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Abstract

We consider learning a sparse pairwise
Markov Random Field (MRF) with
continuous valued variables from i.i.d
samples. We adapt the algorithm of Vuffray
et al. (2019) to this setting and provide finite-
sample analysis revealing sample complexity
scaling logarithmically with the number of
variables, as in the discrete and Gaussian
settings. Our approach is applicable to a
large class of pairwise MRFs with continuous
variables and also has desirable asymptotic
properties, including consistency and
normality under mild conditions. Further,
we establish that the population version
of the optimization criterion employed by
Vuffray et al. (2019) can be interpreted
as local maximum likelihood estimation
(MLE). As part of our analysis, we introduce
a robust variation of sparse linear regression
à la Lasso, which may be of interest in its
own right.

1 Introduction

1.1 Background

Markov random fields or undirected graphical models
are an important class of statistical models and
represent the conditional dependencies of a high
dimensional probability distribution with a graph
structure. There has been considerable interest in
learning discrete MRFs in machine learning, statistics,
and physics communities under different names (Chow
and Liu, 1968; Abbeel et al., 2006; Negahban et al.,
2012; Ackley et al., 1985; Sessak and Monasson, 2009).
Bresler (2015) gave a simple greedy algorithm to learn
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arbitrary binary pairwise graphical models on p nodes
and maximum node degree d with sample complexity
O(exp(exp(Θ(d))) log p) and runtime Õ(p2).1 This
improved upon the prior work of Bresler et al. (2013),
with runtime Ō(pd+2),2 by removing the dependence
of d on the degree of the polynomial factor in
runtime. Santhanam and Wainwright (2012) showed
that only exponential dependence on d is required
in the sample complexity and thus, the doubly-
exponential dependence on d of Bresler (2015) is
provably suboptimal.

A recent work by Vuffray et al. (2019) learns t-wise
MRFs over general discrete alphabets in a sample-
efficient manner (O(exp(Θ(dt−1)) log p)) with runtime
Ō(pt). The key to their proposal is a remarkable
but seemingly mysterious objective function, the
generalized interaction screening objective (GISO)
which is an empirical average of an objective (that does
not include a normalization factor) designed to screen
an individual variable from its neighbors. While their
approach can be formally extended to the continuous-
valued setting, issues arise. First, as is, their work
shows that, for the discrete setting, the condition for
learning is satisfied by only the ‘edge’ parameters and
their approach does not attempt to recover the ‘node’
parameters.3 Second, their condition for learning is
cumbersome to verify as it is node-neighborhood-based
and involves all the edges associated with the node.

In this work, we consider the problem of learning
sparse pairwise MRFs from i.i.d. samples when the
underlying random variables are continuous. The
classical Gaussian graphical model is an example of
this. There has been a long history of learning

1The Õ(·) notation hides a factor poly(log p) as well as
a constant (doubly-exponentially) depending on d.

2The Ō(·) notation hides a factor poly(log p) as well as
a constant (exponentially) depending on d.

3For the discrete setup, learning edge parameters is
sufficient since, knowing those, node parameters can
be recovered using the conditional expectation function
(which is a logistic function and can be inverted). However,
the same is not straightforward in the continuous setup.
We provide a rigorous way to tackle this (Section 3).
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Table 1: Comparison with existing works on pairwise continuous MRFs (beyond the Gaussian case) in terms of
approach, conditions required and sample complexity: p is # of variables, d is maximum node degree

Work Approach Conditions #samples
Yang
et al.
(2015)

ℓ1 regularized node
conditional
log-likelihood

1. Incoherence condition O(poly(d)ω(p))
s.t ω(p) =
ω̄(p) log p and
ω̄(p) is a density
dependent
function of p

2. Dependency condition
3. Bounded moments of the variables

Tansey
et al.
(2015)

Group lasso regularized
node conditional
log-likelihood

4. Local smoothness of the log-partition function
5. Conditional distribution lies in exponential family

Yang
et al.
(2018)

Node conditional
pseudo-likelihood
regularized by a
nonconvex penalty

1. Sparse eigenvalue condition

O(poly(d) log p)2. Bounded moments of the variables
3. Local smoothness of the log-partition function
4. Conditional distribution lies in exponential family

Sun
et al.
(2015)

Penalized score
matching objective

1. Incoherence condition
O(poly(pd))2. Dependency condition

3. Certain structural conditions

Suggala
et al.
(2017)

ℓ1 regularized node
conditional
log-likelihood

1. Restricted strong convexity

O(poly(d) log p)
2. Assumptions on gradient of the population loss
3. Bounded domain of the variables
4. Non-negative node parameters
5. Conditional distribution lies in exponential family

Yuan
et al.
(2016)

ℓ2,1 regularized node
conditional
log-likelihood

1. Restricted strong convexity
O(poly(d) log p)2. Bounded moment-generating function of variables

This
work

Augmented GISO
(Section 3)

1. Bounded domain of the variables O(exp (d) log p)
(Thm. 4.3-4.4)2. Conditional distribution lies in exponential family

Gaussian MRFs, e.g. Graphical Lasso (Friedman
et al., 2008) and associated recent developments e.g.
Misra et al. (2017); Kelner et al. (2019). Another
example is the following extension of the Ising model
to the continuous case.

fx(x) ∝ exp

(∑
i∈[p]

θ(i)xi +
∑

i̸=j∈[p]

θ(ij)xixj

)
, (1)

where x = (x1, · · · , xp) is a p-dimensional vector of
continuous variables, x = (x1, · · · , xp) is a realization
of x, and θ(i) ∀i ∈ [p], θ(ij) ∀i ̸= j ∈ [p] are the
parameters associated with the distribution.

