω

(
exp(Θ(k2d))

κ4α8
2

log2
(
pk

α2
2

)
p2

)
.

Proof of Lemma E.2. Let the number of samples satisfy

n ≥ max
[
c1

(
min

{
θmin+

3
,

α2

2dkϕmax

})
log

(
2

5
2 pk

α2
2

)
, c2(α2)

]
.

Using Theorem 4.3 with δ = α4
2/8, we know the true neighborhood N (i) ∀i ∈ [p], with probability at least

1 − α4
2/8. Throughout the remainder of the proof, we will condition on the event that we know the true

neighborhood for every node.

Let us define

ϵ4 =
α2
2q

s

27k2dθmaxϕmax
, ϵ6 =

α2

2
, c̄3 =

α2
2

8
.

Consider x(z)−i where z is chosen uniformly at random from [n]. Using Proposition O.1 with δ4 = α4
2/8, the

estimate µ̂(x(z)−i ) is such that

∥µ∗(x
(z)
−i )− µ̂(x

(z)
−i )∥∞ ≤ ϵ4 ∀i ∈ [p],

with probability at least 1− α4
2/8− kϵ24/4. This puts us in a position to use Proposition O.2.

Observe that λ∗(x−i) is such that ∥λ∗(x−i)∥∞ ≤ ρmax = 2kdθmaxϕmax ∀x−i ∈ Πj∈[p]\{i}Xj . Using Proposition
O.2 with υ̂ = µ̂(x

(z)
−i ), ϵ5 = ϵ4 and δ5 = α4

2/8 + kϵ24/4, the estimate λ̂(x(z)−i ) is such that

∥λ∗(x
(z)
−i )− λ̂(x

(z)
−i )∥2 ≤ ϵ6 ∀i ∈ [p]

=⇒ ∥λ∗(x
(z)
−i )− λ̂(x

(z)
−i )∥∞ ≤ ϵ6 ∀i ∈ [p], (55)

with probability at least 1−α4
2/4−kϵ24/2. Plugging in the value of ϵ4 and assuming that (qs)2 ≤ 213k4d2θ2maxϕ

2
max,

it is easy to see that kϵ24/2 ≤ α4
2/4.

Let ϑ̂(i)
ϵ ∈ Λ be an ϵ-optimal solution of GRISE and let ϑ̂(i)

ϵ,E be the component of ϑ̂(i)
ϵ associated with the edge

potentials. Using Lemma E.1 with α1 = α2/2dkϕmax and δ = α4
2/4, we have

∥ϑ∗(i)
E − ϑ̂(i)

ϵ,E∥2 ≤
α2

2dkϕmax
, ∀i ∈ [p]

=⇒ ∥ϑ∗(i)
E − ϑ̂(i)

ϵ,E∥∞ ≤
α2

2dkϕmax
, ∀i ∈ [p], (56)

with probability at least 1− α4
2/4.

For any r ∈ [k] and i ∈ [p], let λ∗r(x
(z)
−i ) denote the rth element of λ∗(x

(z)
−i ). We have, for any r ∈ [k] and i ∈ [p],

θ∗(i)r = λ∗r(x
(z)
−i )−

∑
j≠i

∑
s∈[k]

θ∗(ij)r,s ϕs(x
(z)
j )

(a)
= λ∗r(x

(z)
−i )−

∑
j∈N (i)

∑
s∈[k]

θ∗(ij)r,s ϕs(x
(z)
j ), (57)
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where (a) follows because ∀r, s ∈ [k], j /∈ N (i), θ∗(ij)r,s = 0. Let λ̂r(x(z)−i ) denote the rth element of λ̂(x(z)−i ). Define
the estimate, θ̂(i)r , as follows:

θ̂(i)r := λ̂r(x
(z)
−i )−

∑
j∈N (i)

∑
s∈[k]

θ̂(ij)r,s ϕs(x
(z)
j ). (58)

Combining (57) and (58), the following holds ∀i ∈ [p],∀r ∈ [k] with probability at least 1− α4
2:∣∣∣θ∗(i)r − θ̂(i)r

∣∣∣ = ∣∣∣λ∗r(x(z)−i )− λ̂r(x
(z)
−i )−

∑
j∈N (i)

∑
s∈[k]

(
θ∗(ij)r,s − θ̂(ij)r,s

)
ϕs(x

(z)
j )
∣∣∣

(a)

≤
∣∣∣λ∗r(x(z)−i )− λ̂r(x

(z)
−i )
∣∣∣+ ∑

j∈N (i)

∑
s∈[k]

∣∣∣θ∗(ij)r,s − θ̂(ij)r,s

∣∣∣ϕs(x(z)j )

(b)

≤ ϵ6 +
α2

2dkϕmax

∑
j∈N (i)

∑
s∈[k]

ϕs(x
(z)
j )

(c)

≤ α2

2
+
α2

2
= α2,

where (a) follows from the triangle inequality, (b) follows from (55) and (56), and (c) follows because ∥ϕ(xj)∥∞ ≤
ϕmax for any xj ∈ Πj∈[p]Xj , |N (i)| ≤ d and ϵ6 = α2/2.

The key computational steps are estimating ϑ̂(i)
ϵ and N (i) for every node. Using Lemma E.1 with α1 =

α2/2dkϕmax, δ = α4
2/4 and Theorem 4.3 with δ = α4

2/4, the computational complexity scales as

c3

(
min

{θmin+

3
,

α2

2dkϕmax

})
× log

(
2

5
2 pk

α2
2

)
× log (2k2p)× p2.

Q Proof of Proposition O.1

In this appendix, we prove Proposition O.1. We begin by showing Lipschitzness of the conditional mean
parameters (Lemma Q.1) and then express the problem of learning the conditional mean parameters as a sparse
linear regression (Lemma Q.2). This will put us in a position to prove Proposition O.1. Recall from Section
3 that λ∗(x−i) denotes the conditional canonical parameter vector and µ∗(x−i) denotes the conditional mean
parameter vector of the conditional density fxi(·|x−i = x−i;ϑ

∗(i)) in (9). For any j ∈ [k], the jth element of the
conditional mean parameter vector is given by

µ∗
j (x−i) =

∫
xi∈Xi

ϕj(xi) exp
(
λ∗T (x−i)ϕ(xi)

)
dxi∫

xi∈Xi

exp
(
λ∗T (x−i)ϕ(xi)

)
dxi

. (59)

Define L1 := 2k2θmaxϕ
2
maxϕ̄max.

Q.1 Lipschitzness of conditional mean parameters

The following Lemma shows that ∀i ∈ [p], the conditional mean parameters associated with the conditional
density of node xi given the values taken by all the other nodes (x−i = x−i) are Lipschitz functions of xm
∀m ∈ [p] \ {i}.
Lemma Q.1. For any i ∈ [p], j ∈ [k], m ∈ [p] \ {i} and x−i ∈ Πj∈[p]\{i}Xj, µ∗

j (x−i) is a L1 Lipschitz function
of xm.

Proof of Lemma Q.1. Fix any i ∈ [p] and j ∈ [k]. Consider any m ∈ [p] \ {i}. Differentiating both sides of (59)
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with respect to xm and applying the quotient rule gives us,

∂µ∗
j (x−i)

∂xm
=

∂
∂xm

∫
xi∈Xi

ϕj(xi) exp
(
λ∗T (x−i)ϕ(xi)

)
dxi∫

xi∈Xi

exp
(
λ∗T (x−i)ϕ(xi)

)
dxi

−

(∫
xi∈Xi

ϕj(xi) exp
(
λ∗T (x−i)ϕ(xi)

)
dxi

)(
∂

∂xm

∫
xi∈Xi

exp
(
λ∗T (x−i)ϕ(xi)

)
dxi

)
(∫

xi∈Xi

exp
(
λ∗T (x−i)ϕ(xi)

)
dxi

)2 .

Observe that ϕj(xi) exp
(
λ∗T (x−i)ϕ(xi)

)
and ∂

∂xm
ϕj(xi) exp

(
λ∗T (x−i)ϕ(xi)

)
are analytic functions, and

therefore are also continuous functions of xi and xm. We can apply the Leibniz integral rule to interchange
the integral and partial differential operators. This results in

∂µ∗
j (x−i)

∂xm
=

∫
xi∈Xi

ϕj(xi)
∂λ∗T (x−i)ϕ(xi)

∂xm
exp

(
λ∗T (x−i)ϕ(xi)

)
dxi∫

xi∈Xi

exp
(
λ∗T (x−i)ϕ(xi)

)
dxi

−

(∫
xi∈Xi

ϕj(xi) exp
(
λ∗T (x−i)ϕ(xi)

)
dxi

)(∫
xi∈Xi

∂λ∗T (x−i)ϕ(xi)

∂xm
exp

(
λ∗T (x−i)ϕ(xi)

)
dxi

)
(∫

xi∈Xi

exp
(
λ∗T (x−i)ϕ(xi)

)
dxi

)2

= E
(
ϕj(xi)×

∂λ∗T (x−i)ϕ(xi)

∂xm

∣∣∣∣x−i = x−i;ϑ
∗(i)
)

− E
(
ϕj(xi)

∣∣∣∣x−i = x−i;ϑ
∗(i)
)
× E

(
∂λ∗T (x−i)ϕ(xi)

∂xm

∣∣∣∣x−i = x−i;ϑ
∗(i)
)
.

