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Appendix

Organization. In Appendix @, we provide an illustrative example to ease through the notations introduced
in Section . In Appendix B, we derive the two forms of the conditional density used in Section f and provide
lower and upper bounds on the conditional density. In Appendix , we provide the proof of Theorem K.1. In
Appendix E? we provide the proof of Theorem& In Appendix [, we state the two key lemmas required in
the proof of Theorem and — Lemma provides error bounds on edge parameter estimation using
GRISE and Lemma provides error bounds on node parameter estimation using the three-step procedure
from Section E In Appendix [f|, we provide the proof of Theorem that relies on Lemma . In Appendix
we provide the proof of Theorem that relies on Lemma and Lemma . In Appendix H|, we provide the
proof of Proposition §.1. In Appendix m, we state the two key propositions required in the proof of Lemma
— Proposition [.1] bounds the gradient of the GISO and Proposition [.2 shows that the GISO obeys a restricted
strong convexity like property. In Appendix , we provide the proof of Lemma . In Appendix E, we provide
the proof of Proposition [l.1] In Appendix [[f, we provide the proof of Proposition [.2. In Appendix M|, we provide
the Generalized Interaction Screening algorithm (Algorithm [I) and its computational complexity (Proposition
). In Appendix [N, we present a robust variation of the sparse linear regression. In Appendix é, we state the
two key propositions required in the proof of Lemma — Proposition provides guarantees for learning
the conditional mean parameter vector and Proposition provides guarantees for learning the conditional
canonical parameter vector. In Appendix [P, we provide the proof of Lemma, . In Appendix Q, we provide
the proof of Proposition . In Appendix R|, we discuss the theoretical propertles of Algorithm B (used in the
proof of Proposition ). In Appendix E we prov1de the proof of Proposition . In Appendix [I], we discuss a
few examples of distributions that naturally satisfy Condition §.1. In Appendix [U, we provide a few discussions.

A Notations via an example

In this appendix, we will provide an illustrative example to ease through the notations introduced in Section E

Let Vi € [p], X; = [—b,b]. Therefore b; = b, = 2b. Consider the density as shown below.

fx(x;0™) oc exp < Z[@ @ )x —1-9*( 2 2 1+ Z Z {J)x iz + 0] (j xlx +6 (1])x2$] —|—0;(2”)x12x3])

i€[p] i€lp] J>1

For this density, we have the following.

gi(ws) = 07w+ 63"
gij (i, ;) = fofj)xixj + 9;(53)501:175 + QZFfj)zij + 9;(2”)1’7233?
0+ — (9*@) 9*(i))
9*(id) — (9 *(5) 9*(w) 9 w 79*7(2ZJ))
¢(z;) = (¢1( z‘)»¢>2(ffi)) = (zi,27)
(i, ws) = (P (@i, 25), Yra(i, ©5), o1 (20, 75), oo (w4, 7)) = (wizy, wiad, wie;, afa?)
Gmax = max{b,b?}
Gmax = max{1,2b}
¥ = Omax(4d + 2)
Omax = 2max{b, b*}.

For node-wise notations, let us fix i = 1. Then, we have

= (6 *(1) 9 (1) 0 12) 9 12 9;‘5112)’9;‘,(212)’...
* 12 *(12 *(12) 12 *(1 *(1 *(1 *(1
( ( ) 9 ( ) 9 9 7(2 )’”_ 7917(113),(917(210),02,(117)’927(217))
(”(wl) = (21,21 - 62/3)
P (@1,25) = (w125, 1123, (af — 0 3)z;, (] — b7 /3)2?)

*(1 *(1 *(1 *(1
791’(1;9)791’(2;;)792’(1;;)’92’(21)))

*(1
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cp(l)( )= (ml,xl —b? /3, $1$2,$1£L‘27( —b? /3)xza, (xf —b2/3)m2,--- 7x1xp,xlmz2,,(m%—b2/3)xp7(x§ —b2/3)

B Conditional density

In this appendix, we derive the two forms of the conditional density of x; for i € [p] i.e., fx, (zi|x_; = 2_;;9*¥)
used in Section E We further obtain lower and upper bounds on this conditional density.

B.1 Derivation of the two forms of conditional density

We will first derive the form of conditional density in (E) For any i € [p], the conditional density of node x;
given the values taken by all other nodes is obtained by applying Bayes’ theorem to fx(x;0*) and is given by

exp (0507 $(0) + 5y 0V bl 1))
fil)ie-Xi exp (0*(Z)T¢)(sz) + Eje[?]vj?éi 0*(ij)T¢'(xi, Z‘j))dﬂ?i

where x_; = x\ x; and z_; = x \ z;. Recall definition of locally centered basis functions in (B) and (H) from
perspective of i € [p],j € [p]\{i}. For z € X}, 2’ € &}

Fai(@ilxey = m_5970) = (13)

#0(w) = ¢(w) ~ [ Slnw)d.
YyeX;
V0 ') = o) = [ bl )y
yeX;
where Ux, (y) denotes the uniform density on X;. We can rewrite (@) as
exp (9*(i)T¢(i) (@) + Xjepie 0) " i) (z;, mﬂ)

Fal@ilxoi = w_i;0°0) = A R :
[y, exP (e*m SO (23) + 3 ey ji 00D '¢(U)(33i733j))d$i

Recalling notation of 9*(* and ¢® (z;;z_;) from Section B this results in

eXp(ﬁ*u 0O (25 1))
fri% exp (19*(1')T¢(i) (zi; x,i))dxi.

We will now derive the form of conditional density in (B) Using the definition of Kronecker product, the
conditional density in ([L3) can also be written as:

D (S ey 0060, (00) + 5500 S 018 00 (20)0(1))
S, X ( v 07000 @a) + X210 sepg 0757 60 (2:) 04(a) ) da.
Recalling notation of A*(z_;) from Section fl, this results in

exp (AT (@) (1))

Jo,cx, €xXP ()\*T(x,i)¢>(xi)) dz;

fri (mi]x—i = x_i;ﬂ*(i)) = (14)

Fa(wilxi = w_y;0") =

fxi (‘Ti|X—i = x_; ,19*(7,)) _

B.2 Bounds on conditional density

We will now provide lower and upper bounds on the conditional density of x; for ¢ € [p]. Let us first bound

the locally centered basis functions in (E) and (H) For any i € [p],r € [k], let ¢£,i)(~) denote the 7" element of
¢ (). We have Vi € [p],Vr € [K]

: (@)
(@) <

¢r($l)

(b) (c)
< 160 + / 160 (y0) U, (92 s < 2

Yi €EX;

+ ‘ /yf,eXi, ér (yi ) Ux; (yi)dyi

xz)
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where (a) follows by applying the triangle inequality, (b) follows because the absolute value of an integral is
smaller than or equal to the integral of an absolute value and Uy, () is strictly positive, and (c¢) follows because
|7 ()| < Pmax V7 € [k], & € Ujepp X and the integral of Uy, (-) over & is 1. Therefore,

19 (lloe < 20max.
Similary,
19 (lloo < 2070
Recall the definition of ¢p,,x. We now have
1@ (%)]loe < Pmax- (15)
Also, recall that ||9*(®)||; < . Using this and (@), we have
exp (= o) < exp (9" 00 (%)) < exp (YPma ). (16)

As a result, we can lower and upper bound the conditional density in (@) as,

exp ( — 2’y<pmax>

fr= b < folwilxei =a_59°0) < fy =

exp (27@max)
by '

C Proof of Theorem @

In this appendix, we prove Theorem @ Consider i € [p]. For any 9 € A, recall that the population version of
GISO is given by

SW(9) =E {exp ( — 9T (x))} .

Also, recall that the parametric distribution m,(f) (x;1) under consideration has the following density:

mi? (x5 9) ox fu(x:8%) x exp (=97 (x)),

and the density wl? (x) is given by:

W) (x) o fu(x;607) x exp (= 907 0 (x)).

We show that minimizing S (i)(ﬂ) is equivalent to minimizing the KL-divergence between the distribution with

density u)((l)() and the distribution with density m,((l)(-; ). In other words, we show that, at the population level,

the GRISE is a “local” maximum likelihood estimate. We further show that the true parameter vector 9*(*) for
i € [p] is a unique minimizer of S®(19). We restate the Theorem below and then provide the proof.

Theorem 4.1. Consider i € [p|. Then, with D(- || -) representing KL-divergence,

argmin  D(u{V(-) || m{P(;9)) = argmin S ().
Beh: |91 <~y Beh:|9]1 <y

Further, the true parameter 9*@) for i € [p] is a unique minimizer of S®(9).
Proof of Theorem @ We will first write m,((i)(g 9) in terms of S®(19). We have

fx(x;0%) exp ( — 9T (x))

my) (x;9) = :
Jxen Fx(x:0%) exp ( — 9T (X))dx
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(@) fx(x;0%) exp ( —9Tp® (x))
B SO () ’

where (a) follows from definition of S ().

Now let us write an alternative expression for u,(f) (x) which does not depend on z; functionally. We have

ul? (x) & Fr (@_330%) X fu (zilx_s = 2_i;9" D) x exp ( — 90" (x))
(b) f i (2-i;0)
X )
oo (970 g0

where (a) follows from f,(-;0%) = fr_,(-;0) X fr, (-Ix_i = 2_s;9*®) and (b) follows from (@)

(18)

We will now simplify the KL-divergence between e (-) and m,((i)( +19). For any [ € [k + k*(p —1)], let 9; denote

the ' component of ¥ and cpl(i) (x) denote the I*" component of ¢ (x).
D(u) (x) || m (x;9))

_ D lo u ()50 (9) ;
B /xeX U)(( )( )log (fx(x 0*) exp ( - 19T(p(i)(x)> )d

(4)
(a) i) (x ux”’ (x) ) « (i) T « (i)
/xex A )10g<fx(x;0*) d +/xexux (x) x 9 ( )dx + log S\ (9)

)
)

dx +Z[0l/ u® (x) x o (x )dx}ﬂogs(l (9)

i i

where (a) follows because log(ab) = loga + logh and S (1) is a constant, (b) follows because ul )( -) does not
functionally depend on z; € X; as shown in (@), and (c) follows because for any [ € [k + k*(p — 1)] the basis
function ga( )() is locally centered from perspective of 4 i.e., [, .. cpl(i) (x)dz; = 0. Observing that the first term
in the above equation is independent on 1}, we can write T

argmin  D(u{V(-) || m{P(;9)) = argmin logS@(9) = argmin S (9).
DEA:| 1<y JEA:|Y]1<y YEA:(|I[1 <y

()( ). Recall that
(1)(

Further, the KL-divergence between e )( -) and mi )( -;19) is minimized when u! )( )

the basis functions are such that the exponential family is minimal. Therefore, u ( ) =
¥ = 9*(). Thus,

;1) only when

9@ ¢ argmin SW(9),
deh:||d]1<y

and it is a unique minimizer of S (¥9).

Similar analysis works for MRFs with discrete variables as well i.e., the setting considered in Vuffray et al.
(2019). O

D Proof of Theorem @

In this appendix, we prove Theorem @ We will use the theory of M-estimation. In particular, we observe that
9" is an M-estimator and invoke Theorem 4.1.1 and Theorem 4.1.3 of Amemiya ([1985) for consistency and
normality of M-estimators respectively. We restate the Theorem below and then provide the proof.
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Theorem 4.2. Given i € [p] and n independent samples <M x™ of x, et 1955) be a solution of
(H) Then, as n — 00, 9 B 90, Further, under the assumptions that B(9*(®)) is invertible, and
that none of the true parameter is equal to the boundary values of Omax 07 Omin,, we have \/ﬁ(i%f) —
9*(®) LN N (0, B(*@) =L A(9*D)B(9*W) 1) where N (u,X) represents multi-variate Gaussian with mean p
and covariance X.

Proof of Theorem @ Consistency.  We will first show that the GRISE is a consistent estimator i.e., as
n — oo, O, () 2, 9+(0)

Recall ((Amemiya, 1985, Theorem 4.1.1): Let y1,- - ,y, be i.i.d. samples of a random variable y. Let ¢(y;9) be
some function of y parameterized by ¥ € ©. Let ¥* be the true underlying parameter. Define

) == alyis ), (19)
=1

3

and

D, € argmin Q,, (V). (20)
vEO

The M-estimator 1§n is consistent for ¥* i.e., 1§‘n Bo9* asn — 00 if,

(a) © is compact,
(b

(c
(d

)
) Qn(9¥) converges uniformly in probability to a non-stochastic function Q(¥),

) Q(¥) is continuous, and

) Q(Y) is uniquely minimzed at ¥*.

Comparing ( B and (B with @ and (@), we only need to show that the above regularity conditions (a)-(d)
hold for @Q,,(¥) := S (¥) in order to prove that 9 2y 9+() ag n — 0o. We have the following:

(a) The parameter space A is bounded and closed. Therefore, we have compactness.

(b) Recall (Jennrich, 1969, Theorem 2): Let y1,--- ,y, be i.i.d. samples of a random variable y. Let g(y;v)
be a function of ¥ parameterized by ¥ € ©. Suppose (a) © is compact, (b) g(y,¥) is continuous at each
Y € © with probability one, (c¢) g(y,d) is dominated by a function G(y) i.e., |g(y,?)| < G(y), and (d)
E[G(y)] < co. Then, n=' 3", g(yt,9) converges uniformly in probability to E[g(y,d)].

Using this theorem with y = x, y; == x(), © :== A, g(y,9) = exp ( — 9T (x)), G(y) = exp(7¥max), We
conclude that Sﬁi)(ﬁ) converges to S (19) uniformly in probability.

(c) exp (f 9T ) (x)) is a continuous function of ¥ € A. Therefore, we have continuity of S5’ () for all ¥ € A.
Further, fy(-;0*) does not functionally depend on 9. Therefore, we have continuity of S(*)(«9) for all ¥ € A.

(d) From Theorem @, 9*() is a unique minimizer of S (¥9).
Therefore, we have asymptotic consistency for GRISE.