Despite the progress on Gaussian graphical models,
the overall progress for the generic continuous setting
(including (1)) has been limited. In particular, the
existing works for efficient learning require somewhat
abstract, involved conditions that are hard to verify
for e.g. incoherence (Yang et al., 2015; Tansey
et al., 2015; Sun et al., 2015), dependency (Yang
et al., 2015; Tansey et al., 2015; Sun et al., 2015),
sparse eigenvalue (Yang et al., 2018), restricted
strong convexity (Yuan et al., 2016; Suggala et al.,
2017). The incoherence condition ensures that
irrelevant variables do not exert an overly strong effect
on the true neighboring variables, the dependency
condition ensures that variables do not become overly

dependent, the sparse eigenvalue condition and the
restricted strong convexity imposes strong curvature
condition on the objective function. Table 1 compares
with the previous works on pairwise continuous MRFs
with distribution of the form (1).

In summary, the key challenge that remains for
continuous pairwise MRFs is finding a learning
algorithm requiring (a) numbers of samples scaling
as exp(Θ(d)) (in accordance with lower bound of
Santhanam and Wainwright (2012)) and log p, (b)
computation scaling as O(p2), and (c) the underlying
distribution to satisfy as few conditions as in the
discrete setting.

1.2 Contributions

As the primary contribution of this work, we
make progress towards the aforementioned challenge.
Specifically, we provide desirable finite sample
guarantees for learning continuous MRFs when the
underlying distribution satisfies simple, easy to verify
conditions (examples in Section 4.4). We summarize
our contributions in the following two categories.

Finite Sample Guarantees. We provide rigorous
finite sample analysis for learning structure and
parameters of continuous MRFs without the abstract
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Table 2: Comparison with prior works on discrete MRFs in terms of asymptotic properties (consistency and
normality), computational and sample complexities: p is # of variables, d is maximum node degree.

Result (pairwise) Alphabet Consistency Normality #computations #samples
(i.e. SLLN) (i.e. CLT)

Bresler et al. (2013) Discrete X × Ō(pd+2) O(exp(d) log p)

Bresler (2015) Binary X × Õ(p2) O(exp(exp(d)) log p)
Klivans and Meka (2017) Discrete X × Ō(p2) O(exp(d) log p)
Vuffray et al. (2019) Discrete X × Ō(p2) O(exp(d) log p)
This Work Continuous X X Ō(p2) O(exp(d) log p)

(Thm. 4.2) (Thm. 4.2) (Thm. 4.3-4.4) (Thm. 4.3-4.4)

conditions common in literature (incoherence,
dependency, sparse eigenvalue or restricted strong
convexity). We require Ō(p2) computations and
O(exp(d) log p) samples, in-line with the prior works
on discrete / Gaussian MRFs. We formally extend the
approach of Vuffray et al. (2019) to the continuous
setting to recover the ‘edge’ parameters and propose
a novel algorithm for learning ‘node’ parameters
through a robust variation of sparse linear regression
(Lasso). Technically, this robust Lasso shows that
even in the presence of arbitrary bounded additive
noise, the Lasso estimator is ‘prediction consistent’
under mild assumptions (see Appendix N). Further,
we simplify the sufficient conditions for learning of
Vuffray et al. (2019) from node-neighborhood-based
to edge-based (see Condition 4.14). This is achieved
through a novel argument that utilizes the structure
of the weighted independent set induced by the
MRF (see within Appendix L.3). We show that the
new, easy-to-verify, sufficient condition is naturally
satisfied by various settings including polynomial
and harmonic sufficient statistics (see Section 4.4 for
concrete examples). Thus, while most of the existing
works focus on distributions of the form (1), our
method is applicable to a large class of distributions
beyond that.

Understanding GISO. We establish that
minimizing the population version of GISO of
Vuffray et al. (2019) is identical to minimizing an
appropriate Kullback-Leibler (KL) divergence. This
is true for MRFs with discrete as well as continuous-
valued random variables. Using the equivalence of KL
divergence and maximum likelihood, we can interpret
minimizing the population version of GISO as “local”
MLE. By observing that minimizing the GISO is
equivalent to M-estimation, we obtain asymptotic
consistency and normality for this method with mild
conditions. Finally, we also draw connections between
the GISO and the surrogate likelihood proposed by

4Condition 4.1 effectively lower bounds the variance of a
non-constant random variable and is an adequate condition
to rule out certain singular distributions.

Jeon and Lin (2006) for log-density ANOVA model
estimation (see Section 4.3 and Appendix H).

1.3 Other related work

See table 1 and 2 for a succinct comparision with prior
works in the pairwise setting for continuous MRFs and
discrete MRFs respectively.