Using the triangle inequality we have,∣∣∣∣∂µ∗
j (x−i)

∂xm

∣∣∣∣ ≤ ∣∣∣∣E(ϕj(xi)× ∂λ∗T (x−i)ϕ(xi)

∂xm

∣∣∣∣x−i = x−i;ϑ
∗(i)
)∣∣∣∣

+

∣∣∣∣E(ϕj(xi)∣∣∣∣x−i = x−i;ϑ
∗(i)
)
× E

(
∂λ∗T (x−i)ϕ(xi)

∂xm

∣∣∣∣x−i = x−i;ϑ
∗(i)
)∣∣∣∣

(a)
=

∣∣∣∣E(ϕj(xi)× ∂λ∗T (x−i)ϕ(xi)

∂xm

∣∣∣∣x−i = x−i;ϑ
∗(i)
)∣∣∣∣

+

∣∣∣∣E(ϕj(xi)∣∣∣∣x−i = x−i;ϑ
∗(i)
)∣∣∣∣× ∣∣∣∣E(∂λ∗T (x−i)ϕ(xi)

∂xm

∣∣∣∣x−i = x−i;ϑ
∗(i)
)∣∣∣∣

(b)

≤ E
(∣∣∣∣ϕj(xi)∣∣∣∣× ∣∣∣∣∂λ∗T (x−i)ϕ(xi)

∂xm

∣∣∣∣∣∣∣∣x−i = x−i;ϑ
∗(i)
)

+ E
(∣∣∣∣ϕj(xi)∣∣∣∣∣∣∣∣x−i = x−i;ϑ

∗(i)
)
× E

(∣∣∣∣∂λ∗T (x−i)ϕ(xi)

∂xm

∣∣∣∣∣∣∣∣x−i = x−i;ϑ
∗(i)
)
,

where (a) follows because for any a, b, we have |ab| = |a||b| and (b) follows because the absolute value of an
integral is smaller than or equal to the integral of an absolute value.

We will now upper bound ∂λ∗T (x−i)ϕ(xi)
∂xm

as follows:

∂λ∗T (x−i)ϕ(xi)

∂xm

(a)
=

∂
[∑

r∈[k]

(
θ
∗(i)
r +

∑
j ̸=i

∑
s∈[k] θ

∗(ij)
r,s ϕs(xj)

)
ϕr(xi)

]
∂xm
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=
∑
r∈[k]

( ∑
s∈[k]

θ∗(im)
r,s × dϕs(xm)

dxm

)
ϕr(xi)

(b)

≤ k2ϕmaxϕ̄maxθmax, (60)

where (a) follows from the definition of λ∗T (x−i) and ϕ(xi) and (b) follows because ϕr(xi) ≤ ϕmax

∀r ∈ [k],∀xi ∈ Xi and dϕs(xm)
dxm

≤ ϕ̄max s ∈ [k],∀xm ∈ Xm.

Using (60) along with the fact that |ϕj(xi)| ≤ ϕmax ∀j ∈ [k],∀xi ∈ Xi, we can further upper bound∣∣∣∂µ∗
j (x−i)/∂xm

∣∣∣ as

∣∣∣∣∂µ∗
j (x−i)

∂xm

∣∣∣∣ ≤ k2θmaxϕmaxϕ̄max × ϕmax + k2θmaxϕmaxϕ̄max × ϕmax = L1.

As a result, we have ∥∇µ∗(x−i)∥∞ ≤ L1 and this concludes the proof.

Q.2 Learning conditional mean parameters as a sparse linear regression

The following Lemma shows that learning the conditional mean parameters µ∗(x−i) as a function of x−i using
an estimate of the graph structure is equivalent to solving a sparse linear regression problem.
Lemma Q.2. Suppose we have an estimate Ĝ of G(θ∗) such that for any δ4 ∈ (0, 1), Ĝ = G(θ∗) with probability
at least 1 − δ4. Let t be a parameter and p̃ be such that p̃ ≤

(
bu/t

)d. The following holds with probability at
least 1 − δ4. For every i ∈ [p], j ∈ [k], x−i ∈ Πj∈[p]\{i}Xj, we can write µ∗

j (x−i) as the following sparse linear
regression:

µ∗
j (x−i) = Ψ(j)Tb+ η̄,

where Ψ(j) ∈ Rp̃ is the unknown parameter vector and b ∈ Rp̃ is the covariate vector and it is a function of x−i.
Further, we also have |η̄| ≤ L1dt, ∥b∥∞ ≤ 1 and ∥Ψ(j)∥1 ≤ ϕmax

(
bu/t

)d.

Proof of Lemma Q.2. For mathematical simplicity, ∀i ∈ [p] let the interval Xi = Xb = [0, b] where b is
such that bl ≤ b ≤ bu. Divide the interval Xb into non-overlapping intervals of length t. For the sake of
simplicity, we assume that b/t is an integer. Let us enumerate the resulting b/t intervals as the set of integers
I := {1, · · · , b/t}. For any x ∈ Xb, ∃ζ ∈ I s.t x ∈ ((ζ − 1)t, ζt] and this allows us to define a map M : Xb → I
s.t M(x) = ζt. Similarly, for any x := (xj : j ∈ J ) ∈ X |J |

b where J is any subset of [p], we have the mapping
M(x) = ζt where ζ := (ζj : j ∈ J ) is such that ζj =M(xj)/t. Now for any x ∈ Xb, consider a binary mapping
W : Xb → {0, 1}I defined asW(x) = (wj(x) : j ∈ I) such that wM(x)/t(x) = 1 and wj(x) = 0 ∀j ∈ I \{M(x)/t}.

Let us condition on the event that Ĝ = G(θ∗). Therefore, we know the true neighborhood N (i) ∀i ∈ [p] with
probability at least 1 − δ4 (because Ĝ = G(θ∗) with probability at least 1 − δ4). Using the Markov property
of the graph G(θ∗), we know that the conditional density (and therefore the conditional mean parameters) of
a node xi given the values taken by the rest of nodes depend only on the values taken by the neighbors of xi.
Therefore, we have

µ∗
j (x−i) = µ∗

j (xN (i)), (61)

where xN (i) denotes the values taken by the neighbors of xi. Using the fact that max-degree of any node in
G(θ∗) is at-most d and Lemma Q.1, we can write for any j ∈ [k]∣∣∣µ∗

j (xN (i))− µ∗
j

(
M(xN (i))

)∣∣∣ ≤ L1

√
d
∥∥∥xN (i) −M(xN (i))

∥∥∥
2

(a)

≤ L1dt, (62)
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where (a) follows because ∀m ∈ [p], |xm −M(xm)| ≤ t and cardinality of N (i) is no more than d. Now using
the binary mapping W defined above, we can expand µ∗

j

(
M(xN (i))

)
as

µ∗
j

(
M(xN (i))

)
=
∑
k1∈I

· · ·
∑

k|N(i)|∈I

( |N (i)|∏
m=1

wkm(xN (i)m)
)
µ∗
j

(
k1t, · · · , k|N (i)|t

)
, (63)

where N (i)m denotes the mth element of N (i). Observe that,
∏|N (i)|

m=1 wkm
(xN (i)m) = 1 only when

kmt =M(xN (i)m) ∀m ∈ [|N (i)|].

Combining (61), (62) and (63) we have the following regression problem:

µ∗
j (x−i) = Ψ(j)Tb+ η̄,

where Ψ(j) :=
(
µ∗
j

(
k1t, · · · , k|N (i)|t

)
: kr ∈ I ∀r ∈ [|N (i)|]

)
∈ Rp̃, p̃ =

(
b/t
)N (i), b =

(∏|N (i)|
m=1 wkm

(xN (i)m) :

kr ∈ I ∀r ∈ [|N (i)|]
)
∈ {0, 1}p̃, and η̄ is such that |η̄| ≤ L1dt. Observe that ∥b∥∞ ≤ 1. Using the fact that

cardinality of N (i) is no more than d, we have

p̃ ≤
(
b

t

)d

≤
(
bu
t

)d

.

Using the fact that the conditional mean parameters are upper bounded by ϕmax, we have the following sparsity
condition: ∥∥∥Ψ(j)

∥∥∥
1
≤ ϕmax

(
bu
t

)d

.

Q.3 Proof of Proposition O.1

We restate the Proposition and then provide the proof.
Proposition O.2. Let ϵ6 > 0. Let ρ̂ denote the output of Algorithm 4 with ξ = 1/c̄2, τ1 =

8b−2
l exp(12kρmaxϕmax)

[
log 4ϕmax

√
bu

ϵ9
√
bl

+ kρmaxϕmax

]
, τ2 =

8ϕ2
max

ϵ25
log
(
2kτ3
δ5

)
, τ3 = c̄2

c̄1
log

(
kρ2

max

ϵ26−c̄3

)
, w(0) = 0,

ρ(0) = (0, · · · , 0) and υ̂ = (υ̂1, · · · , υ̂k). Then,

∥ρ∗ − ρ̂∥2 ≤ ϵ6,

with probability at least 1− 2δ5.

Proof of Proposition O.1. Let us condition on the event that Ĝ = G(θ∗). The following holds with probability
at least 1− δ4. From Lemma Q.2, for a parameter t and for every i ∈ [p], j ∈ [k], x−i ∈ Πj∈[p]\{i}Xj , we have

µ∗
j (x−i) = Ψ(j)Tb+ η̄,

where Ψ(j) ∈ Rp̃ is an unknown parameter vector and b ∈ Rp̃, a function of x−i, is the covariate vector. Further,
we also have p̃ =

(
bu/t

)d, |η̄| ≤ L1dt, ∥b∥∞ ≤ 1 and ∥Ψ(j)∥1 ≤ ϕmax

(
bu/t

)d.