Normality. We will now show that the GRISE is asymptotically normal i.e., \/ﬁ(ﬂsf) — ﬁ*(i)) KA

N(0, B(9*D)=1 A(9*) B(9*())~1),

Recall (Amemiya|, 1985, Theorem 4.1.3): Let y1,--- ,y, be i.i.d. samples of a random variable y. Let g(y; ) be
some function of y parameterized by ¥ € ©. Let ¢* be the true underlying parameter. Define

= %Zq(yi;ﬁ)» (21)
i=1
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and

,, € argmin Q,, (V). (22)
9

The M-estimator 9, is normal for ¥* i.e., /n(d, — 9*) A N(0, B=L(9*)A(W*)B~L(9*)) if

(a)
(b)
()
(d)
()

U,,, the minimzer of Qn(+), is consistent for J*,
¥* lies in the interior of the parameter space ©,

@y, is twice continuously differentiable in an open and convex neighbourhood of ¥*,

VIV Qn (9)|g—g > N(0, A(9*)), and

VQQn(ﬂ)b:ﬁn 2 B(¥*) with B(¥) finite, non-singular, and continuous at ©*,

Comparing (B) and ([) with @ and (@), we only need to show that the above regularity conditions (a)-(e)
hold for @,,(¥) := S,(f) (¥) in order to prove that the GRISE is asymptotically normal. We have the following:

(a)
(b)

()

We have already established that 'z%f ) is consistent for 9*().

We assume that none of the parameter is equal to the boundary values of iy, or Opax. Therefore, 9+
lies in the interior of A.

From (B), we have
— % ;exp ( — 9T (X(t)))

For any [ € [k + k%(p — 1)], let 9; denote the I*" component of ¥ and tpl(i)(x(t)) denote the [*" component
of @ (x™®). For any I1,15 € [k + k*(p — 1)], we have

828(1) €) 1 & () . .
Zon \7) _ - D () o (x(®) —_ 9T o (x®

Thus, 928" (19)/09,,09,, exists. Using the continuity of ¥ () and exp ( - 19Tgo(i)(-)), we see that
928t (9)/09;,09,, is continuous in an open and convex neighborhood of 9*(%)

For any [ € [k + k*(p — 1)], define the following random variable:
T .
xit = —pf (X exp (= 0" o0 (x)).

The I component of the gradient of the GISO evaluated at 9*() is given by

3Sr(f) ) 1 - i «(i)T i
W() = 1S ) exp<_,9 (i) go()(x(t))).
! Y=9*() t=1

Each term in the above summation is distributed as the random variable x; ;. The random variable x; ; has
zero mean (see Lemma @) Using this and the multivariate central limit theorem (Van der Vaart, 2000),
we have

VAVSED (9)]g—ger L N (0, A(9* D)),

where A(9*()) is the covariance matrix of ¢ (x) exp (— 9* (7 (0 (x)).
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(e) We will first show that the following is true:

V2SS (9)]g_g0 = VS (9)]g—geco- (23)

To begin with, using the uniform law of large numbers (Jennrich, 1969, Theorem 2) for any 9 € A results in
V2SO (9) & v2SW (). (24)

Using the consistency of ﬂsf ) and the continuous mapping theorem, we have

V2SO ()] y_g B> V2SD ()| g_ -0 (25)

Let l1,ls € [k+k?*(p—1)]. From (@) and (@)7 for any € > 0, for any 6 > 0, there exists integers ni, ns such
that

P(|[V2SP(OD)], . = [V?8D @], .| >€/2) <6/2 if n>ny
P([V2SO@OD)], = [V?8D @ )], |>€/2)<6/2  ifn>ny.

)

Now for n > max{ni,ns}, we have

P(I[V2SP @], — [VASO @),
<IP(| [V2S7(Li)(1§£f))]ll - [V{g(i)(@%ﬁ )]ll Ll > €/2) + B [VQS(i)(ﬁg))]
<§/2+6/2=24.

| >¢€)
— [V2SD ()], | |>¢/2)

1,02

Thus, we have (@) Using (@), we have
3 *(2 T i *(i)T 7
V2S00, 1, = B[l el (0 exp (= 000100

e |efl (0l ) xp (07" 60 ) | - | ol 0] Bl 0 exp (- 0701000

~ cov ((Pg?(x)’ e ﬂ*(i)Tso(i)(x)))’
where (b) follows because E[cpl(i) (x) exp ( - ﬁ*(i)Tcp(i)(x)} =0 for any [ € [k + k*(p — 1)] (see Lemma @)
Therefore, we have

V281(1i)(19)|19:1§5;) N B(ﬂ*(i)),

where B(9*()) is the cross-covariance matrix of cp(’)( x) and ¢ (x) exp (— 9*? "o (x )). Finiteness and
continuity of ¢ (x) and ¢ (x) exp (— 9" () (x)) implies the finiteness and continuity of B(9*®).

Therefore, under the assumption that the cross-covariance matrix of ¢V (x) and ¢ (x)exp ( — ﬂ*(i)Ttp(i)(x))
is invertible, and that none of the parameter is equal to the boundary values of Opax OF Omin,, we have the
asymptotic normality of GRISE i.e.,

V(@ —9*D) % N (0, B ) AW B0 1)),
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E Supporting lemmas for Theorem @ and Q

In this appendix, we will state the two key lemmas required in the proof of Theorem @ and @ Lemma @
provides error bounds on edge parameter estimation using GRISE and Lemma provides error bounds on
node parameter estimation using the three-step procedure from Section B. The proof of Theorem is given in
Appendix E and the proof of Theorem is given in Appendix @ Recall the definitions of v = Opax (k + k2d),
Omax = 2max{Pmax, 92 .}, and c1(a) from Section P. Also, define

220746 k2 (d + 1)y ot (14 YPmax)? exp(87Pmax) exp(O(k?d))
cs(@) = e = O\ 7w )

E.1 Error Bound on Edge Parameter Estimation with GRISE

The following lemma shows that, with enough samples, the parameters associated with the edge potentials can
be recovered, within small error, with high probability using the GISO for continuous variables from Section §.

Lemma E.1. Let Condition B be satisfied. Given n independent samples xV, ... . x") of x, for each i € [p],
let 1921) be an e-optimal solution of (H) Let 19333 = (éij,j # 1,7 € [p]) be its components corresponding to all
possible p— 1 edges associated with node i. Let a; > 0 be the prescribed accuracy level. Then, for any 6 € (0,1),

195 =9, <ar,  Viep]

with probability at least 1 — § as long as

w2 enfon) o (22 Q(@ﬂfd»l (5;)).

The number of computations required scale as

ex 2
c3(aq) x log (25;) x log (2k?p) x p* = Q(W log? (pk>p2>.

The proof of Lemma @ is given in Appendix .

E.2 Error Bound on Node Parameter Estimation

The following lemma shows that, with enough samples, the parameters associated with the node potentials can
be recovered, within small error, with high probability using the three-step procedure from Section J.

Lemma E.2. Let Condition B be satisfied. Given n independent samples xV, ... . x") of x, for each i € [p],
let %) be an estimate of 0% obtained using the three-step procedure from Section B Then, for any as € (0,1),

[6* — 09| < o, Vi € [p]

with probability at least 1 — a3 as long as

. Omin (63 25/2 k
n > max {cl(mm{ 3 + Miﬂﬂ}) log ( agp ),62(042)}

_ Q<exp(®(k2d+d10g (ofi';s))) < log (pk)>.

2.4 2
K20l a5

The number of computations required scale as

. emirur (6%)] 25/2pk 2 2 exp(@(szd)) 2 pk 2
03<m1n{ 3 ,M%(})xlog< o2 x log (2k*p) x p* = Q Wlog 2 p° |.

2 2

The proof of Lemma @ is given in Appendix E
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F Proof of Theorem @

In this appendix, we prove Theorem @ See Appendix @ for the key lemma (Lemma @) required in the
proof. Recall the definitions of v = Opax(k + £%d), Pmax = 2max{Pmax, P2axt and ci(a) from Section E We
restate the Theorem below and then provide the proof.

Theorem 4.3. Let Condition @ be satisfied. Given n independent samples xV) ... x("™) of x, for each i € [p],
let 9 be an e-optimal solution of (H) and 1925 be the associated edge parameters. Let

B={(i.d)si <5 € b (3 10021 > Oun, 31) >0},

r,s€[k]

Let G = ([p},E) Then for any § € (0,1), G(6*) = G with probability at least 1 — & as long as

vt s (7)o (22 e ().

The number of computations required scale as O(p?).

Proof of Theorem @ The graph G = (o], E) is such that:

E= {(z’,j) 1< jep), ( > {0l > 9min+/3}) > o}.
r,s€[k]
The graph G(6*) = ([p], E(0*)) is such that E(0*) = {(i,j) : i < j € [p],[|6*|o > 0}.

Let the number of samples satisfy

n>c (Gm%> log <2\I;§>

Recall that 1921) € A is an e-optimal solution of GRISE and 198}5 is the component of 1921) associated with the

edge potentials. Using Lemma @ with a; = Omin, / 3E and any § € (0,1), we have with probability at least
1-9,

*(1 a(7 omin .
|05 =9l <=5, vie [l
«@) 5 (Y Omin, .
— 957~ 9l £, Vi | (26)

where (a) follows because ||V]|oo < ||V]]2 for any vector v.

From Section E, we have ||19*(i) lminy = @min,- This implies that Hﬁ*E(i) lminy = Omin, . Combining this with (@),
we have with probability at least 1 — 9,

0:) =0 < 09| < Onin, /3, Vi € [p],Vj € [p] \ {i},Vr, s € [K].

Therefore, with probability at least 1 — 4§, E(6*) = E.

Further, from Lemma @7 the number of computations required for generating 19833 scale as O(p?). Also,
the number of computations required for generating E scale as O(p?). Therefore, the overall computational
complexity is O(p?). O

8The threshold 9min+ /3 could be replaced by any positive constant smaller than 0min+ /2. Any threshold smaller than
Omin n /2 sufficies as it ensures separation between the non-zero parameters and the zero parameters.
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G Proof of Theorem Q

In this appendix, we prove Theorem @ See Appendix @ and Appendix @ for two key lemmas (Lemma @
and Lemma [E.2) required in the proof. Recall the definitions of ¥ = Opax(k + k?d), Pmax = 2max{dmax, 2 ax |
and c;(a) from Section P. We restate the Theorem below and then provide the proof.

Theorem 4.4. Let Condition B be satisfied. Given n independent samples xV) ... x™) of x, for each i € [p],
let 9 be an e-optimal solution of (H) and ﬁil)E € RF®=1 pe the associated edge parameters. Let 1) ¢

R¥ i € [p] be estimates of node parameters obtained through the three-step procedure involving robust Lasso. Let
k2p(p—1)

0= (é(i); 198}5 i € [p]) € RFPT—3 be their appropriate concatenation. Then, for any « € (0,1)

16 — 6"l < a,

with probability at least 1 — o* as long as

e o))
exp (@ k%d + dlog (O‘f—k) >
(D) ()

k2ot a?
The number of computations required scale as O(p?).

Proof of Theorem , Let the number of samples satisfy

emin _1
n > max [cl (min{ 3 *a, ﬁdk@(bmax }) log (8ap2k>702(2 ia)]

For each ¢ € [p], 0 is the estimate of node parameters obtained through robust Lasso. Using Lemma @ with
Qg = 2_%a, the following holds with probability at least 1 — a*/2,

16°0 _ 60| < 2-Fa Vi € [p]
— 6D —0Y |, <a, Vi € [p] (27)

For each i € [p], 9 is an e-optimal solution of (%ﬂld 19833 = (64,7 # i,j € [p]) is the estimate of edge

parameters associated with node 7. Using Lemma with a; = a and § = /2, the following holds with

probability at least 1 — a*/2,
05—l <@ Vic
(i a(i (@) .
= 9 = 0hlleo <0, Vig[p) (28)
where (a) follows because ||V]|oo < ||v]]2 for any vector v.

Now 6 is the estimate of 6* obtained after appropriately concatenating 6@ and 193}5 Vi € [p]. Combining (@)
and (R§), we have

16 =60 < av,

with probability at least 1 — . Further, combining the computations from Lemma @ and Lemma @, the
total number of computations scale as O(p?). O

H GISO: Special instance of the penalized surrogate likelihood

In this appendix, we show that the GISO is a special case of the penalized surrogate likelihood introduced by
Jeon and Lin (2006). In other words, we provide the proof of Proposition Y.1l.
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Consider nonparametric density estimation where densities are of the form fy(x) = €7/ [ ") dx from i.i.d
samples x). ... x(™  To circumvent the computational limitation of the exact likelihood-based functionals,
Jeon and Lin (R006) proposed to minimize penalized surrogate likelihood. The surrogate likelihood is defined as
follows:

Ln(n) = iiexp ( - n(x(t))) + /XP(X) X n(x)dx,

where p(-) is some known probability density function. As Proposition @ establishes, GISO is a special case of
the surrogate likelihood. We restate the Proposition below and then provide the proof.

Proposition 4.1. For anyi € [p], the GISO is equivalent to the surrogate likelihood associated with the conditional
density of x; when p(+) is the uniform density on X;.

Proof of Proposition B Recall that the conditional density of x; given x_; = x_; is as follows:
fr(@ilx—i = fffi;ﬁ*(i)) X exp (ﬁ*(i)TSO(i)(xi; x—z))

For a given x_; = x_;, estimation of the conditional density of x; is equivalent to estimating 9*®.

For any S ]Rk*kZ(p*l), let us denote the surrogate likelihood associated with the conditional density of x; by
P (). We have

L) = Tllzn:exp (- 07 x1)) + / plar) x (879 @iz ), (29)

i€AX;

Let p(-) be the uniform density over X;. Recall that the basis functions, ¢ (x;;2_;), are locally centered and
their integral with respect to Uy, is 0. Therefore, (@) can be written as

n

) 1 . .
£0@) = =3 exp (970 (x")) = S (D).
O

As we see in_the proof above, the equivalence between the GISO and the surrogate likelihood occurs only the
integral in (R9) is zero. As stated in Jeon and Lin (2006), p(-) can be chosen to be equal to any known density
and the choice typically depends on mathematical simplicity. Therefore, this provides a motivation to locally
center the basis functions to simplify the exposition.

This equivalence provides an association of the GISO to an estimator well-known in the literature and opens up
avenues for future explorations.

I Supporting propositions for Lemma @

In this appendix, we will state the two key propositions required in the proof of Lemma @ Proposition H
bounds the gradient of the GISO and Proposition shows that the GISO obeys a restricted strong convexity
like property. The proof of Lemma is given in Appendix . Recall the definitions of v = Opax (k + k2d) and
Pmax = 2Max{Pmax, P2 ..} from Section E For any i € [p], let VST(Li)(ﬂ*(i)) denote the gradient of the GISO for
node i evaluated at 9*(*).