Discrete MRFs. After Bresler (2015) removed
the dependence of maximum degree, d, from the
polynomial factor in the runtime (with sub-optimal
sample complexity), Vuffray et al. (2016) achieved
optimal sample complexity of O(exp(Θ(d)) log p) for
Ising models on p nodes but with runtime Ō(p4).
Their work was the first to propose and analyze the
interaction screening objective function. Hamilton
et al. (2017) generalized the approach of Bresler
(2015) for t-wise MRFs over general discrete alphabets
but had non-optimal double-exponential dependence
on dt−1. Klivans and Meka (2017) provided a
multiplicative weight update algorithm (called the
Sparsitron) for learning pairwise models over general
discrete alphabets in time Ō(p2) with optimal sample
complexity (O(exp(Θ(d)) log p)) and t-wise MRFs over
binary alphabets in time Ō(pt) with optimal sample
complexity (O(exp(Θ(dt−1)) log p)). Wu et al. (2018)
considered an ℓ2,1-constrained logistic regression and
improved the sample complexity of Klivans and
Meka (2017) for pairwise models over general discrete
alphabets in terms of dependence on alphabet size.

Gaussian MRFs. The problem of learning Gaussian
MRFs is closely related to the problem of learning
the sparsity pattern of the precision matrix of
the underlying Gaussian distribution. Consider
Gaussian MRFs on p nodes of maximum degree d
and the minimum normalized edge strength κ̃ (see
Misra et al. (2017)). A popular approach, the
Graphical Lasso (Friedman et al., 2008), recovered
the sparsity pattern under the restricted eigenvalue
and incoherence assumptions from O((d2 + κ̃−2) log p)
samples (Ravikumar et al., 2011) by ℓ1 regularized log-
likelihood estimator. The minimum required sample
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complexity was shown to be Ω(log p/κ̃2) by Wang
et al. (2010) via an information-theoretic lower bound.
Misra et al. (2017) provided a multi-stage algorithm
that learns the Gaussian MRFs with O(d log p/κ̃2)
samples and takes time O(p2d+1). A recent work
by Kelner et al. (2019) proposed an algorithm with
runtime O(pd+1) that learns the sparsity pattern in
O(d log p/κ̃2) samples. However, when the variables
are positively associated, this algorithm achieves the
optimal sample complexity of O(log p/κ̃2).

Continuous MRFs. Realizing that the normality
assumption is restrictive, some researchers have
recently proposed extensions to Gaussian MRFs that
either learns transformations of the variables or
learn the sufficient statistics functions. The non-
paranormal (Liu et al., 2009) and the copula-based
(Dobra et al., 2011) methods assumed that a monotone
transformation Gaussianize the data. Rank-based
estimators by Xue and Zou (2012) and Liu et al. (2012)
used non-parametric approximations to the correlation
matrix and then fit a Gaussian MRF.

There have been some recent works on learning
exponential family MRFs for the pairwise setting.
The subclass where the node-conditional distributions
arise from exponential families was looked at by
Yang et al. (2015) and the necessary conditions for
consistent joint distribution were derived. However,
they considered only linear sufficient statistics and
they needed incoherence and dependency conditions
similar to the discrete setting analyzed by Wainwright
et al. (2006); Jalali et al. (2011). Yang et al. (2018)
studied the subclass with linear sufficient statistics
for edge-wise functions and non-parametric node-wise
functions with the requirement of sparse eigenvalue
conditions on their loss function. Tansey et al. (2015)
extended the approach by Yang et al. (2015) to vector-
space MRFs and non-linear sufficient statistics but still
required the incoherence and dependency conditions
similar to Wainwright et al. (2006); Jalali et al. (2011).
Sun et al. (2015) investigated infinite dimensional
exponential family graphical models based on score
matching loss. They assumed that the node and edge
potentials lie in a reproducing kernel Hilbert space
and needed incoherence and dependency conditions
similar to Wainwright et al. (2006); Jalali et al.
(2011). Yuan et al. (2016) explored the subclass
where the node-wise and edge-wise statistics are linear
combinations of two sets of pre-fixed basis functions.
They proposed two maximum likelihood estimators
under the restricted strong convexity assumption.
Suggala et al. (2017) considered a semi-parametric
version of the subclass where the node-conditional
distributions arise from exponential families. However,
they required restricted strong convexity and hard to

verify assumptions on gradient of the population loss.

Useful notations. For any positive integer n, let
[n] := {1, · · · , n}. For a deterministic sequence
v1, · · · , vn, we let v := (v1, · · · , vn). For a random
sequence v1, · · · , vn, we let v := (v1, · · · , vn). Let 1

denote the indicator function. For a vector v ∈ Rn,
we use vi to denote its ith coordinate and v−i ∈ Rn−1

to denote the vector after deleting the ith coordinate.
We denote the ℓp norm (p ≥ 1) of a vector v ∈
Rn by ∥v∥p := (

∑n
i=1 |vi|p)1/p and its ℓ∞ norm by

∥v∥∞ := maxi |vi|. For a vector v ∈ Rn, we use
∥v∥0 to denote the number of non-zero elements (ℓ0
norm) of v. We denote the minimum of the absolute
values of non-zero elements of a vector v ∈ Rn by
∥v∥min+

:= mini:vi ̸=0 |vi|. For a matrix V ∈ Rm×n,
we denote the element in ith row and jth column by
Vij and the max norm by ∥V∥max := maxij |Vij |. All
logarithms are in base e.