Suppose x(1), · · · ,x(n) are the n independent samples of x. We tranform these to obtain the corresponding
covariate vectors b(1), · · · ,b(n) where b(l) =

(∏|N (i)|
m=1 wkm

(x
(l)
N (i)m

) : kr ∈ I ∀r ∈ [|N (i)|]
)

. Let B be a n × p̃

matrix such that lth row of B is b(l). We also obtain the vector µ̄j(x−i) := (µ
(r)
j (x−i) : r ∈ [n]) where

µ
(r)
j (x−i) = ϕj(x

(r)
i ). Letting ϵ̃ = ϕj(xi)−µ∗

j (x−i), we see that ϵ̃ is bounded sub-Gaussian random variable with
zero mean and variance proxy σ̃2 = 4ϕ2max (follows from Hoeffding’s lemma).
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Let Ψ̂(j) be the output of algorithm 2 with inputs V = B,y = µ̄j(x−i) and c̃2 = ϕmax

(
bu/t

)d. Using Lemma
N.1 with η̃ = L1dt, c̃1 = 1, and σ̃ = 2ϕmax we have

E[M̂SPE(Ψ̂(j))] ≤ 4L2
1d

2t2 + 8ϕ2max

(
bu
t

)d
√

2 log 2p̃

n
.

Using the upper bound on p̃ results in

E[M̂SPE(Ψ̂(j))] ≤ 4L2
1d

2t2 + 8ϕ2max

(
bu
t

)d
√

2d

n
log

21/dbu
t

.

As d ≥ 1, we have 21/2d ≤ 2. Choosing the parameter t = ϵ24
8
√
2L1d

and plugging in L1 = 2k2θmaxϕ
2
maxϕ̄max and

n, we have

E[M̂SPE(Ψ̂(j))] ≤ ϵ44
16
. (64)

Consider x(z)−i where z is chosen uniformly at random from [n]. For the prediction µ̂j(x
(z)
−i ), we transform x

(z)
−i to

obtain the corresponding covariate vector b =
(∏|N (i)|

m=1 wkm
(x

(z)
N (i)m

) : kr ∈ I ∀r ∈ [|N (i)|]
)

and take its dot
product with Ψ̂(j) as follows:

µ̂j(x
(z)
−i ) = Ψ̂(j)Tb.

Using Markov’s inequality, we have

P(|Ψ(j)Tb− Ψ̂(j)Tb|2 ≥ ϵ24
4
) ≤ 4E[(Ψ(j)Tb− Ψ̂(j)Tb)2]

ϵ24

(a)
=

4E[M̂SPE(Ψ̂(j))]

ϵ24

(b)

≤ ϵ24
4
,

where (a) follows from Definition N.2 and (b) follows from (64). Therefore, we have |Ψ(j)Tb− Ψ̂(j)Tb| ≤ ϵ4
2 with

probability at least 1− ϵ24
4 .

Further, the following holds with probability at least 1− ϵ24
4 :

|µ∗
j (x

(z)
−i )− µ̂j(x

(z)
−i )| = |Ψ

(j)Tb+ η̄ − Ψ̂(j)Tb|
(a)

≤ |Ψ(j)Tb− Ψ̂(j)Tb|+ |η̄|
(b)

≤ ϵ4
2

+ L1dt
(c)

≤ ϵ4
2

+
ϵ24
8
√
2

(d)

≤ ϵ4, (65)

where (a) follows from the triangle inequality, (b) follows because |η̄| ≤ L1dt and |Ψ(j)Tb − Ψ̂(j)Tb| ≤ ϵ4
2 , (c)

follows by plugging in the value of t and L1, and (d) follows because ϵ4 ≤ 1.

As (65) holds ∀j ∈ [k], the proof follows by using the union bound over all j ∈ [k].

Solving the sparse linear regression takes number of computations that scale as p̃2 × n (see Efron et al. (2004)
for details). There are k such sparse linear regression problems for each node. Substituting for p̃, t, and n, the
total number of computations required scale as(

218d+17b4du k
8d+1d4d+1θ4dmaxϕ

8d+4
max ϕ̄

4d
max

ϵ8d+8
4

× p
)
log

(
25.5buk

2dθmaxϕ
2
maxϕ̄max

ϵ24

)
.

The log term is dominated by the preceding term.

R Analysis of Algorithm 3

In this appendix, we discuss the theoretical properties of Algorithm 3. These will be used in the proof of
Proposition O.2. Recall that we design a Markov chain in Algorithm 3 that estimates the mean parameter
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vector of an exponential family distribution whose canonical parameters are known. The sufficient statistic
vector of this exponential family distribution is the basis vector ϕ(·). We design this Markov chain using a
zeroth-order Metropolized random walk algorithm. We will provide an upper bound on the mixing time of this
Markov chain (Lemma R.2) and provide error bounds on the estimate of the mean parameter vector computed
using the samples obtained from the Markov chain (Lemma R.3).

R.1 Setup: The exponential family distribution

Let X0 be a real interval such that its length is upper (lower) bounded by known constant bu (bl). Suppose that
w is a random variable that takes value in X0 with probability density function as follows,

fw (w;ρ) ∝ exp(ρTϕ(w)), (66)

where ρ := (ρ1, · · · , ρk) is the canonical parameter vector of the density in (66) and it is such that ∥ρ∥∞ ≤ ρmax.
Let the cumulative distribution function of w be denoted by Fw (·;ρ). Let ν(ρ) = Ew [ϕ(w)] ∈ Rk be the mean
parameter vector of the density in (66), i.e., ν(ρ) = (ν1, · · · , νk) such that

νj :=

∫
w∈X0

ϕj(w)fw (w;ρ)dw. (67)

We aim to estimate ν(ρ) for a given parameter vector ρ using Algorithm 3. Let the estimated vector of mean
parameters be denoted by ν̂(ρ) := (ν̂1, · · · , ν̂k). Let Z(ρ) be the partition function of fw (·;ρ) i.e.,

Z(ρ) =

∫
w∈X0

exp(ρTϕ(w))dw. (68)

R.2 Bounds on the probability density function

Let us define H(·) := exp(|ρTϕ(·)|) and Hmax := exp(kρmaxϕmax). We have ∀w ∈ X0,

H−1(w) ≤ exp(ρTϕ(w)) ≤ H(w). (69)

Bounding the density function defined in (66) using (69) results in

1

buH2(w)
≤ fw (w;ρ) ≤

H2(w)

bl
. (70)

Let us also upper bound H(·). We have ∀w ∈ X0,

H(w)
(a)

≤ exp(

k∑
j=1

|ρjϕj(w)|)
(b)

≤ exp(ρmax

k∑
j=1

|ϕj(w)|)
(c)

≤ exp(kρmaxϕmax) = Hmax, (71)

where (a) follows from the triangle inequality, (b) follows because |ρj | ≤ ρmax ∀j ∈ [k], and (c) follows because
|ϕj(w)| ≤ ϕmax ∀j ∈ [k] and ∀w ∈ X0.

R.3 Mixing time of the Markov chain in Algorithm 3

We set up an irreducible, aperiodic, time-homogeneous, discrete-time Markov chain, whose stationary distribution
is equal to Fw (w;ρ), using a zeroth-order Metropolized random walk algorithm (Hastings, 1970; Metropolis
et al., 1953). The Markov chain is defined on a measurable state space (X0,B(X0)) with a transition kernel
K : X0 × B(X0)→ R+ where B(X0) denotes the σ−algebra of X0.

R.3.1 Total variation distance

Definition R.1. Let Q1 be a distribution with density q1 and Q2 be a distribution with density q2 defined on a
measureable state space (X0,B(X0)). The total variation distance of Q1 and Q2 is defined as

∥Q1 −Q2∥TV = sup
A∈B(X0)

|Q1(A)−Q2(A)|.



Abhin Shah, Devavrat Shah, Gregory W. Wornell

The following Lemma shows that if the total variation distance between two distributions on the same domain
is small, then ∀j ∈ [k], the difference between the expected value of ϕj(·) with respect to the two distributions
is also small.
Lemma R.1. Let Q1 and Q2 be two different distributions of the random variable w defined on X0. Let
∥Q1 −Q2∥TV ≤ ϵ7 for any ϵ7 > 0. Then,∥∥∥EQ1

[ϕ(w)]− EQ2
[ϕ(w)]

∥∥∥
∞
≤ 2ϵ7ϕmax.

Proof of Lemma R.1. We will use the following relationship between the total variation distance and the ℓ1 norm
in the proof:

∥Q1 −Q2∥TV =
1

2

∫
X0

|q1(w)− q2(w)|dw. (72)

For any j ∈ [k], we have, ∣∣∣EQ1
[ϕj(w)]− EQ2

[ϕj(w)]
∣∣∣ (a)= ∣∣∣ ∫

X0

ϕj(w)[q1(w)− q2(w)]dw
∣∣∣

(b)

≤
∫
X0

|ϕj(w)||q1(w)− q2(w)|dw

(c)

≤ ϕmax

∫
X0

|q1(w)− q2(w)|dw

(d)
= 2ϕmax∥Q1 −Q2∥TV

≤ 2ϵ7ϕmax,

where (a) follows from the definition of expectation, (b) follows because the absolute value of integral is less than
integral of absolute value, (c) follows because |ϕj(w)| ≤ ϕmax ∀j ∈ [k], and (d) follows from (72).

R.3.2 Definitions

Definition R.2. Given a distribution F0 with density f0 on the current state of a Markov chain, the transition
operator T (F0) gives the distribution of the next state of the chain. Mathematically, we have

T (F0)(A) =

∫
X0

K(w,A)f0(w)dw, for any A ∈ B(X0). (73)

Definition R.3. The mixing time of a Markov chain, with initial distribution F0 and transition operator T , in
a total variation distance sense with respect to its stationary distribution Fw , is defined as

τ(ϵ) = inf

{
r ∈ N s.t

∣∣∣∣T (r)(F0)− Fw

∣∣∣∣
TV
≤ ϵ
}
,

where ϵ is an error tolerance and T (r) stands for r-step transition operator.
Definition R.4. The conductance of the Markov chain with transition operator T and stationary distribution
Fw (with density fw (w)) is defined as

φ := min
0<Fw (A)≤ 1

2

∫
A
T (δw)(Ac)fw (w)dw

Fw (A)
,

where T (δw) is obtained by applying the transition operator to a Dirac distribution concentrated on w.