I.1 Bounds on the gradient of the GISO

The following proposition shows that, with enough samples, the ¢.,-norm of the gradient of the GISO is bounded
with high probability.
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Proposition 1.1. Consider any i € [p]. For any §, € (0,1), any €1 > 0, the components of the gradient of the
GISO are bounded from above as

IVS (0" ) < e,

with probability at least 1 — §; as long as

2 OXP(2VPmax) | (20K _ () (exp(O(k*d) | ( pk
n > 5 log 5 = 0 5 log 7))

€] €1

The proof of proposition D is given in Appendix @

1.2 Restricted Strong Convexity for GISO
Consider any 9 € A. Let A =19 — 9*(®). Define the residual of the first-order Taylor expansion as

5 (8,9°0) = SO0 4 4) = SP(B"D) — (VSP(3"), A). (30

Recall that ﬂ*E(i) denote the component of 9*(*) associated with the edge potentials. Let 19 denote the component
of 9 associated with the edge potentials and let A g denote the component of A associated with the edge potentials

ie, Ap =05 — 05",
The following proposition shows that, with enough samples, the GISO obeys a property analogous to the restricted
strong convexity with high probability.

Proposition 1.2. Consider any i € [p|. For any é3 € (0,1), any ea > 0, the residual of the first-order Taylor
expansion of the GISO satisfies

27re(’ji+1) ||AE||% - 62||A||%
2 + Pmax||Allx

)

SSI(A,97) > exp(—Ymax)

with probability at least 1 — do as long as
20 2p3 k4 1 pikt
e og (L) = o Slog (25 ).
n > a2 og % a og 5

The proof of proposition @ is given in Appendix ﬂ

J Proof of Lemma @

In this appendix, we prove Lemma @ See Appendix H and Appendix @ for two key propositions
(Proposition and Proposition [.4) required in the proof. Recall the definitions of v = Opax(k + k2d),
Omax = 2Max{@max, ®2ax} and ci(a) from Section P and the definition of c3(«) from Appendix E Recall

that 192“ is an e-optimal solution of the GISO.

For any i € [p], let VSfli)(ﬂ*(i)) denote the gradient of the GISO for node i evaluated at 9*(?). Define A =
1922) —9*() and let Ag denote the component of A associated with the edge potentials i.e., Ag = 1923 - ﬂ*E(Z).

Recall from (@) that 5Sr(f)(A,19*(i)) denotes the residual of the first-order Taylor expansion. We restate the
Lemma below and then provide the proof.

Lemma E.1. Let Condition B be satisfied. Given n independent samples xM o x™) of x, for each i € [p],

let 199) be an e-optimal solution of (H) Let 19835 = (éij,j # 1,7 € [p]) be its components corresponding to all
possible p — 1 edges associated with node i. Let oy > 0 be the prescribed accuracy level. Then, for any ¢ € (0,1),

195 =8 s < i, Viep)
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with probability at least 1 — § as long as

0> er(ar) log (25(’;) _ Q(Wlog (5’%))

The number of computations required scale as

ex 2
cs(aq) X log (%ﬁg) x log (2k?p) x p* = Q(W log? (pk>p2>.

Proof of Lemma @ Consider any i € [p|. Let the number of samples satisfy
2pk
n > c1(aq) x log <§5>
We have from (E)

e>S8W@WY)—  min  SY(9)
YEA:|| I <y
(a N ) .
Y sOED) - S0 @ 0)
2 (TS 0),A) + 080 (A, 97

> — VSO (" D)oo | All1 + 08P (A, 9*D),

where (a) follows because 9*() € A and [[9*)| < 7 and (b) follows from (@) Using the union bound on
Proposition and Proposition @ with §; = % and 0y = % respectively, we have with probability at least 1 — 4,

27Te(Kd+1) HAE”§ - €2HA||%
2 + Pmax/|AllL

€2 —e1||Ally + exp(—7Pmax)
This can be rearranged as

IAE|2 < 2778(6“'1)[

exp(rmas) % (¢ + AL x (24 emadll A1) + AR
Using ||[9*@|; <, ||1§£1) |li <+ and the triangle inequality, we see that ||A]|; is bounded by 2. By choosing
2

. rojexp(—YPmax) __ Feiexp(—Ypmax) Ko
= 16me(d+ )(1+ @maxy) |+~ 32me(d + Dy(L + @maxy) -~ 16me(d+ 1)72’

and after some algebra, we obtain that
[Apl2 < ax.
Using Proposition @, the number of computations required to compute 193) scale as

k27202 0 €XP(27Pmax ) D
2
€

x log (2k?p).

Substituting for €, n and observing that we need to compute the e-optimal estimate for every node, the total
number of computations scale as

cs(aq) x log <2\1/)§) x log (2k?p) x p.
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K Proof of Proposition EI

In this appendix, we prove Proposition H However, before that, we will provide a supporting Lemma (Lemma
) wherein we show that the expected value of a random variable of interest is zero. Recall the definitions of
Y = Omax (k + k2d) and @max = 2max{@max, 2.} from Section E Also, recall the definition of GISO from (E)

For any [ € [k+k?(p—1)], let 19?@ denote the I*" component of 9*(*) and cpl(i)(xz(-t); x(fZ) denote the [** component
of @ (xl(.t); x(_tz) Define the following random variable:

xi1 =~y (xi;x_) exp ( - ﬁ*(i)TSO(i)(Xi;X—z‘)) (31)

K.1 Supporting Lemma for Proposition @

The following Lemma shows that the expectation of the random variable x; ; defined above is zero.
Lemma K.1. For anyi € [p| and | € [k + k*(p — 1)], we have

E[Xiyl} = O,

where the expectation is with respect to fx(x;0%).

Proof of Lemma @ Fix i € [p] and | € [k + k*(p — 1)]. Using (@) and Bayes theorem, we have
B == [ el @iaes (0" O fulalxs = 20" O) L (o 0)ix.

Using (@) results in

_ fxEX ‘Pz(i)(xz'; ) fx, (x_y;0%)dx
fne& exp (ﬂ*(i)TQO(i)(xﬂ x—i))dl‘i

E[Xi,l] =

Recall the fact that the basis functions are locally centered with respect to x; i.e., [, gol ( Ydz; = 0
Therefore, Elx; ;] = 0. O

K.2 Proof of Proposition @

We restate the Proposition below and then provide the proof.

Proposition 1.1. Consider any i € [p]. For any §, € (0,1), any e; > 0, the components of the gradient of the
GISO are bounded from above as

VS (0" ) < e,

with probability at least 1 — §1 as long as

2<pmax eXp(2’790max) 2p2 k2 eXp(@ (k‘2 d)) pk’
= —_— 1 P .
n > p log 5 Q 2 og NG

Proof of Proposition B Fix i € [p] and | € [k + k*(p — 1)]. We start by simplifying the gradient of the GISO
evaluated at 9*(). The I** component of the gradient of the GISO evaluated at 9*(*) is given by

oS (97 0) 1. VOT G
0 LS el e (— 97 a0, @)
l t=1

Each term in the above summation is distributed as the random variable x; ;. The random variable x; ; has zero
mean (Lemma [K.1]) and is bounded as follows:

(@)

NT .
Xi,l X €xp ( - ﬁ*(l) ‘P(l) (Xi; Xfi)) S Pmax exp(’wpmax);

= ‘901(1) (i3 x—i)
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where (a) follows from (@) and (@) Using the Hoeffding’s inequality, we have

> € > < 2exp ( ne% > (33)
1 - .
202 XD (27Pmax)

(%) (19 (4)
P('Z?Sn (194 )
997"

The proof follows by using (@), the union bound over all i € [p] and | € [k + k*(p — 1)], and the fact that
k+k2(p—1) < k?p. O

L Proof of Proposition @

In this appendix, we prove Proposition @ We start by introducing the notion of correlation between the locally
centered basis functions and provide a supporting Lemma (Lemma ) wherein we will bound the_deviation
between the true correlation and the empirical correlation. Next, we provide the proof of Proposition [.2. Recall
the definitions of v = Oyax (k + k2d) and @max = 2 max{Pmax, P2y} from Section P.

For any | € [k + k?(p — 1)], let gol(i) (x;;x_;) denotes the I component of ¢ (x;;x_;). For any 9 € A, let
A =19 — 9, Let Ag denote the component of A associated with the edge potentials. Recall from (@) that
585 (A,9*() denotes the residual of the first-order Taylor expansion.

L.1 Correlation between locally centered basis functions

For any ly,ls € [k + k*(p — 1)] let Hy,;, denote the correlation between cpl(f) (x) and gol;) (x) defined as
Hii, = B[l ()f) (x)], (34)
and let H = [H;,;,] € RUF+E* (p=1)]x[k+k*(>=1)] be the corresponding correlation matrix. Similarly, we define H

based on the empirical estimates of the correlation i.e., Hy,;, = 1 377 cpl(f) (x(t))gol(z)(x(t)).

The following lemma bounds the deviation between the true correlation and the empirical correlation.

Lemma L.1. Consider any i € [p] and l1,l3 € [k + k*(p — 1)]. Then, we have for any ez > 0,

|ﬁ1112 - Hlllz| < €2,

with probability at least 1 — 2p>k* exp (f 2;55 )
Proof of Lemma B Fixi € [p] and Iy, 1y € [k+k?(p—1)]. The random variable defined as Y;,;, :== gol(j) (x)(pl(z) (x)
satisfies |Y,1,| < 2., Using the Hoeffding inequality we get

] nes
P (‘I{lll2 - Hl1l2| > 62) < 2exp —2()04 .

max

The proof follows by using the union bound over all i € [p] and I1,ls € [k + k*(p — 1)], and the fact that
k+k2(p—1) < k?p. O

L.2 Supporting Lemma for Proposition @

The following Lemma provides a lower bound on the residual defined in (@) ie., 58,(3)(A, 9*(®).
Lemma L.2. Consider any i € [p]. The residual of the first-order Taylor expansion of the GISO satisfies
ATHA

SSEI(A,9* ) > exp(—VPmax) s
( ) ( 21 omax | AllL

Proof of Lemma @ Fix any i € [p]. Substituting (E) and (@) in (@)7 we have

) . 1 <& ) ) ) .
687(11)(A, 19*(1)) = Z exp ( - ﬁ*(Z)Tcp(’)(xl(.t)' x(t2)> X (exp ( - ATgo(’)(a:Z(.t); x(jZ)) -1+ ATgo(l) (xgt); x@))
t=1

_ﬁ 3T
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) 2
(;) ( )1 n (ATcp(l)(ml(t);x(jm
Z €XP(—7Y¥Pmax) -
n= 24 | AT (1))
@ ( ) ATHA
X - max/)s . . Al 2
= T e o |8

where (a) follows by using (@) and e — 1+ 2z > ﬁ?zl Vz € R (2 = AT (2!": 2 is used here), and (b)

follows by using (@), the defintion of H, and observing that V ¢ € [n], |AT<p(i)(xz(-t); x(_tz)\ < Omax||All1- O

L.3 Proof of Proposition @

We restate the Proposition below and then provide the proof.

Proposition 1.2. Consider any i € [p]. For any 02 € (0,1), any ea > 0, the residual of the first-order Taylor
expansion of the GISO satisfies

27re(’2l+1) ||AE||% - 62||A||%

587(li) A,ﬂ*(i) > exp(—YPmax
( ) ( ) 2+S0maXHA||1

)

with probability at least 1 — §o as long as

204 2p3 k4 1 PPkt
> ZPmax ) ( ) = o g (25 ).
" 6% 8 (52 6% 8 (52

Proof of Proposition @ Consider any i € [p]. Using Lemma @ we have

08.(8,9") 2 exp(—yoma) g o—TRT

(8,9°) 2 exp(=1oma) 5 AT
— exp( JATHA + AT(H - H)A
= €XP|—YPmax 2+ SﬁmaxHAHl

Let the number of samples satisfy

2904 2p3 k4
> 2% ( ) .
n 2 og %

Using Lemma @ and the triangle inequality, we have the following with probability at least 1 — J,.

ATHA — e;||A|2

SW(A, 9D > exp(—7omax ,
) ( ) > exp(—Y¥max) 3+ ommll AL

(35)

Now we will lower bound ATHA. First, let us unroll the vector A such that A®) € R¥ is associated with ¢¥) (x;)

and Vj € [p] \ {i}, A € R¥ is associated with () (z;, z;). Recall that Ag is the component of A associated
with the edge potentials i.e.,

Ap=[AW eRY jepli#d] (36)
Using (@) we have

(@)

ATHA =E {(ATgo(i)(x))Q} > Var[ATp (x)], (37)

where (a) follows from the fact that for any random variable Z, E[Z?] > Var[Z].

Now consider the graph G_;(6*) obtained from the graph G(6*) by removing the node 7 and all the edges
associated with it. We will next choose an independent set of the graph G_;(6*) with a special property. Let
r1 € [p] \ {i} be such that [|AGD|y > |AG) |y V) € [p]\ {i,m1}. Let ro € [p]\ {i,71,N(r1)} be such that
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|ACT2)|]y > |A) ||y V5 € [p]\ {4,71, N (r1), 72}, and so on. Denote by m > p/(d + 1) the total number of nodes
selected in this manner, and let R = {ry, -+ ,rn}. It is easy to see that R is independent set of the graph
G_;(0*) with the following property:

ij 1 ij
SIADE > —— 3 A, (33)
JER JElPLI#i

Let R¢ = [p] \ {¢, R}. Using the law of total variance and conditioning on R¢, we can rewrite (@) as
ATHA > E {Var [ATQO(i)(X)|Xi, XRC]}

=E Var[A(i)Tq&(i)(xi) + Z A(ij)T’l,/)(ij)(Xi,Xj)|Xi,XRU}}

- Jelpli#i

=E Var{z A(lJ)T/lp(l])(X’L)Xj)‘X’L)XRC_
L JER - d

© E Z Var _A(ij)T't,b(ij)(Xi, xj)|xl-, XRC_
_jeR B - d

& Z E {Var A(ij)TdJ(ij) (%, %5) |xi, XRC_
JER ) -

2> E [Var A0 (4,5 x|
JER )

Y {Var {A“j)w(”)(xi’xj)‘xf”
JER

9 1

> oo Z]E|:6Xp{2h|:A(ij)T/ll](ij)(Xi,Xj)|Xji| H

JER

h) K -
> A2
> S At
JER
Q] K .
> o Y A3
~ 2me(d+1
meld+ 1) frin
(9 K 2
= ————J|A
27T€(d+ 1) H E”Qa
where (a) follows from the definition of (¥ (x) from Section E, (b) follows because we have conditioned on x; and
xge (note (x;);jere are constant given xg-), (c) follows because (x;);jer are conditionally independent given xg<
(note that R is an independent set in G_;(6*), i.e. there is no edge connecting two vertices in R), (d) follows
from linearity of expectation, (e) follows because xy/(;) € xre Ux; Vj € R, (f) follows from the global Markov
property, (g) follows from monotonicity of expectation and Shannon’s entropy inequality (h(-) < log /2meVar(-)),
(h) follows from (@), (2) follows from (@) and (j) follows from (@)

Plugging this back in (@) we have

e 123 — el Al

587(1i)(A, 19*(1‘)) > exp(—Y¢max) 2+ omel AL
max

M The Generalized Interaction Screening algorithm

In this appendix, we describe the Generalized Interaction Screening algorithm (Algorithm ?7?) for the setup
in Section P and also provide its computational complexity (Proposition ). Recall the definitions of v =
Omax (k + k2d) and @pax = 2max{@max, 2.} from Section .
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M.1 The Generalized Interaction Screening algorithm

Vuffray et al| (2019) showed that an e-optimal solution of GRISE could be obtained by first finding an e-optimal
solution of the unconstrained GRISE using a variation of the Entropic Descent Algorithm and then projecting
the solution onto A. See Lemma 4 of Vuffray et al| (2019) for more details.