Organization. The remainder of this paper is
organized as follows. In Section 2, we formulate
the problem setup which consists of pairwise MRFs,
the particular parametric form of interest, modeling
assumptions, objectives, and a few additional
notations. Next, in Section 3, we describe our
algorithm ‘Augmented GISO’ where we first learn
the graph structure and edge parameters, and then
learn the node parameters. In Section 4, we provide
our main technical results including equivalence of
the population version of GISO and KL Divergence
(Theorem 4.1), asymptotic consistency and normality
of the GISO (Theorem 4.2), the simplified sufficient
condition for learning (Condition 4.1), finite sample
gurantees for learning structure (Theorem 4.3) and
parameters (Theorem 4.4), connection of the GISO
to the surrogate likelihood (Proposition 4.1), and
a few examples of distributions naturally satisfying
Condition 4.1. In Section 5, we conclude and discuss
some directions for future work. See supplementary
for the organization of the Appendix.

2 Problem Formulation

In this Section, we formulate the problem of interest
and also introduce a few additional notations.
Appendix A provides an illustrative example to ease
through these notations.

Pairwise MRF. Let x = (x1, · · · , xp) be a
p−dimensional vector of continuous random variables
such that each xi takes value in a real interval Xi

and let X =
∏p

i=1 Xi. Let x = (x1, · · · , xp) ∈ X
be a realization of x. For any i ∈ [p], let the
length of the interval Xi be upper (lower) bounded
by a known constant bu (bl). Consider an undirected
graph G = ([p], E) where the nodes correspond to the
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random variables in x, and E denotes the edge set. The
MRF corresponding to the graph G is the family of
distributions that satisfy the global Markov property
with respect to G. According to the Hammersley-
Clifford theorem (Hammersley and Clifford, 1971), any
strictly positive distribution factorizes with respect to
its cliques. Here, we consider the setting where the
functions associated with cliques are non-trivial only
for the nodes and the edges. This leads to the pairwise
MRFs with respect to graph G with density as follows:
with node potentials gi : Xi → R, edge potentials
gij : Xi ×Xj → R,

fx(x) ∝ exp
(∑

i∈[p]

gi(xi) +
∑

(i,j)∈E

gij(xi, xj)
)
.

Parametric Form. We consider potentials in
parametric form. Specifically, let

gi(·) = θ(i)
T

ϕ(·) and gij(·, ·) = θ(ij)
T

ψ(·, ·),

where θ(i) ∈ Rk is the vector of parameters associated
with the node i, θ(ij) ∈ Rk2 is the vector of parameters
associated with the edge (i, j), the map ϕ : R → Rk

is a basis of the vector space of node potentials, and
the map ψ : R2 → Rk2 is a basis of the vector
space of edge potentials. We assume that ψ(x, y)
can be written as the Kronecker product of ϕ(x) and
ϕ(y) i.e., ψ(x, y) = ϕ(x) ⊗ ϕ(y). This is equivalent
to the function space assumption common in the
literature (Yang et al., 2015, 2018; Suggala et al., 2017;
Tansey et al., 2015) that the conditional distribution
of each node conditioned on all the other nodes has
an exponential family form (see Yang et al. (2015) for
details). Further, let the basis functions be such that
the resulting exponential family is minimal 5.

A few examples of basis functions in-line with these
assumptions are: (1) Polynomial basis with ϕ(x) =
(xr : r ∈ [k]), ψ(x, y) = (xrys : r, s ∈ [k]); (2)
Harmonic basis with ϕ(x) = (sin(rx); cos(rx) : r ∈
[k]), ψ(x, y) = (sin(rx+ sy); cos(rx+ sy) : r, s ∈ [k]).6

For any r ∈ [k], let ϕr(x) denote the rth element
of ϕ(x) and let θ(i)r be the corresponding element of
θ(i). For any r, s ∈ [k], let ψrs(x, y) denote that
element of ψ(x, y) which is the product of ϕr(x)

and ϕs(y) i.e., ψrs(x, y) = ϕr(x)ϕs(y). Let θ(ij)r,s be
element of θ(ij) corresponding to ψrs(x, y). We also
assume that ∀r ∈ [k],∀x ∈ ∪i∈[p]Xi, |ϕr(x)| ≤ ϕmax,
ϕr(x) is differentiable in x, and |dϕr(x)/dx| ≤ ϕ̄max.

5 See Appendix U.3 for a brief discussion on minimality
of the exponential family.

6ψ(x, y) can be written as ϕ(x) ⊗ ϕ(y) using the sum
formulae for sine and cosine.

Summarizing, the distribution of focus is

fx(x;θ) ∝ exp

(∑
i∈[p]

θ(i)
T

ϕ(xi) +
∑

i∈[p],j>i

θ(ij)
T

ψ(xi, xj)

)
,

(2)

where θ :=
(
θ(i) ∈ Rk : i ∈ [p];θ(ij) ∈ Rk2

: i ∈
[p], j > i

)
∈ Rkp+

k2p(p−1)
2 is the parameter vector

associated with the distribution. For any i ∈ [p], i > j,
define θ(ij) = θ(ji) i.e., both θ(ij) and θ(ji) denote the
parameter vector associated with the edge (i, j).

Let the true parameter vector and the true distribution
of interest be denoted by θ∗ and fx(x;θ∗) respectively.
We assume a known upper (lower) bound on the
maximum (minimum) absolute value of all non-zero
parameter in θ∗, i.e., ∥θ∗∥∞ ≤ θmax, ∥θ∗∥min+

≥
θmin+

.