R.3.3 Upper bound on the mixing time

Recall that UX0
denotes the uniform distribution on X0. We let the initial distribution of the Markov chain be

UX0
. We run independent copies of the Markov chain and use the samples obtained after the mixing time in

each copy to compute ν̂. In Algorithm 3, τ1 is the number of iterations of the Markov chain and τ2 denotes the
number of independent copies of the Markov chain used. The following Lemma gives an upper bound on the
mixing time of the Markov chain defined in Algorithm 3.
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Lemma R.2. Let the mixing time of the Markov chain defined in Algorithm 3 be denoted by τM(ϵ8) where ϵ8 > 0
is the error tolerance. Then,

τM(ϵ8) ≤ 8b−2
l exp(12kρmaxϕmax)

[
log

√
bu

ϵ8
√
bl

+ kρmaxϕmax

]
.

Proof of Lemma R.2. We will control the mixing time of the Markov chain via worst-case conductance bounds.
This method was introduced for discrete space Markov chains by Jerrum and Sinclair Jerrum and Sinclair (1988)
and then extended to the continuous space Markov chains by Lovász and Simonovits (Lovász and Simonovits,
1993); see Vempala (2005) for a detailed discussion on the continuous space setting.

For any initial distribution F0 and stationary distribution Fw of a Markov chain, define c0 := supA
F0(A)
Fw (A) . Lovász

and Simonovits (1993) proved that, ∣∣∣∣T (r)(F0)− Fw

∣∣∣∣
TV
≤
√
c0 exp

−rφ2/2 .

Therefore to upper bound the total variation distance by ϵ8, it is sufficient to have
√
c0 exp

−rφ2/2 ≤ ϵ8.

This can be rewritten as

r ≥ 2

φ2
log

√
c0
ϵ8

.

Therefore, after r = 2
φ2 log

√
c0
ϵ8

steps of the Markov chain, the total variation distance is less than ϵ8 and
τM (ϵ8) ≤ 2

φ2 log
√
c0
ϵ8

. In order to upper bound the mixing time, we need upper bound the constant c0 and lower
bound the conductance φ.

We will first upper bound c0. We have the initial distribution to be uniform on X0. Therefore,

c0 = sup
A

UX0(A)

Fw (A)

(a)

≤ sup
A

∫
A

1
bl
dw∫

A
1

buH2(w)dw

(b)

≤ bu
bl
H2

max, (74)

where (a) follows from the lower bound in (70) and because the length of X0 is lower bounded by bl and (b) from
(71).

Let us now lower bound φ. From the Definition R.4 we have,

φ = min
0<

∫
A

fw (w;ρ)dw≤ 1
2

∫
A
T (δw)(Ac)fw (w;ρ)dw∫

A
fw (w;ρ)dw

(a)
= min

0<
∫
A

fw (w;ρ)dw≤ 1
2

∫
A
T (δw)(Ac) exp(ρTϕ(w))dw∫

A
exp(ρTϕ(w))dw

(b)

≥ min
0<

∫
A

fw (w;ρ)dw≤ 1
2

∫
A
T (δw)(Ac)H−1(w)dw∫

A
H(w)dw

(c)

≥ 1

H2
max

min
0<

∫
A

fw (w;ρ)dw≤ 1
2

∫
A
T (δw)(Ac)dw∫

A
dw

(d)

≥ 1

H2
max

min
0<

∫
A

fw (w;ρ)dw≤ 1
2

∫
A

( ∫
X0
K(w,Ac)δw(w)dw

)
dw∫

A
dw

=
1

H2
max

min
0<

∫
A

fw (w;ρ)dw≤ 1
2

∫
A
K(w,Ac)dw∫

A
dw

=
1

H2
max

min
0<

∫
A

fw (w;ρ)dw≤ 1
2

∫
A

∫
Ac K(w, dy)dydw∫

A
dw

,
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where (a) follows by canceling out Z(ρ) in the numerator and the denominator, (b) follows from (69), (c) follows
from (71), and (d) follows from (73).

Recall from Algorithm 3 that we make a transition from the current state w to the next state y with probability
K(w, dy) = min

{
1, exp(ρTϕ(y))

exp(ρTϕ(w))

}
. Therefore,

φ ≥ 1

H2
max

min
0<

∫
A

fw (w;ρ)dw≤ 1
2

∫
A

∫
Ac min

{
1, exp(ρTϕ(y))

exp(ρTϕ(w))

}
dydw∫

A
dw

.

Using (69) and observing that H−2
max ≤ 1, we have min

{
1, exp(ρTϕ(y))

exp(ρTϕ(w))

}
≥ 1

H2
max

. This results in,

φ ≥ 1

H4
max

min
0<

∫
A

fw (w;ρ)dw≤ 1
2

∫
A

∫
Ac dydw∫
A
dw

=
1

H4
max

min
0<

∫
A

fw (w;ρ)dw≤ 1
2

∫
Ac

dw. (75)

We have
∫
A
fw (w;ρ)dw ≤ 1

2 . This can be rewritten as,∫
Ac

fw (w;ρ)dw ≥
1

2
=⇒

∫
Ac

dw
(a)

≥ bl
2H2

max

, (76)

where (a) follows from the upper bound in (70). Using (76) in (75), we have

φ ≥ bl
2H6

max

. (77)

Now using (74) and (77) to bound the mixing time, we have

τM (ϵ8) ≤
8H12

max

b2l
log
Hmax

√
bu

ϵ8
√
bl

.

Using the upper bound of Hmax from (71), we have

τM (ϵ8) ≤
8 exp(12kρmaxϕmax)

b2l
log

√
bu exp(kρmaxϕmax)

ϵ8
√
bl

= 8b−2
l exp(12kρmaxϕmax)

[
log

√
bu

ϵ8
√
bl

+ kρmaxϕmax

]
.

R.3.4 Guarantees on the output of Algorithm 3

The following Lemma shows that the estimate, obtained from Algorithm 3, of the mean parameter vector, is
such that the ℓ∞ error is small with high probability.
Lemma R.3. Let ϵ9 > 0 and δ9 ∈ (0, 1). Let ν̂(ρ) be the output of Algorithm 3 with w(0) = 0, ρ = (ρ1, · · · , ρk),

τ1 = 8b−2
l exp(12kρmaxϕmax)

[
log 4ϕmax

√
bu

ϵ9
√
bl

+ kρmaxϕmax

]
, and τ2 =

8ϕ2
max

ϵ29
log
(

2
δ9

)
. Then,

∥ν(ρ)− ν̂(ρ)∥∞ ≤ ϵ9,

with probability at least 1− kδ9.

Proof of Lemma R.3. The distribution of the Markov chain in Algorithm 3 after τ1 + 1 steps is T (τ1+1)(UX0)
where UX0 denotes the initial uniform distribution. Let νM (ρ) := (νM1 , · · · , νMk ) be the vector such that νMj is the
expected value of ϕj(·) with respect to the distribution T (τ1+1)(UX0

). Using Lemma R.2, we have τ1 ≥ τM( ϵ9
4ϕmax

).
Therefore, ∣∣∣∣T τ1+1(UX0

)− Fw

∣∣∣∣
TV
≤ ϵ9

4ϕmax
.
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From Lemma R.1, we have

∥ν(ρ)− νM (ρ)∥∞ ≤
ϵ9
2
. (78)

ν̂(ρ) is computed using the samples obtained from the distribution T (τ1+1)(UX0
). Using Hoeffding’s inequality,

we have ∀j ∈ [k]

P(|ν̂j − νMj | ≥ t0) ≤ 2 exp(
−τ2t20
2ϕ2max

).

Therefore when τ2 ≥ 2ϕ2
max

t20
log
(

2
δ9

)
, we have |ν̂j − νMj | ≤ t0 with probability at least 1− δ9.

Using the union bound ∀j ∈ [k], when τ2 ≥ 8ϕ2
max

ϵ29
log
(

2
δ9

)
, we have

∥ν̂(ρ)− νM (ρ)∥∞ ≤
ϵ9
2
, (79)

with probability at least 1− kδ9.

Combining (78) and (79) by triangle inequality, we have

∥ν(ρ)− ν̂(ρ)∥∞ = ∥ν(ρ)− νM (ρ) + νM (ρ)− ν̂(ρ)∥∞ ≤ ∥ν(ρ)− νM (ρ)∥∞ + ∥ν̂(ρ)− νM (ρ)∥∞ ≤ ϵ9.

S Proof of Proposition O.2

In this appendix, we prove Proposition O.2. First, we will prove the strict convexity of the log partition function
of interest (Lemma S.1). Next, we express the conjugate duality between the mean parameters and the canonical
parameters. Next, we argue the need of the projected gradient descent algorithm. Finally, we provide the proof
of Proposition O.2.

Recall the setup for the projected gradient descent algorithm from Appendix O.2.1. Specifically, recall the
definitions of ρ∗, fw (w;ρ∗), P, ρmax, and υ∗. Also, υ̂ is an estimate of υ∗ such that, with probability at least
1 − δ5, we have ∥υ∗ − υ̂∥∞ ≤ ϵ5. Further, recall the setup from Appendix R.1. Specifically, for any ρ ∈ P,
recall the definitions of fw (w;ρ), ν(ρ), and Z(ρ) from (66), (67), and (68) respectively. Recall the definition of
qs from Section 2.

S.1 Convexity of the log partition function

Let Φ(ρ) be the log partition function of fw (w;ρ). Because fw (w;ρ) is an exponential family density, ∇Φ(ρ) =
ν(ρ); see Wainwright and Jordan (2008) for details. The following Lemma shows that Φ(ρ) is a strictly convex
function of ρ.
Lemma S.1. Φ(ρ) is a strictly convex function of ρ.