For € > 0, 1%1‘)mc is an e-optimal solution of the unconstrained GRISE for i € [p] if

SO@PW y< min SD(9) +e. 39
(Fine) - 9y 2 (39)
The iterative Algorithm m outputs an e-optimal solution of GRISE without constraints in (@) This algorithm
is an application of the Entropic Descent Algorithm introduced in Beck and Teboulle (2003) to a reformulation
of ([]) as a minimization over the probability simplex.

Algorithm 1 Entropic Descent for unconstrained GRISE

1: Inp]-It: kup> '_77 Pmax> Sr(Ll) ()7 T
2: Output: 19&1)1“
3: Initialization:

4: wit) « e/(2k%(p— 1) + 2k + 1), VL € [K*(p — 1) + k]
5w e/(2K(p—1)+2k+ 1), Vi€ [K*(p— 1) + K]
6: y W < e/(2k2(p— 1) + 2k + 1)

. W log (2K2(p — 1) + 2k + 1)/27¢max eXP(Y¢max)
8 fort=1,---,T do

0w =(w" i€k (p—1)+k)

10: w =@ e kPp—1)+k)
98 (y(w - wt)))
o
12 x4 = wl(tj_ exp(—ntv), VI € [K*(p — 1) + K]
13: T = wl(tz exp(n‘v), VI € [k*(p — 1) + k]

14: z =y + > (T 4+ +x1,—)
le[k2 (p—1)+k]
(t+1)

15: w7 w2, Ve [BP(p— 1) + K]
16:  wt e ay [z, V€ K2 (p—1) + K]
17y 0

18: Nt by /t/t+ 1

19: s =argmin,_; r Sff)(’y(w(f) - W@))
20: DU A (D — )

11: v =" Ve [k2(p—1) + K]

M.2 Computational Complexity of Algorithm m

The following proposition provides guarantees on the computational complexity of unconstrained GRISE.

Proposition M.1. Let € > 0 be the optimality gap. Let the number of iterations satisfy

2 2 F: 2 max 2
T Z V" Pmax exp( 8% ) X 10g (2k2(p _ 1) 4 2%k + 1) _ Q<exp(@§k d)) log(ka)>.
€

€2

Then, Algorithm B is guaranteed to produce an e-optimal solution of GRISE without constraints in (@) with
number of computations of the order

k27202 0 €XP(27Pmax ) D
€2

exp(O(k*d))

x log (2k*(p — 1) + 2k + 1) = Q( np log(k2p)> :
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Proof of Proposition @ We first show that the minimization of GRISE when A = RF (—D+k (the
unconstrained case) is equivalent to the following lifted minimization,

min SW () (40)
YWy, Ww_,y
st. v=v(wy —w_) (41)
y+ Y. (wytw)=1 (42)
1€[k2 (p—1)+k]
y > 0,wiq > 0wy, >0,V € [F(p—1) + ], (43)

where wi = (w4 : L€ [k*(p— 1) +k]) and w_ = (wy— : L € [k*(p — 1) + k]).

We start by showing that for all 9 € RF*(P=D+k guch that l9l1 <, there exists w, w_, y satisfying constraints
(EI)7 (@), (@) This is easily done by choosing VI € [k*(p— 1) + k], wy + = max(¥;/7,0) , w;, - = max(—9,;/7,0)
and y =1 — [|9]|1/7.

Next, we trivially see that for all ¥, w,, w_, y satisfying constraints (EI)7 (@), (@), it implies that 1 also satisfies
l9|l1 <. Therefore, any 9 that is an e-minimizer of f@) is also an e-minimizer of (H) without constraints. The
remainder of the proof is a straightforward application of the analysis of the Entropic Descent Algorithm in Beck
and Teboulle (2003) to the above minimization where 9 has been replaced by w,w_,y using EEI) O

The computational complexity of the projection step is usually insignificant compared to the computational
complexity of Algorithm [l| provided in Proposition m

N Robust LASSO

In this appendix, we present a robust variation of the sparse linear regression. More specifically, we show that
even in the presence of bounded additive noise, the Lasso estimator is ‘prediction consistent’ under almost no
assumptions at all.

N.1 Setup

Suppose that vi,---, vz (where p > 1) are (possibly dependent) random variables, and suppose ¢; is a constant
such that |v,.| < é& almost surely for each r € [p]. Let

D
y =Y Bive+ii+é

r=1

where 7 is bounded noise with |fj| < 7y, € is sub-Gaussian noise with mean 0 and variance proxy 62, and € is

independent of the v,’s and 7. Define 8* := (37, --- , 83). We also have the ‘sparsity’ condition that ||3*; < é.
Here 57, ---, 55, ¢2, and ¢ are unknown constants.

N.2 Data

Let v denote the random vector (vy,- -, vp). Let vi,---, v, beniid copies of vand let y := (y1,--- ,yn) denote

the corresponding true values of y. Let V be a n x p matrix such that the j* row is v;.

Suppose that our task is to predict y given the value of v. If the parameter vector 8* was known, then the

predictor of y, of interest, based on v would be y := f _1 Bfv,.. However, 8% is unknown, and we need to
estimate it from the data (V, y). Let B be the output of Algorithm E Let y :== (1, -+ , Jn) where
9; =BV (44)

Let y :== (g1, -+, Un) where
;= B8"v;. (45)

The step 3 of Algorithm E below can be solved using Coordinate Descent.
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Algorithm 2 Robust LASSO
1: Input: V,y, ¢
2: Output: 8
3: B« argming, g, <z, [y — V- BTy — V-3

N.3 Prediction error

Definition N.1. The ‘mean square prediction error’ of any estimator,@ = (,@1, ceey N,;) is defined as the expected
squared error in estimating y using 3, that is,

MSPE(B) =Ey(y — 7)?,

where y = Zle By vy

Definition N.2. The ‘estimated mean square prediction error’ of any estimator B = (Bl, e ,Bﬁ) is defined

MSPE() = — 37 (3 — )"

j€ln]

The following Lemma shows that the Lasso estimator of Algorithm E is ‘prediction consistent’ even in presence
of bounded noise if ¢ is correctly chosen and n > p.

Lemma N.1. Let B be the ouput of Algorithm @ Then,

oD A 2log 2p
B{TSPER) < 473 + 1612|252
n
5 2log 2p 2 log(2p2
MSPE(B) < 473 + 451525W+ 8¢ ¢3 %.

Proof of Lemma @ y is the vector of the best predictions of y based on V and y is the vector of predictions
of y using Algorithm P. Let v() denote the j** column of V Vj € [p]. Let vy, denote the h*" element of v(")
Vh € [n],r € [p]. Let N, (€,) denote the bounded (sub-Gaussian) noise associated with yp Vh € [n].

Define the set

Yi={> Bv":> |3 <}
1 1

T

i1

r=

Note that ) is a compact and convex subset of R™. By definition, y is the projection of y on to the set ).
Because ) is convex and y € ), we have from the Pythagorean theorem for projection onto a convex set,

DS (i + &) (S (B, — B)onr)
h=1 r=1

=> i (D _Br =B )onr) + > _en(D_(Br — B )vnr)
h=1 r=1 h=1 r=1
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where (a) follows from (@), (@) and definitions of y and j.
Let us first focus on only the first term in (@)

Z Z Uh r) < Z |77 | ( Z(BT - ﬂ:)vhﬂ‘”
h=1

=1 h=1 r=1

3

S ﬁO Z Z(Br - B:)'Uh,ra (47)

where (a) follows from the triangle inequality and (b) follows because |7,| < 7o Vh € [n]. Notice that
Yon_1 ’ P “)op, T| is the ¢1 norm of the vector y — y.

Let us now focus on the second term in (@) Using the facts that ||8*||; < & and ||B]|; < &, we have

n

D
;(Br - B9)( Z Enh,r) < 262 max. luy|, (48)

h=1

where

= Z gh'Uh,r-
h=1
Now plugging back the upper bounds from (@) and (@) in (@) we get,

~ _ ~ 2 < ~ ~ _ ~ ~
Iy =vlz <olly — ¥ll1 + 2é gggﬁlur\
(a) o )
< iov/nlly — ¥ll2 + 262 max_|u,]|
1<r<p
(b) ) o
< 2max {7joV/nl[y — ¥ll2, 26 gggﬁlwl}

where (a) follows from the fact that ||y — y|j1 < /||y — ¥|2 and (b) follows from the fact a + b < 2max{a, b}
for any a,b > 0. Looking at the two cases separately, we have

Iy — 3113 < 2d0vnlly — ¥, Iy = 7113 < 4¢2 max |u|
<r<p

Iy —¥ll2 < 270vn, Iy — ¥5 < 4¢> max |u,|
1<r<p

Combining the two cases, we have

lly — y||§ < max{4ﬁ(2)n,462 max_|u.|}
1<r<p
(i) 472n + 4é 49
< 4ijen + 4é, gragﬁlurl, (49)

where (a) follows from the fact max{a,b} < a + b for any a,b > 0.

AN, IXTS

F. Conditional on F, u, is sub-Gaussian Wlth variance proxy & (Zh:l vy T). Since v, » < €; almost surely for

all h,r, it follows from the maxzimal inequality of the sub-Gaussian random variables (see Lemma 4 in Chatterjee
(2013)) that

E7 ( max_|u,|) < é16+/2nlog(2p).

1<r<p

Since the right-hand-side is non-random, taking expectation on both sides with respect to F result in,

E( max_|u.|) < ¢16+/2nlog(2p). (50)

1<r<p
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Taking expectation on both sides in (@) and using (@), we get

E(lly — ¥3) < 47gn + 461826/ 2nlog(2p). (51)

Dividing both sides by n results in
— 2log 2p
E[MSPE(3)] < 472 + 461625 —2L.
n

Recall that 3 is computed using the data V and y, and is therefore independent of v and y. Using definitions
of y and y, we have

E7 (5 —7)* =Y (B; = B:)(8; — B)E(vpvs).
We also have

Lo R
ﬁ“y - Y||§ = H Z Z (Br - ﬂ7)(165 - Bs)vh,rvh,s-
h=1r,s=1
Therefore by defining

n
1
Ur s = E(VTVS) - g E Vh,rVh,s,
h=1

we have
E]: y ~\2 ]' $ ~112 S * 2 * 2 (i) 4~2 52
=3 = L9 =518 = 32 (55 = B = Buns < 463, v (52

where (a) follows from the facts that ||3*||; < ¢ and ||B|l1 < &. Recall that |v,| < & Vr € [p]. Using the
triangle inequality, we have E(v,.vg) — vp, »vi s < 25 for all h,r, and s. It follows by Hoeffding’s inequality (see
Lemma 5 in Chatterjeq (2013)) that for any ¢ € R,

E(es¥rs) < e2€25‘11/n.

Again by the mazimal inequality of the sub-Gaussian random variables (see Lemma 4 in Chatterjee (2013)) we
have,

2 log(272
E( max |un|) < 262 %. (53)

1<r,s<p

Taking expectation on both sides in (@) and plugging in (a) and (E), we get

2log 2p 2 log(2p?
B — ) < 47 + daeary| D2 4 sctes [Pt
n n

and this completes the proof. O

O Supporting propositions for Lemma

In this appendix, we will state the key propositions required in the proof of Lemma . Proposition @
provides guarantees for learning the conditional mean parameter vector and Proposition provides guarantees
for learning the conditional canonical parameter vector. The proof of Lemma is given in Appendix
Recall from Section B that A*(z_;) denotes the conditional canonical parameter vector and p*(x_;) denotes the
conditional mean parameter vector of the conditional density f,(-|x_; = z_;;9*®). Recall the definition of ¢*
from Section .
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0.1 Learning conditional mean parameter vector

The first step of the algorithm for recovering node parameters from Section E provides an estimate of the
conditional mean parameter vector. The following proposition shows that, with enough samples and an estimate
of the graph structure, we can learn the conditional mean parameter vector such that the ¢, error is small with
high probability.

Proposition O.1. Suppose we have an estimate G of G(6*) such that for any 6, € (0,1), G = G(6*) with
probability at least 1 — 6,. Given n independent samples xV --. x(") of x, consider x(j) where z is chosen

randomly from {1,--- ,n}. There exists an alogrithm that produces an estimate ﬂ(:c(_zl)) of u*(x(j) such that for
any €4 € (0,1),
I @) = e < e Vie ),

with probability at least 1 — 84 — ke /4 as long as

max 7max max

4d+8
€4

9d+1732d 1.4d j2d+1p2d 4d+4 12d 5.5 2 2 A
n 2 <2 bu k' d 0 ¢ ) ]og( 2 buk dalll&X¢max¢Hlax )

2
€4
The number of computations required scale as

218d+17b4dk8d+1d4d+104d 8d+4 14d
u

max 7 max max
8418 xp-
€4

The proof of proposition @ is given in Appendix @

0.2 Learning canonical parameter vector

The second step of the algorithm for recovering node parameters from Section E is to obtain an estimate of the
canonical parameter vector given an estimate of the mean parameter vector. We exploit the conjugate duality
between the canonical and mean parameters and run a projected gradient descent algorithm for this purpose.

We will describe the algorithm using a generic setup in this section and then apply it to the current setting in
the proof of Lemma @ in Appendix [P

0.2.1 Setup for the projected gradient descent algorithm

Let X be a real interval such that its length is upper (lower) bounded by b, (b;). Suppose that w is a random
variable that takes value in Xy with probability density function as follows,

fu(w; p*) oc exp(p™ Pp(w)), (54)
where the parameter vector p* := (p},---,py) is unknown and is such that ||p*||cc < pmax. Let P = {p €
R* : ||plloc < pmax}. Let v* = (v},---,v}) denote the mean parameter vector of f,(w;p*) and let © be an

estimate of v* such that, we have ||[v* — D||o < €5 with probability at least 1 — 5 for any €5 > 0, and any
05 € (0,1). The goal is to estimate the parameter vector p* using the projected gradient descent algorithm (Boyd
and Vandenberghe, 2014; Bubeck, 2015).