Suppose we are given additional structure. Define

E(θ∗) = {(i, j) : i < j ∈ [p], ∥θ∗(ij)∥0 > 0}.

Consider the graph G(θ∗) = ([p], E(θ∗)) such that
fx(x;θ

∗) is Markov with respect to G(θ∗). Let the
max-degree of any node ofG(θ∗) be at-most d. For any
node i ∈ [p], let the neighborhood of node i be denoted
as N (i) = {j : (i, j) ∈ E(θ∗)} ∪ {j : (j, i) ∈ E(θ∗)}.

The learning tasks of interest are as follows:
Problem 2.1. (Structure Recovery). Given n
independent samples of x i.e., x(1) · · · ,x(n) obtained
from fx(x;θ

∗), produce a graph Ĝ, such that Ĝ =
G(θ∗).
Problem 2.2. (Parameter Recovery). Given n
independent samples of x i.e., x(1) · · · ,x(n) obtained
from fx(x;θ

∗) and α > 0, compute an estimate θ̂ of
θ∗ such that

∥θ∗ − θ̂∥∞ ≤ α.

Additional Notations. For every node i ∈ [p], define
ϑ∗(i) :=

(
θ∗(i) ∈ Rk;θ∗(ij) ∈ Rk2

: j ∈ [p], j ̸= i
)
∈

Rk+k2(p−1) to be the weight vector associated with
node i that consists of all the true parameters involving
node i. Define Λ = {ϑ ∈ Rk+k2(p−1) : ∥ϑ∥min+

≥
θmin+

, ∥ϑ∥∞ ≤ θmax}. Then under our formulation,
ϑ∗(i) ∈ Λ for any i ∈ [p]. Define ϑ∗(i)

E :=
(
θ∗(ij) ∈

Rk2

: j ∈ [p], j ̸= i
)
∈ Rk2(p−1) to be the component

of ϑ∗(i) associated with the edge parameters.
Definition 2.1. (Locally centered basis functions).
For i ∈ [p], j ∈ [p]\{i}, define locally centered basis
functions as follows: for x ∈ Xi, x′ ∈ Xj

ϕ(i)(x) := ϕ(x)−
∫
y∈Xi

ϕ(y)UXi
(y)dy, (3)
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ψ(ij)(x, x′) := ψ(x, x′)−
∫
y∈Xi

ψ(y, x′)UXi
(y)dy.(4)

where UXi
(y) denotes the uniform density on Xi. For

any i ∈ [p], j ∈ [p]\{i}, the locally centered basis
functions ϕ(i)(·) and ψ(ij)(·, ·) integrate to zero with
respect to UXi

(y). This is motivated by the connection
of the GISO to the penalized surrogate likelihood (See
Appendix H).

Define φ(i)(x) :=
(
ϕ(i)(xi) ∈ Rk;ψ(ij)(xi, xj) ∈ Rk2

:

j ∈ [p], j ̸= i
)
∈ Rk+k2(p−1) to be the vector of

all locally centered basis functions involving node i.
We may also utilize notation φ(i)(x) = φ(i)(xi; x−i).
Similary, we define φ(i)(x) when x = x. Define

γ := θmax(k + k2d),

φmax := 2max{ϕmax, ϕ
2
max}.

Let qs := qs(k, bl, bu, θmax, θmin+
, ϕmax, ϕ̄max) denote

the smallest possible eigenvalue of the Fisher
information matrix of any single-variable exponential
family distribution with sufficient statistics ϕ(·), with
length of the support upper (lower) bounded by bu(bl)
and with absolute value of all non-zero parameters
bounded above (below) by θmax(θmin+

). Let

c1(α) =
212π2e2(d+ 1)2γ2φ2

max(1 + γφmax)
2 exp(4γφmax)

κ2α4
,

c2(α) =
237d+73b2du k

12d+16d6d+9θ6d+8
max ϕ

8d+12
max ϕ̄2dmax

α8d+16(qs)4d+8
.

Observe that

c1(α) = O

(
exp(Θ(k2d))

κ2α4

)
, c2(α) = O

(( kd
αqs

)Θ(d)
)
.

Let A(ϑ∗(i)) be the covariance matrix of φ(i)(x) exp
(
−

ϑ∗(i)Tφ(i)(x)
)

and B(ϑ∗(i)) be the cross-covariance
matrix of φ(i)(x) and φ(i)(x) exp

(
− ϑ∗(i)Tφ(i)(x)

)
,

where x is distributed as per fx(x;θ∗).

3 Algorithm

Our algorithm, ‘Augmented GISO’ has two parts:
First, it recovers graph structure, i.e. edges E(θ∗)
and associated edge parameters, θ∗(ij), i ̸= j ∈ [p].
This is achieved through the Generalized Regularized
Interaction Screening Estimator (GRISE) of Vuffray
et al. (2019) by extending the definition of GISO for
continuous variables in a straightforward manner.
This, however, does not recover node parameters
θ∗(i), i ∈ [p]. Second, we transform the problem of

learning node parameters as solving a sparse linear
regression. Subsequently, using a robust variation
of the classical Lasso (Tibshirani, 1996; Efron et al.,
2004) and knowledge of the learned edge parameters,
we recover node parameters.

