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Abstract

We consider the problem of Bayesian Op-
timization (BO) where the goal is to de-
sign an adaptive querying strategy to opti-
mize a function f : [0, 1]d 7→ R. The func-
tion is assumed to be drawn from a Gaus-
sian Process GP(0,K), and can only be ac-
cessed through noisy oracle queries. The
most commonly used oracle in BO litera-
ture is the noisy Zeroth-Order-Oracle (ZOO)
which returns noise-corrupted function value
y = f(x)+η at any point x ∈ X queried by the
agent. A less studied oracle in BO is the First-
Order-Oracle (FOO) which also returns noisy
gradient value at the queried point. In this
paper we consider the fundamental question
of quantifying the possible improvement in re-
gret that can be achieved under FOO access as
compared to the case in which only ZOO access
is available. Under some regularity assump-
tions onK, we first show that the expected cu-
mulative regret Rn with ZOO of any algorithm
must satisfy a lower bound of Ω(

√
2dn), where

n is the query budget. This lower bound cap-
tures the appropriate scaling of the regret on
both dimension d and budget n, and relies on
a novel reduction from BO to a multi-armed
bandit (MAB) problem. We then propose a
two-phase algorithm which, with some addi-
tional prior knowledge, achieves a vastly im-
proved O

(
d(log n)2

)
regret when given access

to a FOO. Together, these two results highlight
the significant value of incorporating gradient
information in BO algorithms.
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1 Introduction

We consider the problem of optimizing a function
f : X = [0, 1]d 7→ R with the assumption that f is
a sample from a zero-mean Gaussian Process (GP)1
with a covariance function K. The agent can access
the unknown objective function f through an oracle,
which takes as input any point x ∈ X and returns a
value u in some space U , which provides some local
information (Nesterov, 2013, § 1.1.2) about f around
x. The most commonly used oracle in Bayesian Opti-
mization (BO) is the Zeroth-Order-Oracle (ZOO), which
returns a noisy function evaluation at the queried point,
i.e., u(x) = f(x) + η ∈ R. A relatively less considered
oracle is the First-Order-Oracle (FOO) which returns
both noisy function evaluation and noisy gradient val-
ues, i.e, u(x) = (f(x) + η,∇f(x) + ξ) ∈ Rd+1.

Given a query budget of n samples and the oracle,
the goal of an agent in BO is to design an adaptive
sampling strategy A to efficiently learn about the global
maximizer x∗ of f . An adaptive (non-randomized)
strategy A consists of a sequence of mappings (At)

n
t=1

where At : (X × U)
t−1 7→ X , which sequentially select

a query point xt at time t based on the history of actions
and observations up to time t − 1. The performance
of the sampling strategy A is usually measured by the
cumulative regret Rn, defined as

Rn(A, f) =

n∑
t=1

f(x∗)− f
(
At(x[1:t−1], u[1:t−1])

)
. (1)

Since FOO provides additional information to the agent,
it is natural to expect improvement in the achievable
cumulative regret under FOO in comparison to ZOO.
Some existing works in literature, such as Wu et al.
(2017b,a) and Prabuchandran et al. (2020), have empir-
ically demonstrated benefits of BO algorithms which
incorporate gradient information in their execution.
However, to the best of our knowledge, no prior work

1A related problem, not considered here, called agnostic
GP bandit considers this problem in a non-Bayesian setting
where f is a fixed but unknown element of an RKHS.
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in literature quantifies the possible reduction in cumu-
lative regret with FOO access. The main contribution of
our paper is to provide a lower bound on the reduction
in regret that is possible with ZOO access. We do this
in two steps: first, we establish the fundamental limit
of achievable regret with ZOO for all values of d, and
second we design an algorithm with FOO access which,
under some additional prior information, incurs much
smaller regret.

We provide an overview of the results in Sec. 1.1 and
discuss some relevant background in Sec. 1.2.

1.1 Overview of Results

Our main contributions are:

• In the first part of the paper (Sec. 3), we focus on
establishing the limits of the achievable regret of any
algorithm with ZOO. We begin by noting in Prop. 1
that the reduction to binary testing approach of
Scarlett (2018) (for d = 1) can be directly used to
obtain a lower bound on Rn of Ω (σ

√
n) for all d ≥ 1.

This result however does not capture the conjec-
tured exponential scaling of Rn with d by Scarlett
(2018). We rectify this in Theorem 1 by deriving
an algorithm-independent lower bound on Rn with
ZOO access matching the conjectured order Ω

(√
2dn
)
.

This result relies on a novel analysis and approach
which relates the regret of the BO problem to an
appropriately defined multi-armed bandit (MAB)
problem, and adapts the lower bounding techniques
for MABs to obtain the final result.

• In Sec. 4 we focus on quantifying the possible gain in
performance, beyond the limits established in Sec. 3,
when the noisy gradient information is also available
to the agent. To do so, we propose an algorithm using
FOO access, referred to as AlgFOO. We show that
under certain technical assumptions (formally stated
in Sec. 2.3), AlgFOO can achieve an upper bound on
the cumulative regret of O

(
d(log n)2

)
(Theorem 2

and Corollary 1). To the best of our knowledge, this
is the first result which formally characterizes the
significant benefits of using gradient information in
Bayesian Optimization.