0.2.2 The projected gradient descent algorithm

Let Uy, denote the uniform distribution on &p. Algorithm E is a subroutine that is used in the projected gradient
descent algorithm. This subroutine is a Markov_chain and it provides an estimate of the mean parameters of
an exponential family distribution of the form (p4) when the underlying canonical parameters are known. See
Appendix E for discussion on the theoretical properties of this subroutine.
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Algorithm 3 Metropolized random walk (MRW)

1: Input: p, Xy, 71, 72, w(0)
2: Output: ©(p)
3: form=1,---,75 do
4 for r=0,---,71 do
5: Proposal step: Draw z(, ;1) ~ Ux,
6 Accept-reject step:
7 Compute a(,41) < min {1 CXp(pTd)(z”“)))}
»exp(pléd(w(ry))
8 With probability a(,,1) accept the proposal: w1y < 2(r41)
9 With probability 1 — a,41) reject the proposal: w41y <= w.)

N

10 &(p) < v(p) + dlwir, 11))
11: 0(p) + ~0(p)

Algorithm 4 Projected Gradient Descent

1: Input: &, Xy, 11, T2, 73, w(0), p(o), 0

2: Output: p

3: forr=0,---,73 do

4 p(pM) « MRW (p"), k, Xo, 71,72, w())

5. pUtY «—argminep [0 — €[D(p) — 0] - p|
6: ,3 «— p(73+1)

0.2.3 Guarantees on the output of the projected gradient descent algorithm

The following Proposition shows that running sufficient iterations of the projected gradient descent (Algorithm
) results in an estimate, p, of the parameter vector, p*, such that the ¢y error is small with high probability.

S S 2 ~ ._ 4kes(es+2C2pmax+2Pmax)
Define Cl =q,C = 2k¢max7 C3 ‘= 1Ca .

Proposition 0.2. Let ¢¢ > 0. Let p denote the output of Algorithm with &€ = 1/é, 71 =
2

8b;2 eXp(lepmax¢xnax)|:10g 4¢:;1\?%E + kpmax(bmax], T2 — 78(25%"““‘ log(zlg?), T3 =

P =(0,---,0) and © = (01,--- ,0x). Then,

kppax —
log a2 ) Wo) = 0,

Q\‘I
=

lp* — pll2 < e,
with probability at least 1 — 205.

The proof of proposition @ is given in Appendix E

P Proof of Lemma

In this appendix, we prove Lemma @ See Appendix @ and Appendix @ for two key propositions required in
the proof. Recall from Section B that A*(x_;) denotes the conditional canonical parameter vector and p*(x_;)
denotes the conditional mean parameter vector of the conditional density f,(-|x_; = z_;9*®). Recall the
definitions of v = Opax (k4 k2d), Pmax = 2max{dmax, ®2ax}> c1(a), and cz(a) from SectionE and the definition
of c3(a) from Appendix [E. We restate the Lemma below and then provide the proof.

Lemma E.2. Let Condition B be satisfied. Given n independent samples xV, ... . x") of x, for each i € [p],
let 09 be an estimate of 0*@) obtained using the three-step procedure from Section |3. Then, for any as € (0,1),

16° — 6V < as, Vi € [p]

with probability at least 1 — a3 as long as

. emin [6%) 25/2pk
n > max {cl(mm{ 3 + m}) log ( 2 ),62(042)}
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_ Q(exp(@(k2d+ g (35)) log (p];»
a3

24
K20y

The number of computations required scale as

. (Omin, Qg 25/2pk 5 ) exp(O(k%d)) . o [Pk
c;;(mln{ 3 ,m%(})xlog( > x log (2k“p) x p* = Q Taglog a—% p? |.

Proof of Lemma @ Let the number of samples satisfy

. emin (0% Qgpk
> R — )
n > max {cl (mm{ 3 Sdhon }) log < P ),02(042)}

Using Theorem @ with § = a3/8, we know the true neighborhood N (i) Vi € [p], with probability at least
1 — a3/8. Throughout the remainder of the proof, we will condition on the event that we know the true
neighborhood for every node.

Let us define

o — a3q° 66:783::
27k2d9max¢max7 2 ’ 8

¢

Consider z°; where z is chosen uniformly at random from [n]. Using Proposition @ with 6, = a3/8, the

estimate fi(x (7)) is such that

K2

I (25) = (@)oo < e Vi € [p],

with probability at least 1 — /8 — ke /4. This puts us in a position to use Proposition @
Observe that }\*( —¢) is such that [[A*(2_i)[lcc < pmax = 2kdOmaxPmax Y2 —; € e (i3A;. Using Proposition

@ with © = ( )) €5 = €4 and 05 = a3 /8 + ke3 /4, the estimate /A\(xg)) is such that
V@) - A< Viep)
= XD Ao < Vieh, (55)

with probability at least 1 —a3/4—ke?/2. Plugging in the value of €4 and assuming that (¢*)? < 23k4d?02 2.+,
it is easy to see that ke3/2 < a3 /4.

Let 19 € A be an e-optimal solution of GRISE and let 19( ") be the component of 19( ") associated with the edge
potentials. Using Lemma @ with o = ag/2dkdmax and (5 = a3/4, we have

*(1) 3(7) Q2 .
||Il9E 19 [ H — 2dk¢max VZ € [p]
— 05— [ < 2 Vi € [p] (56)
I 2dkdumax ’

with probability at least 1 — o /4.
For any r € [k] and i € [p], let A* (x(fz)) denote the rt" element of A*(x )) We have, for any r € [k] and i € [p],

9:(1‘) _ (Z) Z Z 9*(13) Z)

j#i s€lk]

(a) (z) Z Z 0* i5) (z) ), (57)

JEN (i) sek]
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where (a) follows because Vr, s € [k],j ¢ N (i), 675" = 0. Let A.(z (Z)) denote the r*" element of /\( ) Define

the estimate, éﬁi), as follows:

09 =X,a%) - 3 N 0@De, ). (58)

JEN(3) s€[k]
Combining (@) and (@), the following holds Vi € [p], Vr € [k] with probability at least 1 — a3:

= e A - X3 (0 D) oual)|

6r() _ §(i)

JEN (i) s€[k]
(a)
< n) - + > Z]e* () — 009 | g (al)
JEN(3) s€[K]
(b)
PORDIEACH
2dk¢max JEN(3) s€[K]

@ « o
2 a 2

_7 7:(127

where (a) follows from the triangle inequality, (b) follows from (@) and (@), and (c) follows because ||p(z;)]c0 <
Gmax for any x; € ;e X, IN(i)] < d and €5 = az/2.

The key computational steps are estimating 19&1) and N (i) for every node. Using Lemma @ with a7 =
a2/2dkdumax, 6 = aj/4 and Theorem with § = a3 /4, the computational complexity scales as

amin 2§ k
c;,»(min{ 3 +’2dljﬁ}> x log ( ;g ) x log (2k%p) x p*.

Q Proof of Proposition @

In this appendix, we_prove Proposition @ We begin by showing Lipschitzness of the conditional mean
parameters (Lemma @) and then express the problem of learning the conditional mean parameters as a sparse
linear regression (Lemma ). This will put us in a position to prove Proposition . Recall from Section

that A*(z_;) denotes the conditional canonical parameter vector and p*(z_;) denotes the conditional mean
parameter vector of the conditional density fs, (-|x_; = z_;;9*®) in (E) For any j € [k], the j*" element of the
conditional mean parameter vector is given by

/w-ex,- ¢j(x;) exp ()\*T(x,i)(j)(xi))dxi

/xveX’_ exp (A*T(x,i)d)(xi))dxi

wi(r—;) =

Define L; = 2k%010x 02 o Ormax-

Q.1 Lipschitzness of conditional mean parameters

The following Lemma shows that Vi € [p], the conditional mean parameters associated with the conditional
density of node x; given the values taken by all the other nodes (x_; = z_;) are Lipschitz functions of z,,

vm € [p] \ {i}.
Lemma Q.1. For any i € [p], j € [k], m € [p]\ {i} and x—; € Wiepp iy X, pf(x—i) is a Ly Lipschitz function
of Tp,-

Proof of Lemma @ Fix any ¢ € [p] and j € [k]. Consider any m € [p] \ {i¢}. Differentiating both sides of (@)
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with respect to x,, and applying the quotient rule gives us,

ooy 7, e en (VT et

o [ ew (3wt s,
(L, o (Tese)in ) (g [ ew (37w 00tw)az) |

( /z e (A*T(x_i)¢(mi)>dxi>2

Observe that ¢;(z;)exp (A*T(x_,)d)(xl)) and %(bj(xi)exp ()\*T(x_i)d)(xi)) are analytic functions, and
therefore are also continuous functions of z; and z,,. We can apply the Leibniz integral rule to interchange
the integral and partial differential operators. This results in

5#; (v—4) /x.ex ¢J(xz)aXKT(§z;)¢(xl) P ()\*T(m,i)d)(xi))dxi

Pon /ziexi exp (A*T(Lz’)d)(ﬂfi))dwi
) ([ oo (3T enot)n ) ([ PEE00) o (370000 s

Oz,

i

(/x-ex P ()‘*T(xi)éb(wi))dmif
AT )blx)|

) X—i = I—i;ﬁ*(i)>
Tm

X_4 = 17_1,’19*(1)> X E(anT(I_l)(b(X?)

0xm

- E(gbj(xi) x

- E(@ (x)

X_; = z_i;ﬁ*(i)>.

Using the triangle inequality we have,

O (x—) ONT (z_) (i) .
—| < (X AN StV ST R . ag*(1)
’ 0T - ‘E((b](xz) x oL, X_j=x_5;0 )
*T . ) 4
+ ‘E<¢j(xi) X—i = xi;’ﬁ*(i)) X E(W X_; = xi;,ﬂ*(z))‘
:Em
@ ONT (a_) () y
= E<¢j(Xi) X T X_; =x_;;0 Q)
*T . . ‘
+ ‘E(¢3(Xz) X_; = .’I,'Z,fl?*(’b)) X ’E(W X_; = xl’ﬂ*(l)>’
Tm
(b) #T (. ) .
< E( (z)J(X'L)‘ X ‘Mz)(b(xl) X_; = x_“,ﬂ*(z))
0T,
*T . ) ‘
e[y =aor®) wp(| 2Ky pre),
Tm
where (a) follows because for any a,b, we have |ab| = [a[|b| and (b) follows because the absolute value of an

integral is smaller than or equal to the integral of an absolute value.

We will now upper bound W as follows:

ONT (a_)plas) (@ 0| Dretr) (O + 2500 Ve 0546 (27)) 61 ()|

8mm 8fL'm
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= ( S 0:6m) ‘W)@(u)

relk] ~ s€lk]

(b) -
S k2¢max¢rnaxemaxa (60)

where (a) follows from the definition of A*T(x_;) and ¢(z;) and (b) follows because ¢,(7;) < Gmax
Vr € [k],Vz; € X; and %ﬁ:’”’) < Omax 5 € [K], YTy € X

Using (@) along with the fact that |@;(x;)] < dmax Vj € [k],Vz; € A;, we can further upper bound
‘8u;f(x,i)/8xm‘ as

O (z—i) y "y
‘él’ S k29max¢max¢max X ¢Inax + k29max¢max¢max X ¢max = L1~
As a result, we have |Vu*(z_;)||cc < L1 and this concludes the proof. O

Q.2 Learning conditional mean parameters as a sparse linear regression

The following Lemma shows that learning the conditional mean parameters p*(z_;) as a function of z_; using
an estimate of the graph structure is equivalent to solving a sparse linear regression problem.

Lemma Q.2. Suppose we have an estimate G of G(6*) such that for any 64 € (0,1), G = G(0*) with probability
at least 1 — 04. Let t be a parameter and p be such that p < (bu/t)d. The following holds with probability at
least 1 — 64. For every i € [p],j € [k], x—; € Wjep\(syXj, we can write yi(x—;) as the following sparse linear
regression:

(i) =@ b4,

where W) € RP is the unknown parameter vector and b € RP is the covariate vector and it is a function of x_;.
Further, we also have |fj| < Lidt, ||blloc < 1 and |||} < ¢max(bu/t)d.

Proof of Lemma @ For mathematical simplicity, Vi € [p] let the interval X; = &, = [0,b] where b is
such that b, < b < b,. Divide the interval A} into non-overlapping intervals of length ¢. For the sake of
simplicity, we assume that b/t is an integer. Let us enumerate the resulting b/t intervals as the set of integers
Z:={1,---,b/t}. For any x € X, 3¢ € Z s.t x € ((¢ — 1)t,(t] and this allows us to define a map M : X, - T
s.t M(z) = (t. Similarly, for any x == (z; : j € J) € Xbljl where J is any subset of [p], we have the mapping
M(x) = ¢t where ¢ := (¢; : j € J) is such that ¢; = M(x;)/t. Now for any x € A}, consider a binary mapping
W : X, — {0, 1} defined as W(z) = (w;(z) : j € Z) such that wa(y)/¢(z) = 1 and w;(z) = 0Vj € Z\{M(x)/t}.

Let us condition on the event that G = G(0*). Therefore, we know the true neighborhood N (i) Vi € [p] with
probability at least 1 — d4 (because G = G(6*) with probability at least 1 — ). Using the Markov property
of the graph G(68*), we know that the conditional density (and therefore the conditional mean parameters) of
a node x; given the values taken by the rest of nodes depend only on the values taken by the neighbors of x;.
Therefore, we have

H;(I—z‘) = M;(IN(i))a (61)

where ;) denotes the values taken by the neighbors of x;. Using the fact that max-degree of any node in
G(0*) is at-most d and Lemma [Q.1), we can write for any j € [k]

Wi (Tpre)y) — 15 (M(x./\f(i)))’ < Ll\/aHxN(i) - M(ﬂw(i))HQ

(a)
< Lydt, (62)
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where (a) follows because Ym € [p], |2m — M(zy,)| < ¢ and cardinality of AV'(i) is no more than d. Now using
the binary mapping W defined above, we can expand pj (M(Jc N(i))) as

[NV ()]
wi(Mav)) =D D (T weeno,))i (kats - ). (63)
ki1€T kini) €L m=1
where A (i),, denotes the m'" element of N(i). Observe that, Hlﬁfz(ll)l W, (TAr(s),,) = 1 only when
kmt = M(zx(3),,,) Ym € [N (D)]]-
Combining (Ej)7 (@) and (@) we have the following regression problem:
CEE M T
; . 5o~ N (i i
where W) = (,u;-(lﬁt,'-' ,k‘N(i)‘t) t k. €1 Vr e [|N(Z)|]) e RP, p= (b/t) (), b = (H‘r)j;/ll)‘ wkm(x./\/(i)m) :
k. € T Vr € HN(Z)”) € {0,1}?, and 7 is such that || < Lidt. Observe that ||b|s < 1. Using the fact that

cardinality of A/(7) is no more than d, we have

< (2 < (%)

Using the fact that the conditional mean parameters are upper bounded by ¢uax, we have the following sparsity

condition:
d
H‘I’“)H < o[ 22
1_ max t

O
Q.3 Proof of Proposition @
We restate the Proposition and then provide the proof.
Proposition O.2. Let ¢¢ > 0. Let p denote the output of Algorithm with € = 1/é, 11 =
8b;” 2€Xp(12kpmax¢max)|:10g 4‘1’;‘;?? + kpmax¢max], Ty = gax g log (B72), 75 = Zlog ('&) we) = 0,

p® =(0,---,0) and © = (01,--- ,0x). Then,

o™ = pll2 < €6,
with probability at least 1 — 265.