Learning Edge Parameters. Given fx(x;θ
∗), for

any i ∈ [p], the conditional density of xi reduces to

fxi(xi|x−i = x−i;ϑ
∗(i)) ∝ exp

(
ϑ∗(i)Tφ(i)(xi;x−i)

)
.(5)

See Appendix B.1 for the derivation of (5). This form
of conditional density inspired an unusual local or node
i ∈ [p] specific objective GISO (Vuffray et al., 2019).
Definition 3.1 (GISO). Given n samples
x(1) · · · ,x(n) of x and i ∈ [p], the GISO maps
ϑ ∈ Rk+k2(p−1) to S(i)n (ϑ) ∈ R defined as

S(i)n (ϑ) =
1

n

n∑
t=1

exp
(
− ϑTφ(i)(x(t))

)
. (6)

Since the maximum node degree in G(θ∗) is d and
∥θ∗∥∞ ≤ θmax, we have ∥ϑ∗(i)∥1 ≤ γ = θmax(k + k2d)
for any i ∈ [p]. The GRISE produces an estimate of
ϑ∗(i) for each i ∈ [p] by solving a separate optimization
problem as

ϑ̂(i)
n ∈ argmin

ϑ∈Λ:∥ϑ∥1≤γ

S(i)n (ϑ). (7)

For ϵ > 0, ϑ̂(i)
ϵ is an ϵ-optimal solution of GRISE for

i ∈ [p] if

S(i)n (ϑ̂(i)
ϵ ) ≤ S(i)n (ϑ̂(i)

n ) + ϵ. (8)

The (7) is a convex minimization problem and
has an efficient implementation for finding an ϵ-
optimal solution. Appendix M describes such an
implementation for completeness borrowing from
Vuffray et al. (2019).

Now, given such an ϵ-optimal solution ϑ̂(i)
ϵ for GRISE

corresponding to i ∈ [p], let ϑ̂(i)
ϵ,E = (θ̂(ij), j ̸= i, j ∈

[p]) be its components corresponding to all possible
p − 1 edges associated with node i. Then, we declare
ϑ̂
(i)
ϵ,E as the edge parameters associated with i for each

i ∈ [p]. These edge parameters can be used to recover
the graph structure as shown in Theorem 4.3.

Learning Node Parameters. As we shall argue in
Theorems 4.1-4.2, for each i ∈ [p], the exact solution of
GRISE is consistent, i.e. ϑ̂(i)

n
p→ ϑ∗(i) in large sample

limit — as well as it is normal, i.e. appropriately
normalized ϑ̂(i)

n − ϑ∗(i) obeys Central Limit Theorem
in the large sample limit. While these are remarkable
asymptotic results, they do not provide non-asymptotic
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or finite sample error bounds. We will be able to
provide finite sample error bounds for edge parameters
learned from an ϵ-optimal solution of GRISE, i.e.
∥ϑ̂(i)

ϵ,E − ϑ
∗(i)
E ∥∞ is small. But to achieve the same

for node parameters, we need additional processing 7.
This is the purpose of the method described next.

To that end, let us consider any i ∈ [p]. Given access
to ϑ∗(i)

E (precisely, access to ϑ̂(i)
ϵ,E ≈ ϑ

∗(i)
E ), we wish

to identify node parameters θ∗(i) =
(
θ
∗(i)
r : r ∈ [k]

)
.

Now the conditional density of xi ∈ Xi when given
x−i = x−i ∈

∏
j ̸=i Xj , can be written as

fxi(xi|x−i = x−i;ϑ
∗(i)) ∝ exp

(
λ∗T (x−i)ϕ(xi)

)
,(9)

where λ∗(x−i) := (θ
∗(i)
r +

∑
j ̸=i

∑
s∈[k] θ

∗(ij)
r,s ϕs(xj) :

r ∈ [k]) is the canonical parameter vector of the
density in (9). See Appendix B.1 for the derivation
of (9). Let µ∗(x−i) = E[ϕ(xi)|x−i = x−i] ∈ Rk.

Now if we know λ∗(x−i), and since we know ϑ̂
(i)
ϵ,E ≈

ϑ
∗(i)
E , we can recover (θ

∗(i)
r : r ∈ [k]). However,

learning λ∗(x−i) from samples is not straightforward.
By duality of exponential family, in principle, if we
know µ∗(x−i), we can recover λ∗(x−i). Now learning
µ∗(x−i) can be viewed as a traditional regression
problem: features Z = x−i, label Y = ϕ(xi),
regression function E[Y |Z] = µ∗(x−i) and indeed
samples x(1), . . . ,x(n) of x provides samples of Y, Z
as defined here. Therefore, in principle, we can learn
the regression function. As it turns out, the regression
function µ∗(·) : Rp−1 → Rk is Lipschitz and hence
we can approximately linearize it leading to a sparse
linear regression problem. Therefore, by utilizing
Lasso on appropriately linearized problem, we can
(approximately) learn µ∗(x−i), which in turn leads to
λ∗(x−i) and hence learning (θ

∗(i)
r : r ∈ [k]) as desired.

This is summarized as a three-step procedure:

Consider x(z)−i where z is chosen uniformly at random
from [n].

1. Express learning µ∗(·) as a sparse linear regression
problem (Details in Appendix Q.2). Use robust
variation of Lasso (Details in Appendix N) to
obtain an estimate (µ̂(x(z)−i )) of µ∗(x

(z)
−i ) (Details

in Appendix O.1).