Proof of Lemma S.1. For any non-zero e ∈ Rk, eTϕ(w) is not a constant with respect to w. Therefore,

0
(a)
< Var

(
eTϕ(w)

)
= cov

(
eTϕ(w), eTϕ(w)

)
=

k∑
j=1

k∑
r=1

ejer × cov(ϕj(w), ϕr(w))

(b)
=

k∑
j=1

k∑
r=1

ejer[∇2Φ(ρ)]j,r
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= eT∇2Φ(ρ)e.

where (a) follows because the variance of a non-constant random variable is strictly positive and (b) follows
because for any regular exponential family the Hessian of the log partition function is the covariance matrix of
the associated sufficient statistic vector; see Wainwright and Jordan (2008) for details.

Thus, ∇2Φ(ρ) is a positive definite matrix and this is a sufficient condition for strict convexity of Φ(ρ).

S.2 Conjugate Duality

Expressing the relationship between the canonical and mean parameters via conjugate duality (Bresler et al.,
2014; Wainwright and Jordan, 2008), we know that for each υ in the set of realizable mean parameters, there
is a unique ρ(υ) ∈ P satisfying the dual matching condition ν(ρ(υ)) = υ. The backward mapping of the mean
parameters to the canonical parameters (υ 7→ ρ(υ)) is given by,

ρ(υ) = argmax
ρ∈P

{
⟨υ,ρ⟩ − Φ(ρ)

}
. (80)

Defining Ω(ρ,υ) := Φ(ρ)− ⟨υ,ρ⟩, we can rewrite (80) as
ρ(υ) = argmin

ρ∈P

{
Ω(ρ,υ)

}
. (81)

For any ρ ∈ P, let q(ρ) denote the smallest eigenvalue of the Hessian of the log partition function with canonical
parameter ρ. Recall that qs denotes the minimum of q(ρ) over all possible ρ ∈ P.
Lemma S.2. Ω(ρ,υ) is a qs strongly convex function of ρ and a 2kϕ2max smooth function of ρ.

Proof of Lemma S.2. Observe that ∇2Ω(ρ,υ) = ∇2Φ(ρ). Therefore Ω(ρ,υ) being a qs strongly convex function
of ρ and a 2kϕ2max smooth function of ρ is equivalent to Φ(ρ) being a qs strongly convex function of ρ and a
2kϕ2max smooth function of ρ.

We will first show the strong convexity of Φ(ρ). Consider any e ∈ Rk such that ∥e∥2 = 1. We have
q(ρ) = inf

e:∥e∥2≤1
eT∇2Φ(ρ)e.

Using Lemma S.1 we know that q(ρ) > 0 for any ρ ∈ P. Observe that [∇2Φ(ρ)]j,r = cov(ϕj(w), ϕr(w)), and is a
continuous function of ρ ,∀j, r ∈ [k]. Now q(ρ) is a linear combination of [∇2Φ(ρ)]j,r ∀j, r ∈ [k]. Therefore q(ρ)
is also a continuous function of ρ. Using the continuity of q(ρ) and compactness of P, we apply the extreme
value theorem and conclude that the function q(ρ) will attain its minimum value of

qs = inf
ρ∈P

q(ρ),

and that this value is positive. Now using the fact that ∇2Φ(ρ) is a symmetric matrix and the Courant-Fischer
theorem, we conclude that the minimum possible eigenvalue of ∇2Φ(ρ) for any ρ ∈ P is greater than or equal to
qs. Thus, the smallest possible eigenvalue of the Hessian of the log partition function is uniformly lower bounded.
As a result, Φ(ρ) and Ω(ρ,υ) are qs-strongly convex.

We will now show the smoothness of Φ(ρ). From the Gershgorin circle theorem, we know that the largest
eigenvalue of any matrix is upper bounded by the largest absolute row sum or column sum. Applying this, we
see that the largest eigenvalue of ∇2Φ(ρ) is upper bounded by max1≤r≤k

∑k
j=1 |[∇2Φ(ρ)]j,r|. Now

max
1≤r≤k

k∑
j=1

|[∇2Φ(ρ)]j,r| = max
1≤r≤k

k∑
j=1

|cov(ϕj(w), ϕr(w))|

(a)

≤ max
1≤r≤k

k∑
j=1

2ϕ2max

≤ 2kϕ2max,

where (a) follows from the triangle inequality and because |ϕj(w)| ≤ ϕmax ∀j ∈ [k].

Now because the largest eigenvalue of the Hessian matrix of the log partition function is uniformly upper bounded
by 2kϕ2max, Φ(ρ) and Ω(ρ,υ) are 2kϕ2max smooth function of ρ.



On Learning Continuous Pairwise Markov Random Fields

S.3 Why projected gradient descent algorithm?

From Lemma S.2, we see that there is a unique minimum in (81). In other words, when the mean parameter
in (81) is the true mean parameter of (54) i.e., υ = υ∗, then the unique minima in (81) is ρ∗. Therefore, in
principle, we can estimate ρ∗ using a projected gradient descent algorithm.

In each step of this algorithm, we need access to ν(ρ) for the estimate ρ. However, we don’t have access to υ∗

and ν(ρ). Instead, we have access to υ̂ and ν̂(ρ) (from Algorithm 3). Therefore, we can estimate the parameter
vector ρ∗ using the projected gradient descent in Algorithm 4.

S.4 Proof of Proposition O.2

We restate the Proposition below and then provide the proof.
Proposition O.2. Let ϵ6 > 0. Let ρ̂ denote the output of Algorithm 4 with ξ = 1/c̄2, τ1 =

8b−2
l exp(12kρmaxϕmax)

[
log 4ϕmax

√
bu

ϵ9
√
bl

+ kρmaxϕmax

]
, τ2 =

8ϕ2
max

ϵ25
log
(
2kτ3
δ5

)
, τ3 = c̄2

c̄1
log

(
kρ2

max

ϵ26−c̄3

)
, w(0) = 0,

ρ(0) = (0, · · · , 0) and υ̂ = (υ̂1, · · · , υ̂k). Then,

∥ρ∗ − ρ̂∥2 ≤ ϵ6,

with probability at least 1− 2δ5.

Proof of Lemma O.2. The projection of ρ̃, onto a set P is defined as

ΠP(ρ̃) := argmin
ρ∈P

∥ρ− ρ̃∥.

If we had access to υ∗ and ν(ρ), the iterates of the projected gradient descent algorithm could be rewritten as

ρ(r+1) = ρ(r) − ξγP(ρ(r)),

where γP(ρ) is the gradient mapping and is defined as γP(ρ) := 1
ξ (ρ−ρ

†) with ρ† := ΠP(ρ− ξ[ν(ρ)−υ∗]). See
Bubeck (2015) for more details. Because we are using the respective estimates υ̂ and ν̂(ρ), the iterates of the
projected gradient descent algorithm are as follows:

ρ(r+1) = ρ(r) − ξγ̂P(ρ(r)),

where γ̂P(ρ) := 1
ξ (ρ− ρ

††) with ρ†† := ΠP(ρ− ξ[ν̂(ρ)− υ̂]).

Using Lemma R.3, we have

∥ν(ρ)− ν̂(ρ)∥∞ ≤ ϵ5,

with probability at least 1− δ5/τ3.

Recall the setup from Appendix O.2.1. Let us condition on the events that ∥υ∗ − υ̂∥∞ ≤ ϵ5 and that, for each
of the τ3 steps of Algorithm 4, ∥ν(ρ)− ν̂(ρ)∥∞ ≤ ϵ5. These events simultaneously hold with probability at least
1− 2δ5.

Now for any r ≤ τ3 + 1 the following hold with probability at least 1− 2δ5:

∥ρ(r) − ρ∗∥2 = ∥ρ(r−1) − ξγ̂P(ρ(r−1))− ρ∗∥2
= ∥ρ(r−1) − ξ[γ̂P(ρ(r−1))− γP(ρ(r−1)) + γP(ρ

(r−1))]− ρ∗∥2
= ∥ρ(r−1) − ξγP(ρ(r−1))− ξ[γ̂P(ρ(r−1))− γP(ρ(r−1))]− ρ∗∥2
(a)

≤ ∥ρ(r−1) − ξγP(ρ(r−1))− ρ∗∥2 + ξ∥γ̂P(ρ(r−1))− γP(ρ(r−1))∥2
(b)

≤ ∥ρ(r−1) − ξγP(ρ(r−1))− ρ∗∥2 + ξ∥ν̂(ρ(r−1))− ν(ρ(r−1)) + υ∗ − υ̂∥2



Abhin Shah, Devavrat Shah, Gregory W. Wornell

(c)

≤ ∥ρ(r−1) − ξγP(ρ(r−1))− ρ∗∥2 + ξ∥ν̂(ρ(r−1))− ν(ρ(r−1))∥2 + ξ∥υ∗ − υ̂∥2
(d)

≤ ∥ρ(r−1) − ξγP(ρ(r−1))− ρ∗∥2 + ξ
√
k∥ν̂(ρ(r−1))− ν(ρ(r−1))∥∞ + ξ

√
k∥υ∗ − υ̂∥∞

(e)

≤ ∥ρ(r−1) − ξγP(ρ(r−1))− ρ∗∥2 + 2ξ
√
kϵ5, (82)

where (a) follows from the triangle inequality, (b) follows from the definitions of γP(ρ) and γ̂P(ρ) and because
the projection onto a convex set is non-expansive i.e., ∥ΠP(ρ̃)−ΠP(ρ̄)∥ ≤ ∥ρ̃− ρ̄∥, (c) follows from the triangle
inequality, (d) follows because ∀ v ∈ Rk, ∥v∥2 ≤

√
k∥v∥∞, and (e) follows because of the conditioning.