Proof of Proposition . Let us condition on the event that G = G(60*). The following holds with probability
at least 1 — §4. From Lemma , for a parameter ¢ and for every i € [pl,j € [k], v—; € ;e[\ (i3, we have

() = ¥ b+,

where (/) € R? is an unknown parameter vector and b € R, a function of z_;, is the covariate vector. Further,
we also have j = (b, /t), 7] < L1dt, [blloe < 1 and [|[®D ||y < G (bu/t) .

Suppose x( ... x(") are the n independent samples of x. We tranform these to obtain the corresponding

covariate vectors b() ... b where b() = (H‘WJ}/:(?‘ (xj(\l,)(l) )k, €T Vre [|N(2)H) Let Bbean xp
matrix such that ** row of B is b(). We also obtain the vector fi;(z_;) = (,ugr)(a:_i) : r € [n]) where
uér)( i) = ¢j(z (T)) Letting € = ¢;(;) — pj(r—;), we see that € is bounded sub-Gaussian random variable with

zero mean and variance proxy 62 = 4¢2,, . (follows from Hoeffding’s lemma).

max
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Let W) be the output of algorithm E with inputs V = B,y = i;(z_;) and €2 = ¢Pmax (bu/t)d. Using Lemma
with 7 = Lidt, ¢1 = 1, and ¢ = 2¢nax We have

E[MSPE(¥\W))] < 4L24%¢2 + 8¢max<bt ) ,/%ngp

Using the upper bound on p results in

— b\ [2d.  21/dp,
E[MSPE(¥ ))]<4L2d2t2+8¢max( ) log ——=.

t t
As d > 1, we have 2/2¢ < 2. Choosing the parameter t = 8\/%‘221(1 and plugging in L; = 2k%010x 02,0 Prmax and
n, we have
A . 64
E[MSPE(¥@)] < 6 (64)
Consider x( Z) where z is chosen uniformly at random from [n]. For the prediction fi;(x 2 )) we transform ac( ) to

obtain the corresponding covariate vector b = (HW I (xﬁ\zf)(l) )ik, € Vr e [|N(i )|]) and take its dot
product with W) as follows:

iy (2)) = 20 "p.
Using Markov’s inequality, we have

&, _ B[O b - $0) b2 (o) AE[MSPE(¥#1))] ® &

P(®0 b - ¥ b2 > D) <

NPy

€ €2 — 47
where (a) follows from Deﬁnition @ and (b) follows from (@) Therefore, we have |[¥()" b — W) b| < S with

probability at least 1 — =%

Further, the following holds with probability at least
z ~ z T _ = (T
15 2) = Ay (D) = 19 b g — F )

< D b — F b+ 7]

(b) €4 ) €4 ei (d)
< <
<G tog S e (65)

where (a) follows from the triangle inequality, (b) follows because || < Lidt and [#@ b — ¥ b| < 2 (¢)
follows by plugging in the value of ¢ and Ly, and (d) follows because ¢4 < 1.

As (@) holds Vj € [k], the proof follows by using the union bound over all j € [k].

Solving the sparse linear regression takes number of computations that scale as p* x n (see Efron et al, (2004)
for details). There are k such sparse linear regression problems for each node. Substituting for p, t, and n, the
total number of computations required scale as

218d+17b4dk8d+1 d4d+19ﬁ1d ¢r81§l;<4 Zléiax | 25 5b k.2 demax¢mdx ¢max
e Xp|log & :
€4

The log term is dominated by the preceding term. O

R Analysis of Algorithm E

In this appendix, we discuss the theoretical properties of Algorithm E These will be used in the proof of
Proposition . Recall that we design a Markov chain in Algorithm P that estimates the mean parameter
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vector of an exponential family distribution whose canonical parameters are known. The sufficient statistic
vector of this exponential family distribution is the basis vector ¢(-). We design this Markov chain using a
zeroth-order Metropolized random walk algorithm. We will provide an upper bound on the mixing time of this
Markov chain (Lemma ) and provide error bounds on the estimate of the mean parameter vector computed
using the samples obtained from the Markov chain (Lemma ).

R.1 Setup: The exponential family distribution

Let Xj be a real interval such that its length is upper (lower) bounded by known constant b, (b;). Suppose that
w is a random variable that takes value in Xy with probability density function as follows,

fw(w: p) < exp(p” dp(w)), (66)
where p := (p1,- -, p) is the canonical parameter vector of the density in (@) and it is such that ||pllcc < Pmax-
Let the cumulative distribution function of w be denoted by Fy,(:; p). Let v(p) = E,[¢(w)] € R* be the mean
parameter vector of the density in (@), ie, v(p) = (11, -+ ,vk) such that

vi= [ otw)ulw . (67)
weXy

We aim to estimate v(p) for a given parameter vector p using Algorithm E Let the estimated vector of mean
parameters be denoted by U (p) := (1, -+, k). Let Z(p) be the partition function of f,(-; p) i.e.,

zo) = [ (o (). (68)

R.2 Bounds on the probability density function
Let us define H(-) == exp(|pT ¢ (-)|) and Humax = exp(kpmaxPmax). We have Yw € Xy,
HH(w) < exp(p” p(w)) < H(w). (69)

Bounding the density function defined in (@) using (@) results in

1 H2 (w)
— < : < .
buHQ('LU) — fW(w7 p) — bl (70)
Let us also upper bound H(-). We have Yw € Xy,
(a) b () ul ©
H(w) < eXp(Z ‘pj¢j (’IU)D < exp(prnax Z |¢] (’U})l) < eXp(kpmax¢max) = Hmax, (71)

Jj=1 j=1
where (a) follows from the triangle inequality, (b) follows because |p;| < pmax VJj € [k], and (c) follows because
|9 ()| < Pmax Vi € [k] and Yw € Xp.

R.3 Mixing time of the Markov chain in Algorithm E

We set up an irreducible, aperiodic, time-homogeneous, discrete-time Markov chain, whose stationary distribution
is equal to F,(w;p), using a zeroth-order Metropolized random walk algorithm (Hastings, 1970; Metropolis
et all, 1953). The Markov chain is defined on a measurable state space (Xp, B(Xp)) with a transition kernel
K Xy x B(Xy) = Ry where B(Xp) denotes the o—algebra of Xj.

R.3.1 Total variation distance

Definition R.1. Let Q1 be a distribution with density g1 and Qs be a distribution with density q2 defined on a
measureable state space (Xo, B(Xp)). The total variation distance of Q1 and Q2 is defined as

Q1 — Qzllrv = sup |Q1(A4) — Q2(A)|.

AeB(Xo)
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The following Lemma shows that if the total variation distance between two distributions on the same domain
is small, then Vj € [k], the difference between the expected value of ¢;(-) with respect to the two distributions
is also small.

Lemma R.1. Let Q1 and Qo be two different distributions of the random wvariable w defined on Xy. Let
Q1 — Qz|lTv < €7 for any e > 0. Then,

[Eaulo(m)] - Equlew]]| < 26r6mas.

Proof of Lemma @ We will use the following relationship between the total variation distance and the ¢; norm
in the proof:

1@~ Qv = 5 [ () — aa(uplr (72)

For any j € [k], we have,

Eo, [6;(w)] — Eg, 6 (w)]|

¢j(w)lg1(w) — g2(w)]dw
Xo

(b)
< /X 1650l (1) — g2

(0)
S ¢max/X \%(w) - qQ(w)|dw

(d)
= 20max||Q1 — Q2l|7v

< 267¢maxa
where (a) follows from the definition of expectation, (b) follows because the absolute value of integral is less than
integral of absolute value, (c) follows because |¢;(w)| < ¢max Vi € [k], and (d) follows from (@) O

R.3.2 Definitions

Definition R.2. Given a distribution Fy with density fo on the current state of a Markov chain, the transition
operator T (Fy) gives the distribution of the next state of the chain. Mathematically, we have

T(Fo)(A) = . K(w, A) fo(w)dw, for any A € B(Xp). (73)

Definition R.3. The mizing time of a Markov chain, with initial distribution Fy and transition operator T, in
a total variation distance sense with respect to its stationary distribution F,,, is defined as

7(e) = inf {r eN st [|[TV(Fy) = Ful|py < e},

where € is an error tolerance and T") stands for r-step transition operator.

Definition R.4. The conductance of the Markov chain with transition operator T and stationary distribution
F,, (with density f,(w)) is defined as

‘=  min Ju T (00)(A°) fu (w)dw
 0<F,(A)<} Fo(A) ;

where T (0y) is obtained by applying the transition operator to a Dirac distribution concentrated on w.

R.3.3 Upper bound on the mixing time

Recall that Ux, denotes the uniform distribution on Xy. We let the initial distribution of the Markov chain be
Ux,. We run independent copies of the Markov chain and use the samples obtained after the mixing time in
each copy to compute ©. In Algorithm B, 71 is the number of iterations of the Markov chain and 75 denotes the
number of independent copies of the Markov chain used. The following Lemma gives an upper bound on the
mixing time of the Markov chain defined in Algorithm E
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Lemma R.2. Let the mizing time of the Markov chain defined in Algom'thm@ be denoted by Tp(es) where eg > 0
is the error tolerance. Then,

Vi
esv/b

TM(eS) S 8bl_2 eXp(12kpmaX¢max) |:10g + kpmdx¢mdx:| .

Proof of Lemma @ We will control the mixing time of the Markov chain via worst-case conductance bounds.
This method was introduced for discrete space Markov chains by Jerrum and Sinclair Jerrum and Sinclaiy (198%)
and then extended to the continuous space Markov chains by Lovasz and Simonovits (Lovdsz and Simonovits,
1993); see Vempala (2005) for a detailed discussion on the continuous space setting.

For any initial distribution Fj and stationary distribution F), of a Markov chain, define ¢y := sup 4 5‘)%3% . LovasZ
and Simonovits (1993) proved that,

HT(T)(FO) - Fy| |TV < \/%expf“‘ﬂﬂ.

Therefore to upper bound the total variation distance by eg, it is sufficient to have

2
Vegexp ¥ 12 < eq.

This can be rewritten as

\/5 S

Therefore, after r = =5

T (€g) < el log Voo In order to upper bound the mixing time, we need upper bound the constant ¢y and lower
bound the Conductance ©.

We will first upper bound c¢g. We have the initial distribution to be uniform on Xj. Therefore,

A) (a) Edw  ®) p,
_ UXO(A) < Supff‘lbill Fanax7 (74)
A Fu(A) A fA bu7-t2(w)d

where (a) follows from the lower bound in (@) and because the length of Xj is lower bounded by b; and (b) from

(.

Let us now lower bound ¢. From the Definition @ we have,

_ L4 T (80)(A) fu (w; p)duw
mln

O<fAfw »p)d'u-’S% fAfW ap dw
(a) . J4 T (6)(A°) exp(p” p(w))dw
= min T

O<fA fW(w§P)dw§§ fA eXp (Z)( ))d’l,U
(b) ey —1
S min J4 T (0w)(AYH™H (w)dw

0< [y fuw(w;p)dw< 3 fA H(w)dw
9 1 LTy

Hinasx 0< [ fulwip)dw<t [, dw
@ 1 . Ja (S, K(w, A6, (w)dw) dw
> — min 0

Hiax 0< [ Fulwip)dws [ dw
__ L LK AYdw

HE o 0< [y fulwip)dw<t [, dw

dy)dyd
1 min fA fAC w, dy)dydw

|

H?nax 0<fAfw wP)d SQ fAdw ’
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where (a) follows by canceling out Z(p) in the numerator and the denominator, (b) follows from (@), (c) follows
from ([/1]), and (d) follows from (@)

Recall from Algorithm E that we make a transition from the current state w to the next state y with probability

K(w,dy) = min {1, %}. Therefore,

1 exp(p” b))
1 . S Jpe min {1, ZRE S0 Fdydu
min .
H2 o 0< [y Fulwip)dw< i Sy dw

p =

Using (@) and observing that H2 < 1, we have min {1 xp(p” (1)) } > 24— This results in,

exp(pTé(w)) [ = HI.
1 . dydw 1
Y2 7 min JaJac Wy = = min / dw. (75)
Hiax 0< 4 fulwipydwst [, dw Hiax 0< [y fu(wip)dws<t J e

We have [, fu(w;p)dw < % This can be rewritten as,

1 @ B
w(w; p)dw > = dw > ,
rwipdez g5 = | dw = o,

max

(76)

where (a) follows from the upper bound in (@) Using (@) in (@), we have

b
2H16nax '

o> (77)

Now using (@) and (@) to bound the mixing time, we have

T (eg) < 8H o log Hinax vVu
M > .
Vo esv/bi

Using the upper bound of H,,.x from (EI), we have

< 8 exp ( 1 2kpmax ¢nlax)

b’lJ. ex k max¥max
rutles) < ’ og Vb exp(k pmaxPmax)
1

sVl
Vb
esVbi

1

= 8bl_2 eXp(12kpmax¢max) |:10g + kpmax(bmax] .

R.3.4 Guarantees on the output of Algorithm E

The following Lemma shows that the estimate, obtained from Algorithm E, of the mean parameter vector, is
such that the £, error is small with high probability.

Lemma R.3. Let eg > 0 and dg € (0,1). Let 0(p) be the output of Algorithm B with wy =0, p = (p1,--+ , pr),

71 = 8b; 2 exp(12kpimax drmax) [log et kpmaxquax]  and 7y = *pxlog (). Then,

[v(p) —2(p)lleo < €9,

with probability at least 1 — kdg.