2. Use µ̂(x(z)−i ), and the conjugate duality between
the canonical parameters and the mean
parameters to learn an estimate (λ̂(x(z)−i )) of
λ∗(x

(z)
−i ) (Details in Appendix O.2).

7This happens because only the edge parameters show
up in a restricted strong convexity like property obeyed by
the GISO (see Proposition I.2).

3. Use the estimates of the edge parameters i.e.,
ϑ̂
(i)
ϵ,E and λ̂(x

(z)
−i ) to learn an estimate (θ̂(i))

of the node parameters (θ∗(i)) (Summarized in
Appendix E.2).

4 Analysis and Main results

4.1 Understanding GRISE: “Local” MLE,
M-estimation, Consistency, Normality

For a given i ∈ [p], we establish a surprising connection
between the population version of GRISE and
Maximum Likelihood Estimate (MLE) for a specific
parametric distribution in an exponential family which
varies across i. That is, for each i ∈ [p], GRISE
is a “local” MLE at the population level. Further,
observing that minimzing the GISO is equivalent to
M-estimation allows us to import asymptotic theory
of M-estimation to establish consistency and normality
of GRISE under mild conditions.

Consider i ∈ [p]. For any ϑ ∈ Λ, the population
version of GISO as defined in (6) is given by

S(i)(ϑ) := E
[
exp

(
− ϑTφ(i)(x)

)]
. (10)

Consider the distribution over X with density given by

u(i)x (x) ∝ fx(x;θ∗)× exp
(
− ϑ∗(i)Tφ(i)(x)

)
.

Define a parametric distribution over X parameterized
by ϑ ∈ Λ with density given by

m(i)
x (x;ϑ) ∝ fx(x;θ∗)× exp

(
− ϑTφ(i)(x)

)
. (11)

The following result argues that the MLE for
parametric class induced by (11) coincides with the
minimizer of the population version of GISO as
defined in (10). This provides an intuitively pleasing
connection of the GISO in terms of the KL-divergence.
Proof can be found in Appendix C.
Theorem 4.1. Consider i ∈ [p]. Then, with D(· ∥ ·)
representing KL-divergence,

argmin
ϑ∈Λ:∥ϑ∥1≤γ

D(u(i)x (·) ∥ m(i)
x (·;ϑ)) = argmin

ϑ∈Λ:∥ϑ∥1≤γ

S(i)(ϑ).

Further, the true parameter ϑ∗(i) for i ∈ [p] is a unique
minimizer of S(i)(ϑ).

Even though at the population level, GRISE is
equivalent to MLE for parametric class induced by
(11), the link between the finite-sample GRISE and
the finite-sample MLE is missing. However, observe
that minimizing the finite-sample GISO as defined
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in (6) is equivalent to M-estimation. This results in
the following consistency and normality property of
GRISE. Proof can be found in Appendix D.
Theorem 4.2. Given i ∈ [p] and n independent
samples x(1), . . . ,x(n) of x, let ϑ̂(i)

n be a solution of
(7). Then, as n → ∞, ϑ̂(i)

n
p→ ϑ∗(i). Further,

under the assumptions that B(ϑ∗(i)) is invertible,
and that none of the true parameter is equal to the
boundary values of θmax or θmin+

, we have
√
n(ϑ̂

(i)
n −

ϑ∗(i))
d→ N (0, B(ϑ∗(i))−1A(ϑ∗(i))B(ϑ∗(i))−1) where

N (µ,Σ) represents multi-variate Gaussian with mean
µ and covariance Σ.

See Appendix U.1 for a brief discussion on
invertibility of B(ϑ∗(i)). We emphasize that
B(ϑ∗(i))−1A(ϑ∗(i))B(ϑ∗(i))−1 need not be equal to
the inverse of the corresponding Fisher information
matrix. See Appendix U.2 for a counterexample.
Thus, ϑ̂(i)

n is asymptotically only normal and not
efficient.

4.2 Finite Sample Guarantees

While Theorem 4.2 talks about asymptotic consistency
and normality, it does not provide finite-sample error
bounds. In this section, we provide the finite-sample
error bounds which require the following additional
condition.
Condition 4.1. Let θ̄, θ̃ ∈ Rkp+

k2p(p−1)
2 be feasible

weight vectors associated with the distribution in (2)
i.e., they have an upper (lower) bound on the maximum
(minimum) absolute value of all non-zero parameters.
There exists a constant κ > 0 such that for any i ̸=
j ∈ [p]

E
[
exp

{
2h

(
(θ̄(ij) − θ̃(ij))Tψ(ij)(xi, xj)

∣∣∣∣x−j

)}]
≥ κ∥θ̄(ij) − θ̃(ij)∥22. (12)

Here h(·|x−j) represents conditional differential
entropy conditioned on x−j.

Under condition 4.1, we obtain the following structural
recovery result whose proof is in Appendix F.
Theorem 4.3. Let Condition 4.1 be satisfied. Given
n independent samples x(1), . . . ,x(n) of x, for each i ∈
[p], let ϑ̂(i)

ϵ be an ϵ-optimal solution of (7) and ϑ̂(i)
ϵ,E be

the associated edge parameters. Let

Ê =

{
(i, j) : i < j ∈ [p],

(∑
r,s∈[k]

1{|θ̂(ij)r,s | > θmin+
/3}
)
>0

}
.