1.2 Background

In this section we discuss existing results in literature
which provide the background context for our results.

Bayesian Optimization. As mentioned ear-
lier, Bayesian Optimization (BO) refers to the model
based sequential optimization of a black-box function,
in which usually a Gaussian Process (GP) is used to
model the function. The prior information about the

unknown function is encoded by imposing appropriate
restrictions on the kernel (or covariance function) K.
Most BO algorithms usually alternate between these
two steps: (i) update the model of the function (i.e.,
GP posterior) based on the data observed, and (ii)
use the updated model to guide the design of the next
query point, which is in some sense most informative
about the maximizer x∗. The informativeness of a
candidate point x ∈ X in step (ii) above is usually
quantified via an acquisition function. The most com-
monly used acquisition function is the UCB acquisition
function which was proposed and analyzed by Srinivas
et al. (2012). Other acquisition functions include the
Expected Improvement (EI), Probability of Improve-
ment (PI) and Entropy Search (Hennig and Schuler,
2012; Wang and Jegelka, 2017). An alternative ap-
proach is taken by the Thompson Sampling algorithm
of Russo and Van Roy (2014) where the query points
are drawn randomly with the probability that they are
optimal. For a detailed discussion of various aspects
of BO, see the surveys by Brochu et al. (2010) and
Shahriari et al. (2015).
Lower Bounds. The algorithms mentioned above

(and some others in literature) have guarantees on their
cumulative regret of the form O(

√
n log nγn). However,

in the absence of corresponding algorithm-agnostic
lower bounds, it is not clear whether the existing regret
bounds are optimal or they can be improved further.
To the best of our knowledge, only Grünewälder et al.
(2010) and Scarlett (2018) present lower bounds on the
regret for BO, under some restrictions. Grünewälder
et al. (2010) derived a worst case lower bound on the
simple regret by constructing specific hard Gaussian
Process. More relevant to our work, for d = 1 case,
Scarlett (2018) derived Ω(σ

√
n) lower bound on the

average cumulative regret (over two randomly shifted
GPs) and also proposed an algorithm with O(

√
n) up-

per bound. The lower bound technique of Scarlett
(2018) for d > 1 doesn’t capture the conjectured expo-
nential dependence on d; our first contribution fills this
gap in literature by deriving algorithm-independent
lower bounds of Ω(2d/2

√
n) for all d ≥ 1.

For the non-Bayesian variant of this problem (where
f is assumed to lie in the RKHS of kernel K), there
exist algorithm-independent lower bounds on the regret
with ZOO access in the noise-less setting (Bull, 2011)
as well as in the noisy case (Scarlett et al., 2017; Cai
and Scarlett, 2020). However, the techniques used in
obtaining those results are not directly applicable in
the fully Bayesian framework considered in this paper.

BO algorithms using derivatives. The above
algorithms only utilize the zeroth order information
about the objective function. Surprisingly, unlike other
continuous optimization problems (such as convex op-
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timization), there are very few works in BO literature
which incorporate gradient information about f to
guide the search for the optimizer. Wu et al. (2017b)
proposed a derivative based knowledge gradient al-
gorithm and proved its asymptotic consistency and
one-step Bayes optimality. Wu et al. (2017a) exploited
the first and second order derivative information for
improved posterior inference, and applied it to BO
and Bayesian Quadrature problems. Both these works
also empirically demonstrated the benefits of incor-
porating gradient information on several benchmark
functions. Some other works that use derivative infor-
mation in BO are Osborne et al. (2009), who exploited
the derivatives for better conditioning of covariance
matrix and Lizotte (2008), who empirically studied the
variants of EI and PI algorithms with derivative infor-
mation. More recently, Prabuchandran et al. (2020)
proposed a new FOO algorithm which exploits the fact
that the gradient vanishes at the optimum, and empiri-
cally demonstrated its improved performance. However,
to the best of our knowledge, no attempts have been
made to provably quantify the improvement in regret
that is achievable when the agent is given access to
FOO, even in the simplest cases. Our second contribu-
tion addresses this issue and shows that there exists
an algorithm with FOO, that can achieve a regret of
O
(
d(log n)2

)
under some technical assumptions stated

in Section 2.3, greatly improving upon the the lower
bound with ZOO of Ω(

√
n).

2 Preliminaries

In this section, we fix the notations used in Sec. 2.1,
introduce some definitions in Sec. 2.2 and formally state
and discuss all the assumptions in Sec. 2.3.