Proof of Lemma @ The distribution of the Markov chain in Algorithm E after 7 + 1 steps is 7+ (Uy,)
where Uy, denotes the initial uniform distribution. Let ™ (p) := (v, .-+, vM) be the vector such that IJJM is the

expected value of ¢;(-) with respect to the distribution 7+ (U, ). Using Lemma @, we have 71 > (752 —).
Therefore,

|77 Une) = Fulpy < Ji~
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From Lemma @, we have

€9

lv(p) = v (p)llee < 5 (78)

U(p) is computed using the samples obtained from the distribution 7'(71“)(2/{;(0). Using Hoeffding’s inequality,
we have Vj € [k]

—Tgt%
20%ax

P(|0; — vM] > to) < 2exp(

).

2
Therefore when m > 241% log (%), we have |f/j — UJM | < tg with probability at least 1 — dg.
0]

2
Using the union bound Vj € [k], when 75 > 8%% log (%), we have
9

. €
I7(0) ~ v (o)l < . (79)
with probability at least 1 — kdg.
Combining (@) and (@) by triangle inequality, we have
lv(p) = &(p)lle = lIv(p) = v™(p) +v™(p) = &(p)lloo < [¥(p) = ™ (P)]lc + 12(p) = ™ (P)]ls < €o.
O

S Proof of Proposition

In this appendix, we prove Proposition @ First, we will prove the strict convexity of the log partition function
of interest (Lemma @) Next, we express the conjugate duality between the mean parameters and the canonical
parameters. Next, we argue the need of the projected gradient descent algorithm. Finally, we provide the proof
of Proposition @

Recall the setup for the projected gradient descent algorithm from Appendix . Specifically, recall the
definitions of p*, fu(w;p*), P, pmax, and v*. Also, U is an estimate of v* such that, with probability at least
1 — 05, we have ||v* — Ul < €5. Further, recall the setup from Appendix @ Specifically, for any p € P,
recall the definitions of f,, (w; p), v(p), and Z(p) from (@), (@), and (@) respectively. Recall the definition of
q° from Section P

S.1 Convexity of the log partition function

Let ®(p) be the log partition function of f, (w; p). Because f, (w;p) is an exponential family density, V®(p) =
v(p); see Wainwright and Jordan (2008) for details. The following Lemma shows that ®(p) is a strictly convex
function of p.

Lemma S.1. ®(p) is a strictly convex function of p.

Proof of Lemma @ For any non-zero e € R¥, e ¢(w) is not a constant with respect to w. Therefore,
(a) T
0 < Var( e ¢(w)

—cov (o7 plu), o7 p(w)

[
™=
™=

ejer X cov(p;(w), ¢r(w))

1r=1

J

ejen[V2®(p)]).r

=
W

<
Il
—
<
Il

1
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=e’'V?®(p)e.

where (a) follows because the variance of a non-constant random variable is strictly positive and (b) follows
because for any regular exponential family the Hessian of the log partition function is the covariance matrix of
the associated sufficient statistic vector; see Wainwright and Jordan (R008) for details.

Thus, V2®(p) is a positive definite matrix and this is a sufficient condition for strict convexity of ®(p). O

S.2 Conjugate Duality

Expressing the relationship between the canonical and mean parameters via conjugate duality (Bresler et al,
2014; Wainwright and Jordan, 2008), we know that for each v in the set of realizable mean parameters, there
is a unique p(v) € P satisfying the dual matching condition v(p(v)) = v. The backward mapping of the mean
parameters to the canonical parameters (v — p(v)) is given by,

plw) = argmax { (0.0) ~ 2() . (30)

pEP
Defining Q(p, v) := ®(p) — (v, p), we can rewrite (@) as

p(v) = arg min {Q(p, v)} (81)
peEP

For any p € P, let ¢(p) denote the smallest eigenvalue of the Hessian of the log partition function with canonical
parameter p. Recall that ¢® denotes the minimum of ¢(p) over all possible p € P.

Lemma S.2. Q(p,v) is a ¢° strongly convex function of p and a 2k¢? .. smooth function of p.

max
Proof of Lemma @ Observe that V2Q(p,v) = V2®(p). Therefore 2(p, v) being a ¢° strongly convex function
of p and a 2k¢2 . smooth function of p is equivalent to ®(p) being a ¢° strongly convex function of p and a
2k¢2 . smooth function of p.

max

We will first show the strong convexity of ®(p). Consider any e € R* such that ||e||; = 1. We have

q(p) = inf eTV2®(p)e.
eillefl2<1
Using Lemma EI we know that ¢(p) > 0 for any p € P. Observe that [V2®(p)]; , = cov(¢;(w), ¢.(w)), and is a
continuous function of p ,Vj,r € [k]. Now ¢(p) is a linear combination of [V2®(p)]; . Vj,r € [k]. Therefore ¢(p)
is also a continuous function of p. Using the continuity of ¢(p) and compactness of P, we apply the extreme
value theorem and conclude that the function ¢(p) will attain its minimum value of

S — : f
q plrelpq(p),

and that this value is positive. Now using the fact that V2®(p) is a symmetric matrix and the Courant-Fischer
theorem, we conclude that the minimum possible eigenvalue of V2®(p) for any p € P is greater than or equal to
q°. Thus, the smallest possible eigenvalue of the Hessian of the log partition function is uniformly lower bounded.
As a result, ®(p) and Q(p,v) are ¢°-strongly convex.

We will now show the smoothness of ®(p). From the Gershgorin circle theorem, we know that the largest
eigenvalue of any matrix is upper bounded by the largest absolute row sum or column sum. Applying this, we
see that the largest eigenvalue of V2®(p) is upper bounded by maxi<,<j Zk: [[V2®(p)];r|. Now

max Z| V20 (p = max Z lcov (i (w), ¢r(w))]

1<r<k

§ max Z2¢max

1<r<k

< 22

max’

where (a) follows from the triangle inequality and because |¢;(w)| < ¢max Vi € [K].

Now because the largest eigenvalue of the Hessian matrix of the log partition function is uniformly upper bounded
by 2k¢2.,., ®(p) and Q(p,v) are 2k¢2,,. smooth function of p. O

max’ max
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S.3 Why projected gradient descent algorithm?

From Lemma @, we see that there is a_unique minimum in (@) In other words, when the mean parameter
in (B1)) is the true mean parameter of (b4) i.e., v = v*, then the unique minima in (81) is p*. Therefore, in
principle, we can estimate p* using a projected gradient descent algorithm.

In each step of this algorithm, we need access to v(p) for the estimate p. However, we don’t have access to v*
and v(p). Instead, we have access to © and U(p) (from Algorithm B). Therefore, we can estimate the parameter
vector p* using the projected gradient descent in Algorithm Y.

S.4 Proof of Proposition @
We restate the Proposition below and then provide the proof.

Proposition 0.2. Let ¢¢ > 0. Let p denote the output of Algorithm with &€ = 1/é, 71 =
- 8¢ s c kppax _
8bl 2eXp(12kpma.x¢)max) {logw + kpmax(bmax]; T2 = %log(2§53)7 T3 = élog (65 ; Wo) = 0;

P9 =(0,---,0) and © = (O1,--- ,01). Then,

c3

lp* = pll2 < €.

with probability at least 1 — 205.

Proof of Lemma . The projection of p, onto a set P is defined as

I1p(p) = argmin | p — p]|.
pEP

If we had access to v* and v(p), the iterates of the projected gradient descent algorithm could be rewritten as

pl ) = p") — eyp(pt),

where vp(p) is the gradient mapping and is defined as yp(p) == %(p — pt) with pf == IIp(p — ¢[v(p) — v*]). See
Bubeck (2015) for more details. Because we are using the respective estimates © and (p), the iterates of the
projected gradient descent algorithm are as follows:

pU ) = pM) — &4p(pt"),

where §p(p) = ¢(p — p'") with p'T :=IIp(p — {[D(p) - V]).
Using Lemma @, we have

[v(p) — ()|l < e5,

with probability at least 1 — 05/73.

Recall the setup from Appendix . Let us condition on the events that |[v* — ¥||s < €5 and that, for each
of the 73 steps of Algorithm H, lv(p) —2(p)]loo < €5. These events simultaneously hold with probability at least
1— 265.

Now for any r < 73 + 1 the following hold with probability at least 1 — 205:
1o = p7llz = 1077 = &3p (0" ) = P72
= oD = lEp(" ) = e (p" D) + 4 (0" )] = o2
= o = &y (p" ) = E[Ap (P ) = 12 (P )] = 72
(a) ) . .
< oD =&y (P ) = p*lla + AR (P TY) = p (P V)12

®) ~ r— r— * "
< lp" "V =&y (p V) = p7ll2 + £0 (P ) — v (p ) + 0T =B
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< 10 () — o+ EI(pC ) — (o) + €l — 0l

< 1600~ &xp(p ) — pa + EVEIRPT ) — (o) o + VR — Bl

N6 — ey (p D) - p*ls + 26 Ve, (2)
where (a) follows from the triangle inequality, (b) follows from the definitions of v»(p) and 4p(p) and because

the projection onto a convex set is non-expansive i.e., ||IIp(p) —IIp(p)|| < ||p — A||, (¢) follows from the triangle
inequality, (d) follows because V v € R¥, ||v||2 < vk|V| s, and (e) follows because of the conditioning.

Squaring both sides of (@) the following hold with probability at least 1 — 2ds:
1™ = p*[15 < 071 = &rp(p" ) — p*[15 + 4€%ke2 + A&V Ees | pU 1 = Eyp (pU ) — 72
210D — ep(p ) = p [+ 4€2kel +46VRes 107 = p o+ Elm (0 )]
21600 — eym(p ) = p 3+ dehed + devRes 90 = pl + Ellw(p) — v° 2]

(¢)
< P77 = &yp (") — p* |13 + 4€%keR + 8Ekes (Pmax + EPmax),

where (a) follows from the triangle inequality, (b) follows by using the non-expansive property to observe that
Iy (p)ll2 < [lv(p) —v*||2, and (c) follows because [|pT ) —p*[l2 < 2vEkpmax and [[v(p"~V) —v*||2 < 2VEdmax-

Letting Y(£) := 4€%keZ + 8¢kes(pmax + EPmax), the following hold with probability at least 1 — 245:
o™ = p*[I5 < o7 = &vp(p" ) — p*[I5 + Y ()
(@) r— * r— r— r— *
2 1p" 0 = o3+ 21l (0TI — 260m (0 V), TV = ) 1(6), (83)

where (a) follows from the fact that for any two vectors fi, fo, ||fi — f2/|3 = ||f1]13 + [|f2]|3 — 2 (f1, f2).

For a twice differentiable, ¢ strongly convex and ¢z smooth function Q(p), we have, for any p € P

* C1 * 1
trlp)p=p) 2 Sllp—p ||§+EHVP(P)H§7 (84)

where p* is the minimizer of Q(p). See Bubeck (2015) for more details. Using (@) in (@), the following hold
with probability at least 1 — 205:

10 — oI < <1—scl>|pr1>—p*||§+<52—i)||w<p<r1>>||§+T<§>.

Substituting & = ,i the following hold with probability at least 1 — 245:

r * C1 r— * 1
o = o< (1= 2o - ().
C2 C2

Unrolling the recurrence gives, we have the following with probability at least 1 — 2d5:

s (2 ()
) S8

(a) C *
= <1— > 1p*[I3 + e
Ca

T N B
)Ip*|3 + €3,

b) -
< exp(—
C2
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where (a) follows by observing that %T(é) = ¢z and p(® = (0,---,0), and (b) follows because for any y € R,
1—y<e™v.

A sufficient condition for ||p(") — p*||2 < €5 with probability at least 1 — 245 is

—C1r _
exp(—) o[+ e < €

Rearranging gives us,

Taking logarithm on both sides, we have

— * |12
r> ?log (ng ”_2 )
C1 €g —C3

Observe that ||p*||3 < kp2,... Therefore, after 73 steps, we have ||p — p*||2 < € with probability at least 1 — 255
and this completes the proof. O

T Examples of distributions

In this appendix, we discuss the examples of distributions from Section H that satisfy the Condition @ We also
discuss a few other examples. Recall the definitions of ¥ = Opax(k + k%d) and pmax = 2 max{dmax, P2ax} from
Section E Also recall the definitions of fr, := exp ( — 2fy<pmax) /by, and fy = exp (2'y<pmax) /by from Appendix [B.

T.1 Example 1

The following distribution with polynomial sufficient statistics is a special case of density in (B) with ¢(z) =z
and k = 1. Let Vi € [p], X; = [=b,b]. Therefore b; = b, = 2b, dmax = b and Pmax = 1. The density, in this case,
is given by

fx(x;0%) o exp ( Z 0* g,y + Z ZQ*uj)xixj).
i€[p] i€[p] j>1

For this density, we see that v = Oax(d + 1) and ppax = 2max{b, b*>}. Let us first lower bound the conditional
entropy of x; given x_;.
h <Xj

Xj) = _/ex Jx(x;0%)log fi, (z;]x_; = z_j;079))dx

(a)
— < (x;0™) 1 dx
> /xexf( )log(fu)

b
© g fu, (85)

where (a) follows from (@) with fr = exp(40max(d + 1) max{b,b*})/2b and (b) follows because the integral of
any density function over its entire domain is 1.

Observing that f$ cx, zixUx, (z;)dx; = 0, the left-hand-side of Condition @ can be written and simplified as

follows:
X_j> }] @ E [exp {Qh(xj ’X_j> + 2log ’(g(ij) — é(ij))xi‘ }]

® o
> E[exp{ —2log fu +2log ‘(9(”) — H(ZJ))Xi’}}

(609 ;;(ij))QE [Xﬂ

E [exp {2h <(0(ij) — 009))x;x;
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glis) _ i)
= ME [E [Xﬂxlﬂ
fo
g(is) _ gij))2 )
fU T €EX;

o) £, (0li) — §li))2
9 ful : ) E[/ xfd%}
fU T, €EX;

20°f1 (i3) _ p(ij
(@ 99 2’
3f% 352 ¢ )

—
QO
~

—
=

—

\ \/

where (a) follows because for a constant a, h(aX) = h(X) + log|al, (b) follows from (@), (c) follows from the
law of total expectation, (d) follows from the definition of conditional expectation, and (e) follows from ([L7).

Substituting for f;, and fy;, we see this density satisfies Condition @ with © = 4b exp(—120max(d +
1) max{b, b%}).
T.2 Example 2

The following distribution with harmonic sufficient statistics is a special case of density in (E) with ¢(z) =
(sin (7 /b), cos (ﬂ'w/b)) and k = 2. Let Vi € [p], X; = [-b,b]. Therefore by = b, = 2b, Ppmax = 1, and
Gmax = 7/b. The density in this case is given by

Jx(x;0%) o< exp < Z [9*( 2 b : 4 0*( R 7} + Z [GTW) sin w + 9;(”) cos WD

i€[p] i€[pli>i

For this density, we see that v = Omax(4d + 2) and pmax = 2. Let y; = Sln( + z) where z is a constant

with respect to x;. Then, the conditional density of y; given x_; can be obtained using the change of variables
technique to be as follows:

bl (2lsin™"yy — 29" ) + £ (= b= Llsin~ g + 2)[e_y9°0) |
/1 — y]2
if Y; € [—1,0]

[ (2lsin" g5 — 2l|o—ys9°D) + £, (b= Llsin™ g, + 2l a—y; 0°D)

ﬁ,/l—y?