Squaring both sides of (82) the following hold with probability at least 1− 2δ5:

∥ρ(r) − ρ∗∥22 ≤ ∥ρ(r−1) − ξγP(ρ(r−1))− ρ∗∥22 + 4ξ2kϵ25 + 4ξ
√
kϵ5∥ρ(r−1) − ξγP(ρ(r−1))− ρ∗∥2

(a)

≤ ∥ρ(r−1) − ξγP(ρ(r−1))− ρ∗∥22 + 4ξ2kϵ25 + 4ξ
√
kϵ5

[
∥ρ(r−1) − ρ∗∥2 + ξ∥γP(ρ(r−1))∥2

]
(b)

≤ ∥ρ(r−1) − ξγP(ρ(r−1))− ρ∗∥22 + 4ξ2kϵ25 + 4ξ
√
kϵ5

[
∥ρ(r−1) − ρ∗∥2 + ξ∥ν(ρ)− υ∗∥2

]
(c)

≤ ∥ρ(r−1) − ξγP(ρ(r−1))− ρ∗∥22 + 4ξ2kϵ25 + 8ξkϵ5(ρmax + ξϕmax),

where (a) follows from the triangle inequality, (b) follows by using the non-expansive property to observe that
∥γP(ρ)∥2 ≤ ∥ν(ρ)−υ∗∥2, and (c) follows because ∥ρ(r−1)−ρ∗∥2 ≤ 2

√
kρmax and ∥ν(ρ(r−1))−υ∗∥2 ≤ 2

√
kϕmax.

Letting Υ(ξ) := 4ξ2kϵ25 + 8ξkϵ5(ρmax + ξϕmax), the following hold with probability at least 1− 2δ5:

∥ρ(r) − ρ∗∥22 ≤ ∥ρ(r−1) − ξγP(ρ(r−1))− ρ∗∥22 +Υ(ξ)

(a)
= ∥ρ(r−1) − ρ∗∥22 + ξ2∥γP(ρ(r−1))∥22 − 2ξ

⟨
γP(ρ

(r−1)),ρ(r−1) − ρ∗
⟩
+Υ(ξ), (83)

where (a) follows from the fact that for any two vectors f1, f2, ∥f1 − f2∥22 = ∥f1∥22 + ∥f2∥22 − 2 ⟨f1, f2⟩.

For a twice differentiable, c̄1 strongly convex and c̄2 smooth function Ω(ρ), we have, for any ρ ∈ P

⟨γP(ρ),ρ− ρ∗⟩ ≥
c̄1
2
∥ρ− ρ∗∥22 +

1

2c̄2
∥γP(ρ)∥22, (84)

where ρ∗ is the minimizer of Ω(ρ). See Bubeck (2015) for more details. Using (84) in (83), the following hold
with probability at least 1− 2δ5:

∥ρ(r) − ρ∗∥22 ≤ (1− ξc̄1)∥ρ(r−1) − ρ∗∥22 +
(
ξ2 − ξ

c̄2

)
∥γP(ρ(r−1))∥22 +Υ(ξ).

Substituting ξ = 1
c̄2

, the following hold with probability at least 1− 2δ5:

∥ρ(r) − ρ∗∥22 ≤
(
1− c̄1

c̄2

)
∥ρ(r−1) − ρ∗∥22 +Υ

(
1

c̄2

)
.

Unrolling the recurrence gives, we have the following with probability at least 1− 2δ5:

∥ρ(r) − ρ∗∥22 ≤
(
1− c̄1

c̄2

)r

∥ρ(0) − ρ∗∥22 +
r−1∑
j=0

(
1− c̄1

c̄2

)j

Υ

(
1

c̄2

)

≤
(
1− c̄1

c̄2

)r

∥ρ(0) − ρ∗∥22 +
∞∑
j=0

(
1− c̄1

c̄2

)j

Υ

(
1

c̄2

)
(a)
=

(
1− c̄1

c̄2

)r

∥ρ∗∥22 + c̄3

(b)

≤ exp(
−c̄1r
c̄2

)∥ρ∗∥22 + c̄3,
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where (a) follows by observing that c̄2
c̄1
Υ
(

1
c̄2

)
= c̄3 and ρ(0) = (0, · · · , 0), and (b) follows because for any y ∈ R,

1− y ≤ e−y.

A sufficient condition for ∥ρ(r) − ρ∗∥2 ≤ ϵ6 with probability at least 1− 2δ5 is

exp(
−c̄1r
c̄2

)∥ρ∗∥22 + c̄3 ≤ ϵ26.

Rearranging gives us,

exp(
c̄1r

c̄2
) ≥ ∥ρ

∗∥22
ϵ26 − c̄3

.

Taking logarithm on both sides, we have

r ≥ c̄2
c̄1

log

(
∥ρ∗∥22
ϵ26 − c̄3

)
.

Observe that ∥ρ∗∥22 ≤ kρ2max. Therefore, after τ3 steps, we have ∥ρ̂− ρ∗∥2 ≤ ϵ6 with probability at least 1− 2δ5
and this completes the proof.

T Examples of distributions

In this appendix, we discuss the examples of distributions from Section 4 that satisfy the Condition 4.1. We also
discuss a few other examples. Recall the definitions of γ = θmax(k + k2d) and φmax = 2max{ϕmax, ϕ

2
max} from

Section 3. Also recall the definitions of fL := exp
(
− 2γφmax

)
/bu and fU := exp

(
2γφmax

)
/bl from Appendix B.

T.1 Example 1

The following distribution with polynomial sufficient statistics is a special case of density in (2) with ϕ(x) = x
and k = 1. Let ∀i ∈ [p], Xi = [−b, b]. Therefore bl = bu = 2b, ϕmax = b and ϕ̄max = 1. The density, in this case,
is given by

fx(x;θ
∗) ∝ exp

(∑
i∈[p]

θ∗(i)xi +
∑
i∈[p]

∑
j>i

θ∗(ij)xixj

)
.

For this density, we see that γ = θmax(d+ 1) and φmax = 2max{b, b2}. Let us first lower bound the conditional
entropy of xj given x−j .

h

(
xj

∣∣∣∣x−j

)
= −

∫
x∈X

fx(x;θ
∗) log fxj (xj |x−j = x−j ;ϑ

∗(j))dx

(a)

≥ −
∫
x∈X

fx(x;θ
∗) log(fU )dx

(b)
= − log fU , (85)

where (a) follows from (17) with fU = exp(4θmax(d + 1)max{b, b2})/2b and (b) follows because the integral of
any density function over its entire domain is 1.

Observing that
∫
xi∈Xi

xixjUXi
(xi)dxi = 0, the left-hand-side of Condition 4.1 can be written and simplified as

follows:

E
[
exp

{
2h

(
(θ̄(ij) − θ̃(ij))xixj

∣∣∣∣x−j

)}]
(a)
= E

[
exp

{
2h
(
xj

∣∣∣x−j

)
+ 2 log

∣∣∣(θ̄(ij) − θ̃(ij))xi∣∣∣}]
(b)

≥ E
[
exp

{
− 2 log fU + 2 log

∣∣∣(θ̄(ij) − θ̃(ij))xi∣∣∣}]
=

(θ̄(ij) − θ̃(ij))2

f2U
E
[
x2i

]



Abhin Shah, Devavrat Shah, Gregory W. Wornell

(c)
=

(θ̄(ij) − θ̃(ij))2

f2U
E
[
E
[
x2i |x−i

]]
(d)
=

(θ̄(ij) − θ̃(ij))2

f2U
E
[ ∫

xi∈Xi

x2i fxi(xi|x−i = x−i;ϑ
∗(i))dxi

]
(e)

≥ fL(θ̄
(ij) − θ̃(ij))2

f2U
E
[ ∫

xi∈Xi

x2i dxi

]
≥ 2b3fL

3f2U
(θ̄(ij) − θ̃(ij))2,

where (a) follows because for a constant a, h(aX) = h(X) + log |a|, (b) follows from (85), (c) follows from the
law of total expectation, (d) follows from the definition of conditional expectation, and (e) follows from (17).

Substituting for fL and fU , we see this density satisfies Condition 4.1 with κ = 4b4

3 exp(−12θmax(d +
1)max{b, b2}).

T.2 Example 2

The following distribution with harmonic sufficient statistics is a special case of density in (2) with ϕ(x) =(
sin
(
πx/b

)
, cos

(
πx/b

))
and k = 2. Let ∀i ∈ [p], Xi = [−b, b]. Therefore bl = bu = 2b, ϕmax = 1, and

ϕ̄max = π/b. The density in this case is given by

fx(x;θ
∗) ∝ exp

(∑
i∈[p]

[
θ
∗(i)
1 sin

πxi
b

+ θ
∗(i)
2 cos

πxi
b

]
+

∑
i∈[p]j>i

[
θ
∗(ij)
1 sin

π(xi + xj)

b
+ θ

∗(ij)
2 cos

π(xi + xj)

b

])
.

For this density, we see that γ = θmax(4d + 2) and φmax = 2. Let yj = sin
(

πxj
b + z

)
where z is a constant

with respect to xj . Then, the conditional density of yj given x−j can be obtained using the change of variables
technique to be as follows:

fyj (yj |x−j = x−j ;ϑ
∗(j)) =



b
[
fxj
(
b
π [sin

−1 yj − z]
∣∣x−j ;ϑ

∗(j))+ fxj
(
− b− b

π [sin
−1 yj + z]

∣∣x−j ;ϑ
∗(j))]

π
√
1− y2j

if yj ∈ [−1, 0]
b
[
fxj
(
b
π [sin

−1 yj − z]
∣∣x−j ;ϑ

∗(j))+ fxj
(
b− b

π [sin
−1 yj + z]

∣∣x−j ;ϑ
∗(j))]

π
√
1− y2j

if yj ∈ [0, 1].