Let Ĝ = ([p], Ê). Then for any δ ∈ (0, 1), G(θ∗) = Ĝ

with probability at least 1− δ as long as

n ≥ c1
(θmin+

3

)
log

(
2pk√
δ

)
=Ω

(
exp(Θ(k2d))

κ2
log

(
pk√
δ

))
.

The number of computations required scale as Ō(p2).

Now we state our result about parameter recovery
whose proof can be found in Appendix G.
Theorem 4.4. Let Condition 4.1 be satisfied. Given
n independent samples x(1), . . . ,x(n) of x, for each i ∈
[p], let ϑ̂(i)

ϵ be an ϵ-optimal solution of (7) and ϑ̂(i)
ϵ,E ∈

Rk2(p−1) be the associated edge parameters. Let θ̂(i) ∈
Rk, i ∈ [p] be estimates of node parameters obtained
through the three-step procedure involving robust Lasso.
Let θ̂ = (θ̂(i); ϑ̂

(i)
ϵ,E : i ∈ [p]) ∈ Rkp+

k2p(p−1)
2 be their

appropriate concatenation. Then, for any α ∈ (0, 1)

∥θ̂ − θ∗∥∞ ≤ α,

with probability at least 1− α4 as long as

n ≥max

[
c1

(
min

{
θmin+

3
,α,

α

2
5
4 dkϕmax

})
log

(
8pk

α2

)
,c2

( α
2

1
4

)]
,

= Ω

(exp

(
Θ
(
k2d+ d log

(
dk
αqs

)))
κ2α4

× log

(
pk

α2

))
.

The number of computations required scale as Ō(p2).

4.3 Connections to surrogate likelihood.

To circumvent the computational limitation of exact
likelihood-based functionals in nonparametric density
estimation, Jeon and Lin (2006) proposed to minimize
the surrogate likelihood. Let x(1), . . . ,x(n) be n
independent samples of x where x ∈ X . For densities
of the form fx(x) ∝ eη(x), the surrogate likelihood is
as follows:

Ln(η) =
1

n

n∑
t=1

exp
(
− η(x(t))

)
+

∫
x

ρ(x)× η(x)dx,

where ρ(·) is some known probability density function
on X . The following proposition shows that the GISO
is a special case of the surrogate likelihood. Proof can
be found in Appendix H.
Proposition 4.1. For any i ∈ [p], the GISO is
equivalent to the surrogate likelihood associated with
the conditional density of xi when ρ(·) is the uniform
density on Xi.
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4.4 Examples

The following are a few examples where the Condition
4.1 is naturally satisfied (subject to problem setup)
as explained in Appendix T. Therefore, these
distributions are learnable consistently, have
asymptotic Gaussian-like behavior (under the
assumptions in Theorem 4.2), and have finite sample
guarantees. This is in contrast to most prior works
for the continuous setting where there are difficult
to verify conditions (even for these examples) such
as incoherence, dependency, sparse eigenvalue, and
restricted strong convexity.

A. Polynomial (linear) sufficient statistics i.e., ϕ(x) =
x and k = 1.

fx(x;θ
∗) ∝ exp

(∑
i∈[p]

θ∗(i)xi +
∑
i∈[p]

∑
j>i

θ(ij)xixj

)
.

B. Harmonic sufficient statistics i.e., ϕ(x) =(
sin
(
πx/b

)
, cos

(
πx/b

))
and k = 2.

fx(x;θ
∗) ∝ exp

(∑
i∈[p]

[
θ
∗(i)
1 sin

πxi
b

+ θ
∗(i)
2 cos

πxi
b

]
+

∑
i∈[p],j>i

[
θ
∗(ij)
1 sin

π(xi + xj)

b
+ θ

∗(ij)
2 cos

π(xi + xj)

b

])
.

5 Conclusion

We provide rigorous finite sample analysis for
learning structure and parameters of continuous
MRFs without the abstract conditions of incoherence,
dependency, sparse eigenvalue or restricted strong
convexity that are common in literature. We provide
easy-to-verify sufficient condition for learning that
is naturally satisfied for polynomial and harmonic
sufficient statistics. Our methodology requires Ō(p2)
computations and O(exp(d) log p) samples similar to
the discrete and Gaussian settings. Additionally, we
propose a robust variation of Lasso by showing that
even in the presence of bounded additive noise, the
Lasso estimator is ‘prediction consistent’ under mild
assumptions.

We also establish that minimizing the population
version of GISO (Vuffray et al., 2019) is equivalent
to finding MLE of a certain related parametric
distribution. We provide asymptotic consistency and
normality of the estimator under mild conditions.
Further, we show that the GISO is equivalent to the
surrogate likelihood proposed by Jeon and Lin (2006).

A natural extension of the pairwise setup is the t-
wise MRF with continuous variables. The approach

and the objective function introduced by Vuffray
et al. (2019) naturally extend for such a setting
allowing to learn t-wise MRFs with general discrete
variables as explained in that work. We believe
that our results for continuous setting, in a similar
vein, extend for t-wise MRFs as well and it is an
important direction for immediate future work. We
also believe that the connection of the GISO to KL-
divergence could be used to remove the bounded
random variables assumption of our work. Another
important direction is to leverage the asymptotic
normality of the estimator established in our work to
construct data-driven explicit confidence intervals for
learned parameters of MRF.
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