Fy (yilxej = z_j;970)) =

if y; € [0,1].

Using (@), we can bound the above conditional density as:

_2bfu

Ty; (Yjlx—j = 23 ‘9*(3))
my/1— y]

Let us now lower bound the conditional entropy of y; given x_; = z_;.

h (yj

where fy = exp(46max(4d + 2))/2b.

y;=1 ) )
X_j = x—ﬂ') - 7/ Fyy Wilx—j = 255970 log fy, (ys1x_j = z_ ;9" D)) dy;

yj=—1
(@  [w=!
;_/ ’ 2be
j

bU
_ 2be[ / ‘dyji /:'—11 \/11_7%2 1ogmclyj]
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(0 2bfy [ 2bfu
= — mlog

o 71'
4bfu

s

+ mlog 2}

= —Qbe log

(87)

where (a) follows from (@) and (b) follows from standard definite integrals. Now, we are in a position to lower
bound the conditional entropy of y; given x_j.

h<yj X—j) =/ L fXj(x—j;e*)h<Yj
T—jCllrzzy Ar

(a) 4b fy
T )
where (a) follows from (@) and because the integral of any density function over its entire domain is 1.

X—j = m_]) dl‘_]‘

> —2bfy log (88)

Observe that fxieXi sin (W)UX (x;)dx; = fxveX,; cos (W)UX( ;)dz; = 0. Letting égij) _ égij) =« and

7

égij ) éé” ) = B, the left-hand-side of Condition @ can be written and simplified as follows:

E[exp {2h (a sin (w) + Bcos <W> 'X‘j> H
@g [exp {zh(msm (P D) X‘j> H
2 ol o s (52— D) o5 |

()
> E[exp{ — 4bfy log 4bfu + log ’CV2 + 52‘}}

™
@ (7 N TSy e a0 N2

where (a) follows from standard trigonometric identities, (b) follows because for a constant a, h(aX) = h(X) +
log|al|, (c¢) follows from (@) with z = 7x; /b — tan~! B/a, and (d) follows by substituting for a and 3.

Substituting for fr, and fy, we see this density satisfies Condition @ with &
( - exp(—40max(4d+2)) ) 2 exp(40max (4d+2))
5 .

T.3 Example 3

The following distribution with polynomial sufficient statistics is a special case of density in (E) with ¢(z) =

(x,2%), k = 2 and with the assumption that the parameters associated with xla:? and mfx? are zero Vi € [p|,j > i.

Let Vi € [p], X; = [~b,b]. Therefore b; = b, = 2b, pmax = max{b,b*}, and ¢nax = max{1,2b}. The density in
this case is given by

Jx(x;0%) o exp < Z 07Dz, 4+ 03D 22 + Z Z[@fffj)xixj + 05({”:&%])
i€[p] i€[p] 5>1

For this density, we see that v = Opax(4d + 2) and pp.x = 2max{b,b*}. As in Appendix EI, we have the
following lower bound on the conditional entropy of x; given x_;

h <Xj

where fyr = exp(40max (4d + 2) max{b, b*})/2b.

) 2 ~los o, (59)

Observing that fme&_ z;xjUx, (x;)dz; = 0 and fw’_exi x2x Uy, (z;)dx; = %xj, the left-hand-side of Condition @
can be written and simplified as follows:
=)}

5G3) ;i G3) 7 b?
B xp {2n (017~ 60 s + @52 - 05) (o~ )




Abhin Shah, Devavrat Shah, Gregory W. Wornell

)

Il
—

—fes e P s b2
| oxp {on (|07 - 60+ @52 - 8590 (¢ - ) |

a i i s i b2
Q E[exp {Qh (xj x_j) +2log | (B3 — 57 )x + (857 — 59) (x¢ - 3)‘}]
(b) (i ~(is (i (i b2
> E {exp{ —2log fu + 2log (95,]1) - 9§,J1))Xi + (95,]1) - eg,Jl))(Xiz - 3)‘}]
1 (i7) _ 50d) N NS ILAN
= 2E|: (017 =057 )% + (057 — 057 )( P )) ]
fo
© 1 A(i5) (i (i) 7(ij *\\”
9 B[ (000 - 800+ @0 -8 (2 - §) ) e
(d) (i ~(id (i oy pi 2p2
> @E[(eﬁﬁﬁ - 657) / widu; + (057 — 0538)2( / et + & = S-af] dxi)
fU T, EX; T, EX; 9 3

(g n(ig n(tg n(ig b2
w2 - D07 -0 ([ [ Tafan)
T, €EX;

FLT26%  —n s 2° 205 AN i s
= |01 -5 + =+ o - 5 ) (65D - 657

AR 5 9 9
o263 iy Aaj 8b° _iiy A
= I ?(95,{) - 95,]1))2 + 4*5(9;]1) - 95,{))2
U
8fLb® min{45/12, 6%} [~y 5(ij n (i
> SHERBADIBEL | G - oy + 08 - 357
U

where (a) follows because for a constant a, h(aX) = h(X) + log|al, (b) follows from (@), c¢) follows from the
law of total expectation, and (d) follows from the definition of conditional expectation and ([L7).

Substituting for f; and fi7, we see this density satisfies Condition @ with kK = w exp(—120.x (4d+
2) max{b,b*}).

T.4 Example 4

The following distribution with polynomial sufficient statistics is a special case of density in (E) with ¢(z) =

(z,2%), k = 2 and with the assumption that the parameters associated with TiTj, x%xj, xix? and xfx? are same

Vi € [p],j > 4. Let Vi € [p], &; = [~b,b]. Therefore b; = b, = 2b, pax = max{b,b?}, and Gyax = max{1,2b}.
The density in this case is given by

fx(x;0%) o< exp < Z [Hr(i)xi + Hg(i)x?] + Z 9*(”)(% + 963)(93] + $§)>
i€[p] i€[p]
Jj>t
For this density, we see that 7 = Opax(4d + 2) and Puax = 2max{b,b*}. Let yi =Xxj + ij. It is easy to obtain
the range of y; as follows:

[—1/4,b+ b%] it b>1/2
L€ =
vi €Y {[bb?,b+b2] if b<1/2.

We obtain the conditional density of y; given x_; using the change of variables technique and upper bound it
using (@) as follows:

2fu

V1+4y;’

Fy (ilx—j = w_j;970)) < (90)

where fir = exp(40max (4d + 2) max{b, b*})/2b.
We will now lower bound the conditional entropy of y; given x_; = x_;. In the first scenario, let b > 1/2.

h (yj

vy =b+b’ , ,
xj= xj> =- / s slxey = 259" log fy, (y;1x_5 = 53 9"9)dy;
Y

j=—1/4
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(a) y;=b+b 2 2
g _/ fu log fu dy;
SV = TR e 7
b+b2

® fo\/1+4yjlog 2Jue

1+ dy; —1/4

2fU6
—(1+2b)fulog T (91)

where (a) follows from (@) and (b) follows from standard indefinite integrals. Now, we will lower bound the
conditional entropy of y; given x_; = z_; and b < 1/2.

h (yj

yj=b+b ) )
S wj) - _/ b FyWilxej = 259" log £y, (y;1x_; = 559" dy,
Y;j=0—

dy;

(;) /yj—b+b2 2fU | 2fU
> - og

y=b—t2 /1 +4y; /1 +4y;
b+b?

A
1=

/Ty log —210¢
V1 +4y; b2

2fve
1-2 1
1+2b+( b) fu log

2fU€
1+2b

2fU6

= —(1+2b)fU10g 1-9

—(1+ 2b) fu log

(92)

where (a) follows from (@), (b) follows from standard indefinite integrals and (c¢) follows because (1 —
2b) log 2Jve (0 when b < 1 /2. Now, we are in a position to lower bound the conditional entropy of y; given x_j.

1-2b
h<)’j X—j) / fX—j(ﬂ?—j;O*)h<}’j X = ﬂf—j>df€—j
T_j Enrij X,
© 2fue
—(1+2b) fu log T o (93)

where (a) follows from (@), (@), and because the integral of any density function over its entire domain is 1.

Observing that fzieé\ﬁ xily, (x;)dz; = 0 and fziexi 22Uy, (2;)dx; = %, the left-hand-side of Condition @ can
be written and simplified as follows:
=)}

E[exp {2h<(9(ij) - 9(”)> (xi +xF — b) (Xj +x2>
7 3 J
(@ 2l g(i) _ §(ig) e P
E|expq2h| x; + xj|x—; | +2log || 6" — 0 X + X; 3
® 2fve b?
> — (i3) _ g(id) ) 2_ 2
E[ { 2(1+2b)fUlog1+2b+2log'<9 6 )(xz—i-xl 3
14 20\ /v (1+20) N2 b2\ 2
E (i3) _ g(id) ) 2_ 2
( 2fU€) [(9 ’ TNy

© 23 5 149 2 fu (142b)
< fr ( g(w)) b _|_& +2b ,
3 45 2fU€

where (a) follows because for a constant a, h(aX) = h(X) + log |al, (b) follows from (@), (c) follows from steps
similar to the ones in Appendix

Substituting for fr, and fy, we see this density satisfies Condition @ with &

) 142b 4
e(15b+45%) [ b(142b) exp(—40umax (4d+2) max{b,p*}) | b OXP(A0max (4d+2) max{b,b7})+1
45(1+2b) e :
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U Discussions

In this appendix, we discuss the invertibility of the cross-covariance matrix B (ﬂ*(i)) via a simple example as well
as explicitly show that the matrix B(9*®)~1 A(9*())B(9*())~! need not be equal to the inverse of the Fisher

information matrix of x. This concludes that even though the estimator 1955 ) is asymptotically normal, it is not
asymptotically efficient. Finally, we also provide a brief discussion on the assumption of the minimality of the
exponential family.

U.1 Invertibility of the cross-covariance matrix

We will look at the special case of ¢(x) = 2 and k = 1 and show that the cross-covariance matrix of ¢ (x) and
e (x) exp (— 9+ (0 (x)) i.e., B(9*™) is invertible Vi € [p] when p = 2. Let X3 = [~b,b] and Xo = [—b, ).

The density in this special case is as follows.
fx(x;0%) < exp (9*(1):101 + 6@y + 9*(12)331952). (94)

It is easy to see that the basis functions x1,zs, and x1x2 are already locally centered. Therefore, we have

eM(x) = (z1,2125)  and  ©P(x) = (w3, 212)
19*(1) — (9*(1),9*(12)) and ,19*(2) _ (0*(2)79*(12))

Then, the cross-covariance matrices B(9*(1)) and B(9*(?)) are

B9 = E[xZexp (—0*Vx; — 0" xx0)]  E[x} x2 exp (—0*WMx; — 0*(12) x; x5)]
E[x?xg exp (—0*Mx; — 0* (2 x1x0)]  E[x2x3 exp (—0*Mx; — 0+ (12 x; x5)]

and

B9 = E[x3 exp (—0*Pxy — 0" x1x0)]  E[x3xs exp (—0* P xo — 012 x;x5)]
E[x3x1 exp (—0*Pxy — 0*2)x1x0)]  E[xgx} exp (=0 xy — 0* 2 xx0)] |

Using the Cauchy-Schwarz inequality, for random variables M and N, we have
[E(MN)J? < E(M)E(N?),

with equality only if M and N are linearly dependent. Using the Cauchy-Schwarz inequality with M =
X1 exp(—0.59*(1)xl — 0.50*(12)X1XQ), N = xix9 exp(—0.59*(1)xl — 0.59*(12)X1X2) and observing that M and N
are not linearly dependent (because x; is a random variable), we have invertibility of B(9*()). Similarly,
using the Cauchy-Schwarz inequality with M = xo exp(—0.59*(2)xQ - 0.50*(12)X1X2)7 N = x9x1 exp(—0.59*(2)x2 -
0.50*(12) x| x5) and observing that M and N are not linearly dependent (because x; is a random variable), we
have invertibility of B(9*?).

U.2 Fisher information matrix

Let J(9*(®) denote the Fisher information matrix of x with respect to node i. For any I € [k + k%(p — 1)], let
<pl(z) (x) denote the I*" component of () (x). Using the fact that for any regular exponential family the Hessian
of the log partition function is the covariance matrix of the associated sufficient statistic vector, we have the

Fisher information matrix

[T )], . = Cov(p}) (x), o1 (x)).

Consider the density in (@) with b = 1,0*() = ¢*(2) = 0 and #*(1?) = 1. We will evaluate the matrices B(9*(1)),
A(9*M) and J(9*1). We have
B9 W) = [ E[x?exp (—x1x2)]  E[x¥xe exp(X1X2)]] _ [33}111(1) ? ]

E[x%xy exp (—x1x2)]  E[x?x3 exp (—x1x2)] 0 )
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A9 = E[xf exp (—2x1x2)]  E[x{xe exp (—2xix2)]| _ SE 0
E[x?x2 exp (—2x1x2)]  E[xx3 exp (—2x1x2)] 0 %ﬁ{ﬂ
_ 1 0
J(©*) = Cov(xy,x1)  Cov(xy,xix2) | | eShi(D) )
- | Cov(xy, x1x2)  Cov(xixe,x1x2)| 0 QShi(Slg:('IQ)/e—e _ |:SSir}111£1((11)) _ 1} ’

where sinh is the hyperbolic sine function and Shi is the hyperbolic sine integral function. Plugging in the values
of Shi(1),sinh(1), and e, we have (upto two decimals)

350 0 3.007 0
*(1))—1 *(1) *(1)y—1 _ —1(09%(1)) —
BT AT BO) [ 0 11.30} 7O { 0 8.90] '

U.3 Discussion on minimality of the exponential family

Minimality of the exponential family is used in Theorem @ to ensure a unique minimizer of S(i)(ﬁ). This
uniqueness effectively leads to the consistency and the normality of 1%; ) via Theorem .9 Even though a milder
condition on the exponential family might suffice, assuming minimality of the exponential family does not seem
very restrictive in the continuous setting.

Consider fy, x, (21, x2) o exp (fz1x2) with x1, x2 € [—1,1] as an example. fy(x) is minimal as there does not exist
a non-zero 6 such that 0x1xz5 is a constant (almost everywhere). The same also seems to hold more generally.