Using (17), we can bound the above conditional density as:

fyj (yj |x−j = x−j ;ϑ
∗(j)) ≤ 2bfU

π
√
1− y2j

, (86)

where fU = exp(4θmax(4d+ 2))/2b.

Let us now lower bound the conditional entropy of yj given x−j = x−j .

h

(
yj

∣∣∣∣x−j = x−j

)
= −

∫ yj=1

yj=−1

fyj (yj |x−j = x−j ;ϑ
∗(j)) log fyj (yj |x−j = x−j ;ϑ

∗(j))dyj

(a)

≥ −
∫ yj=1

yj=−1

2bfU

π
√
1− y2j

log
2bfU

π
√
1− y2j

dyj

= −2bfU
π

[
log

2bfU
π

∫ yj=1

yj=−1

1√
1− y2j

dyj −
∫ yj=1

yj=−1

1√
1− y2j

log
√
1− y2jdyj

]
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(b)
= −2bfU

π

[
π log

2bfU
π

+ π log 2

]
= −2bfU log

4bfU
π

, (87)

where (a) follows from (86) and (b) follows from standard definite integrals. Now, we are in a position to lower
bound the conditional entropy of yj given x−j .

h

(
yj

∣∣∣∣x−j

)
=

∫
x−j∈

∏
r ̸=j Xr

fx−j
(x−j ;θ

∗)h

(
yj

∣∣∣∣x−j = x−j

)
dx−j

(a)

≥ −2bfU log
4bfU
π

, (88)

where (a) follows from (87) and because the integral of any density function over its entire domain is 1.

Observe that
∫
xi∈Xi

sin
(π(xi+xj)

b

)
UXi

(xi)dxi =
∫
xi∈Xi

cos
(π(xi+xj)

b

)
UXi

(xi)dxi = 0. Letting θ̄(ij)1 − θ̃(ij)1 = α and
θ̄
(ij)
2 − θ̃(ij)2 = β, the left-hand-side of Condition 4.1 can be written and simplified as follows:

E
[
exp

{
2h

(
α sin

(π(xi + xj)

b

)
+ β cos

(π(xi + xj)

b

)∣∣∣∣x−j

)}]
(a)
= E

[
exp

{
2h

(√
α2 + β2 sin

(π(xi + xj)

b
− tan−1 β

α

)∣∣∣∣x−j

)}]
(b)
= E

[
exp

{
2h
(
sin
(π(xi + xj)

b
− tan−1 β

α

)∣∣∣x−j

)
+ 2 log

∣∣∣√α2 + β2
∣∣∣}]

(c)

≥ E
[
exp

{
− 4bfU log

4bfU
π

+ log
∣∣∣α2 + β2

∣∣∣}]
(d)
=
( π

4bfU

)4bfU
×
[
(θ̄

(ij)
1 − θ̃(ij)1 )2 + (θ̄

(ij)
2 − θ̃(ij)2 )2

]
,

where (a) follows from standard trigonometric identities, (b) follows because for a constant a, h(aX) = h(X) +
log |a|, (c) follows from (88) with z = πxi/b− tan−1 β/α, and (d) follows by substituting for α and β.

Substituting for fL and fU , we see this density satisfies Condition 4.1 with κ =(
π exp(−4θmax(4d+2))

2

)2 exp(4θmax(4d+2))

.

T.3 Example 3

The following distribution with polynomial sufficient statistics is a special case of density in (2) with ϕ(x) =
(x, x2), k = 2 and with the assumption that the parameters associated with xix2j and x2ix2j are zero ∀i ∈ [p], j > i.
Let ∀i ∈ [p], Xi = [−b, b]. Therefore bl = bu = 2b, ϕmax = max{b, b2}, and ϕ̄max = max{1, 2b}. The density in
this case is given by

fx(x;θ
∗) ∝ exp

(∑
i∈[p]

[θ
∗(i)
1 xi + θ

∗(i)
2 x2i ] +

∑
i∈[p]

∑
j>i

[θ
∗(ij)
1,1 xixj + θ

∗(ij)
2,1 x2ixj ]

)
.

For this density, we see that γ = θmax(4d + 2) and φmax = 2max{b, b4}. As in Appendix T.1, we have the
following lower bound on the conditional entropy of xj given x−j

h

(
xj

∣∣∣∣x−j

)
≥ − log fU , (89)

where fU = exp(4θmax(4d+ 2)max{b, b4})/2b.

Observing that
∫
xi∈Xi

xixjUXi
(xi)dxi = 0 and

∫
xi∈Xi

x2ixjUXi
(xi)dxi =

b2

3 xj , the left-hand-side of Condition 4.1
can be written and simplified as follows:

E
[
exp

{
2h

(
(θ̄

(ij)
1,1 − θ̃

(ij)
2,1 )xixj + (θ̄

(ij)
2,1 − θ̃

(ij)
2,1 )

(
x2i xj −

b2

3
xj
)∣∣∣∣x−j

)}]
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= E
[
exp

{
2h

([
(θ̄

(ij)
1,1 − θ̃

(ij)
2,1 )xi + (θ̄

(ij)
2,1 − θ̃

(ij)
2,1 )

(
x2i −

b2

3

)]
xj

∣∣∣∣x−j

)}]
(a)
= E

[
exp

{
2h

(
xj

∣∣∣∣x−j

)
+ 2 log

∣∣∣∣(θ̄(ij)1,1 − θ̃
(ij)
2,1 )xi + (θ̄

(ij)
2,1 − θ̃

(ij)
2,1 )

(
x2i −

b2

3

)∣∣∣∣}]
(b)

≥ E
[
exp

{
− 2 log fU + 2 log

∣∣∣∣(θ̄(ij)1,1 − θ̃
(ij)
2,1 )xi + (θ̄

(ij)
2,1 − θ̃

(ij)
2,1 )

(
x2i −

b2

3

)∣∣∣∣}]
=

1

f2U
E
[(

(θ̄
(ij)
1,1 − θ̃

(ij)
2,1 )xi + (θ̄

(ij)
2,1 − θ̃

(ij)
2,1 )

(
x2i −

b2

3

))2]
(c)
=

1

f2U
E
[
E
[(

(θ̄
(ij)
1,1 − θ̃

(ij)
2,1 )xi + (θ̄

(ij)
2,1 − θ̃

(ij)
2,1 )

(
x2i −

b2

3

))2∣∣∣∣x−i

]]
(d)

≥ fL
f2U

E
[
(θ̄

(ij)
1,1 − θ̃

(ij)
2,1 )2

∫
xi∈Xi

x2i dxi + (θ̄
(ij)
2,1 − θ̃

(ij)
2,1 )2

(∫
xi∈Xi

[
x4i +

b4

9
− 2b2

3
x2i

]
dxi

)
+ 2(θ̄

(ij)
1,1 − θ̃

(ij)
2,1 )(θ̄

(ij)
2,1 − θ̃

(ij)
2,1 )

(∫
xi∈Xi

[
x3i −

b2

3
xi

]
dxi

)]
=
fL
f2U

[
2b3

3
(θ̄

(ij)
1,1 − θ̃

(ij)
2,1 )2 +

(
2b5

5
+

2b5

9
− 4b5

9

)
(θ̄

(ij)
2,1 − θ̃

(ij)
2,1 )2

]
=
fL
f2U

[
2b3

3
(θ̄

(ij)
1,1 − θ̃

(ij)
2,1 )2 +

8b5

45
(θ̄

(ij)
2,1 − θ̃

(ij)
2,1 )2

]
≥ 8fLb

3 min{45/12, b2}
45f2U

[
(θ̄

(ij)
1,1 − θ̃

(ij)
2,1 )2 + (θ̄

(ij)
2,1 − θ̃

(ij)
2,1 )2

]
,

where (a) follows because for a constant a, h(aX) = h(X) + log |a|, (b) follows from (89), (c) follows from the
law of total expectation, and (d) follows from the definition of conditional expectation and (17).

Substituting for fL and fU , we see this density satisfies Condition 4.1 with κ = 16b4 min{45/12,b2}
45 exp(−12θmax(4d+

2)max{b, b4}).

T.4 Example 4

The following distribution with polynomial sufficient statistics is a special case of density in (2) with ϕ(x) =
(x, x2), k = 2 and with the assumption that the parameters associated with xixj , x2ixj , xix2j and x2ix2j are same
∀i ∈ [p], j > i. Let ∀i ∈ [p], Xi = [−b, b]. Therefore bl = bu = 2b, ϕmax = max{b, b2}, and ϕ̄max = max{1, 2b}.
The density in this case is given by

fx(x;θ
∗) ∝ exp

(∑
i∈[p]

[θ
∗(i)
1 xi + θ

∗(i)
2 x2i ] +

∑
i∈[p]
j>i

θ∗(ij)(xi + x2i )(xj + x2j )

)
.

For this density, we see that γ = θmax(4d + 2) and φmax = 2max{b, b4}. Let yj = xj + x2j . It is easy to obtain
the range of yj as follows:

yj ∈ Y :=

{
[−1/4, b+ b2] if b ≥ 1/2

[b− b2, b+ b2] if b < 1/2.

We obtain the conditional density of yj given x−j using the change of variables technique and upper bound it
using (17) as follows:

fyj (yj |x−j = x−j ;ϑ
∗(j)) ≤ 2fU√

1 + 4yj
, (90)

where fU = exp(4θmax(4d+ 2)max{b, b4})/2b.

We will now lower bound the conditional entropy of yj given x−j = x−j . In the first scenario, let b ≥ 1/2.

h

(
yj

∣∣∣∣x−j = x−j

)
= −

∫ yj=b+b2

yj=−1/4

fyj (yj |x−j = x−j ;ϑ
∗(j)) log fyj (yj |x−j = x−j ;ϑ

∗(j))dyj
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(a)

≥ −
∫ yj=b+b2

yj=−1/4

2fU√
1 + 4yj

log
2fU√
1 + 4yj

dyj

(b)
= −fU

√
1 + 4yj log

2fUe√
1 + 4yj

∣∣∣∣∣
b+b2

−1/4

= −(1 + 2b)fU log
2fUe

1 + 2b
, (91)

where (a) follows from (90) and (b) follows from standard indefinite integrals. Now, we will lower bound the
conditional entropy of yj given x−j = x−j and b < 1/2.

h

(
yj

∣∣∣∣x−j = x−j

)
= −

∫ yj=b+b2

yj=b−b2
fyj (yj |x−j = x−j ;ϑ

∗(j)) log fyj (yj |x−j = x−j ;ϑ
∗(j))dyj

(a)

≥ −
∫ yj=b+b2

yj=b−b2

2fU√
1 + 4yj

log
2fU√
1 + 4yj

dyj

(b)
= −fU

√
1 + 4yj log

2fUe√
1 + 4yj

∣∣∣∣∣
b+b2

b−b2

= −(1 + 2b)fU log
2fUe

1 + 2b
+ (1− 2b)fU log

2fUe

1− 2b
(c)

≥ −(1 + 2b)fU log
2fUe

1 + 2b
, (92)

where (a) follows from (90), (b) follows from standard indefinite integrals and (c) follows because (1 −
2b) log 2fUe

1−2b > 0 when b < 1/2. Now, we are in a position to lower bound the conditional entropy of yj given x−j .

h

(
yj

∣∣∣∣x−j

)∫
x−j∈

∏
r ̸=j Xr

fx−j (x−j ;θ
∗)h

(
yj

∣∣∣∣x−j = x−j

)
dx−j

(a)

≥ −(1 + 2b)fU log
2fUe

1 + 2b
, (93)

where (a) follows from (91), (92), and because the integral of any density function over its entire domain is 1.

Observing that
∫
xi∈Xi

xiUXi
(xi)dxi = 0 and

∫
xi∈Xi

x2iUXi
(xi)dxi =

b2

3 , the left-hand-side of Condition 4.1 can
be written and simplified as follows:

E
[
exp

{
2h

((
θ̄(ij) − θ̃(ij)

)(
xi + x2i −

b2

3

)(
xj + x2j

)∣∣∣∣x−j

)}]
(a)
= E

[
exp

{
2h

(
xj + x2j

∣∣∣∣x−j

)
+ 2 log

∣∣∣∣(θ̄(ij) − θ̃(ij))(xi + x2i −
b2

3

)∣∣∣∣}]
(b)

≥ E
[
exp

{
− 2(1 + 2b)fU log

2fUe

1 + 2b
+ 2 log

∣∣∣∣(θ̄(ij) − θ̃(ij))(xi + x2i −
b2

3

)∣∣∣∣}]
=

(
1 + 2b

2fUe

)2fU (1+2b)

E
[(
θ̄(ij) − θ̃(ij)

)2(
xi + x2i −

b2

3

)2]
(c)
= fL(θ̄

(ij) − θ̃(ij))2
(
2b3

3
+

8b5

45

)(
1 + 2b

2fUe

)2fU (1+2b)

,

where (a) follows because for a constant a, h(aX) = h(X) + log |a|, (b) follows from (93), (c) follows from steps
similar to the ones in Appendix T.3.

Substituting for fL and fU , we see this density satisfies Condition 4.1 with κ =

e(15b+4b3)
45(1+2b)

(
b(1+2b) exp(−4θmax(4d+2)max{b,b4})

e

) 1+2b
b exp(4θmax(4d+2)max{b,b4})+1

.
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U Discussions

In this appendix, we discuss the invertibility of the cross-covariance matrix B(ϑ∗(i)) via a simple example as well
as explicitly show that the matrix B(ϑ∗(i))−1A(ϑ∗(i))B(ϑ∗(i))−1 need not be equal to the inverse of the Fisher
information matrix of x. This concludes that even though the estimator ϑ̂(i)

n is asymptotically normal, it is not
asymptotically efficient. Finally, we also provide a brief discussion on the assumption of the minimality of the
exponential family.

U.1 Invertibility of the cross-covariance matrix

We will look at the special case of ϕ(x) = x and k = 1 and show that the cross-covariance matrix of φ(i)(x) and
φ(i)(x) exp

(
− ϑ∗(i)Tφ(i)(x)

)
i.e., B(ϑ∗(i)) is invertible ∀i ∈ [p] when p = 2. Let X1 = [−b, b] and X2 = [−b, b].

The density in this special case is as follows.

fx(x;θ
∗) ∝ exp

(
θ∗(1)x1 + θ∗(2)x2 + θ∗(12)x1x2

)
. (94)

It is easy to see that the basis functions x1, x2, and x1x2 are already locally centered. Therefore, we have

φ(1)(x) = (x1, x1x2) and φ(2)(x) = (x2, x1x2)

ϑ∗(1) = (θ∗(1), θ∗(12)) and ϑ∗(2) = (θ∗(2), θ∗(12)).

Then, the cross-covariance matrices B(ϑ∗(1)) and B(ϑ∗(2)) are

B(ϑ∗(1)) =

[
E[x21 exp (−θ∗(1)x1 − θ∗(12)x1x2)] E[x21 x2 exp (−θ∗(1)x1 − θ∗(12)x1x2)]
E[x21 x2 exp (−θ∗(1)x1 − θ∗(12)x1x2)] E[x21 x22 exp (−θ∗(1)x1 − θ∗(12)x1x2)]

]
and
B(ϑ∗(2)) =

[
E[x22 exp (−θ∗(2)x2 − θ∗(12)x1x2)] E[x22 x1 exp (−θ∗(2)x2 − θ∗(12)x1x2)]
E[x22 x1 exp (−θ∗(2)x2 − θ∗(12)x1x2)] E[x22 x21 exp (−θ∗(2)x2 − θ∗(12)x1x2)]

]
.

Using the Cauchy-Schwarz inequality, for random variables M and N , we have

[E(MN)]2 ≤ E(M2)E(N2),

with equality only if M and N are linearly dependent. Using the Cauchy-Schwarz inequality with M =
x1 exp(−0.5θ∗(1)x1 − 0.5θ∗(12)x1x2), N = x1x2 exp(−0.5θ∗(1)x1 − 0.5θ∗(12)x1x2) and observing that M and N
are not linearly dependent (because x2 is a random variable), we have invertibility of B(ϑ∗(1)). Similarly,
using the Cauchy-Schwarz inequality with M = x2 exp(−0.5θ∗(2)x2 − 0.5θ∗(12)x1x2), N = x2x1 exp(−0.5θ∗(2)x2 −
0.5θ∗(12)x1x2) and observing that M and N are not linearly dependent (because x1 is a random variable), we
have invertibility of B(ϑ∗(2)).

U.2 Fisher information matrix

Let J(ϑ∗(i)) denote the Fisher information matrix of x with respect to node i. For any l ∈ [k + k2(p − 1)], let
φ

(i)
l (x) denote the lth component of φ(i)(x). Using the fact that for any regular exponential family the Hessian

of the log partition function is the covariance matrix of the associated sufficient statistic vector, we have the
Fisher information matrix [

J(ϑ∗(i))
]
l1,l2

= Cov
(
φ

(i)
l1
(x),φ

(i)
l2
(x)
)
.

Consider the density in (94) with b = 1, θ∗(1) = θ∗(2) = 0 and θ∗(12) = 1. We will evaluate the matrices B(ϑ∗(1)),
A(ϑ∗(1)), and J(ϑ∗(1)). We have

B(ϑ∗(1)) =

[
E[x21 exp (−x1x2)] E[x21 x2 exp (−x1x2)]
E[x21 x2 exp (−x1x2)] E[x21 x22 exp (−x1x2)]

]
=

[
1

3Shi(1) 0

0 1
9Shi(1)

]



On Learning Continuous Pairwise Markov Random Fields

A(ϑ∗(1)) =

[
E[x21 exp (−2x1x2)] E[x21 x2 exp (−2x1x2)]
E[x21 x2 exp (−2x1x2)] E[x21 x22 exp (−2x1x2)]

]
=

[
1

eShi(1) 0

0 2Shi(1)+2/e−e
Shi(1)

]

J(ϑ∗(1)) =

[
Cov(x1, x1) Cov(x1, x1x2)

Cov(x1, x1x2) Cov(x1x2, x1x2)

]
=

 1
eShi(1) 0

0 2Shi(1)+2/e−e
Shi(1) −

[
sinh(1)
Shi(1) − 1

]2
 ,

where sinh is the hyperbolic sine function and Shi is the hyperbolic sine integral function. Plugging in the values
of Shi(1), sinh(1), and e, we have (upto two decimals)

B(ϑ∗(1))−1A(ϑ∗(1))B(ϑ∗(1))−1 =

[
3.50 0
0 11.30

]
̸= J−1(ϑ∗(1)) =

[
3.007 0
0 8.90

]
.

U.3 Discussion on minimality of the exponential family

Minimality of the exponential family is used in Theorem 4.1 to ensure a unique minimizer of S(i)(ϑ). This
uniqueness effectively leads to the consistency and the normality of ϑ̂(i)

n via Theorem 4.2. Even though a milder
condition on the exponential family might suffice, assuming minimality of the exponential family does not seem
very restrictive in the continuous setting.

Consider fx1,x2(x1, x2) ∝ exp (θx1x2) with x1, x2 ∈ [−1, 1] as an example. fx(x) is minimal as there does not exist
a non-zero θ such that θx1x2 is a constant (almost everywhere). The same also seems to hold more generally.