2.1 Notations

We denote by f : X 7→ R the objective function to be
maximized, and set the domain X = [0, 1]d. We endow
the domain with the Euclidean norm ‖x‖ = ‖x‖2 =√∑d

i=1 x
2
i and use X o and ∂X to represent the interior

and boundary of X respectively. Furthermore, for any
subset A of X and any x ∈ X , we use ‖x−A‖ to denote
the distance of x from A, i.e., infz∈A ‖x− z‖. Also, for
any x, z ∈ X we use 〈x, z〉 to denote the usual inner
product, i.e,

∑d
i=1 xizi. For any x ∈ X and r > 0, we

use B(x, r) to denote the radius r open-ball around
x, i.e., B(x, r) = {z ∈ X : ‖z − x‖ < r}. For square
matrices M , we use ‖M‖ to represent the spectral
norm.

We assume that f is a sample from a zero mean Gaus-
sian Process denoted by GP(0,K), where K : X ×X 7→
R is the kernel (or covariance function). In this paper,

we restrict ourselves to stationary kernels, i.e., kernels
which satisfy K(x, z) = K(x− z) for all x, z ∈ X .

For a positive integer m, we use [m] to denote the set
{1, 2, . . . ,m}. Furthermore, for any finite set S, we
use Unif(S) to denote the uniform random variable
taking values in S. Finally, we will use the notation
M(L, l, σ, κ) to represent a (L+ 1) armed multi-armed
bandit problem with distributions (p1, p2, . . . , pL+1)
with pi ∼ N(1/2 + κ, σ2) if i = l and pi ∼ N(1/2, σ2)
otherwise.

2.2 Definitions

We begin by recalling the definition of Gaussian Pro-
cesses (GPs).
Definition 1 (GP). A zero mean Gaussian Pro-
cess GP(0,K) indexed by a set X is a collection of
random variables {Zx : x ∈ X} such that for any
finite S ⊂ X , the random vector {Zx : x ∈ S}
is distributed as N(0, CS) with covariance matrix
CS = [K(x, z)]x,z∈S .

If f ∼ GP(0,K) and given noisy ZOO observations
~yS = (y1, . . . , yt) at points in S = (x1, . . . , xt), with
the noise η ∼ N(0, σ2), the posterior distribution over
f given (xi, yi)

t
i=1 is again a GP with posterior mean

and variance given by

µt(x) = Kt(x)T
(
Ct + σ2It

)−1
~yS ,

σ2
t (x) = K(x, x)−Kt(x)

(
Ct + σ2It

)−1
Kt(x),

where Kt(x) = [K(x, x1), . . . ,K(x, xt)]
T , Ct =

[K(xi, xj)]1≤i,j≤t and It is the t× t identity matrix. In
addition, under some smoothness assumptions on K,
the derivative of f is also a GP and its posterior (jointly
with f) can also be computed in a similar manner. The
reader is referred to (Williams and Rasmussen, 2006,
§ 9.4) for further details.

Next, we formally introduce the ZOO and FOO oracles
used in this paper.
Definition 2 (Zeroth-Order-Oracle (ZOO)). The
zero order oracle (ZOO) takes as input any point x
in the domain X , and returns y = f(x) + η, where
η ∼ N(0, σ2). The noise η for different calls to the
oracle is assumed to be independent.
Definition 3 (First-Order-Oracle (FOO)). The
first order oracle (FOO) takes as input any point
x in the domain X = [0, 1]d, and returns (y, y′) =
(f(x) + η, g(x) + ξ) where g(x) = ∇f(x), η ∼ N(0, σ2)
and ξ ∼ N(0, σ2Id) where Id is the identity matrix.

2.3 Assumptions

We now state the assumptions on K required to derive
our results. These assumptions generalize those used
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used in the derivation of lower bound in one dimension
by Scarlett (2018) to higher dimensions.

Assumption 1. We assume that f ∼ GP(0,K) where
K is stationary, i.e., K(x1, x2) = K(x1 − x2) for all
x1, x2 ∈ X and also, K(x, x) = K(0) ≤ 1 for all x ∈ X .
Furthermore, we assume that the observation noise is
distributed as N(0, σ2) for ZOO and N

(
0, σ2ID+1

)
for

FOO where Im is the m×m identity matrix for m ≥ 1.

The stationarity and boundedness assumptions on the
kernel K are standard in the theoretical Bayesian Op-
timization literature, while assuming the same noise
variance σ2 for the function values as well as all the
partial derivatives is a matter of notational convenience.
Our results will easily carry over to the case where the
observation noise is N(0,Λ) for some diagonal matrix
Λ with non-negative entries.

Assumption 2. For some δ0 > 0, with probability at
least 1− δ0, f has a unique maximizer x∗ and f(x∗) ≥
f(x̃) + ε0 for some ε0 > 0 and x̃ is any other local
maximum of f . Furthermore, we assume that f is twice
differentiable and |f(x)| ≤ c0, ‖∇f(x)‖ := ‖g(x)‖ ≤ c1
and ‖∇2f(x)‖ ≤ c2 for all x ∈ X .

As mentioned by Scarlett (2018) and De Freitas et al.
(2012), the existence of unique x∗ occurs w.p. 1 in
most cases. Furthermore, as shown in (Ghosal et al.,
2006, Theorem 5), the second-order differentiability of
f can be almost surely satisfied by imposing smoothness
conditions on the covariance function K. Finally, due
to the compactness of the domain X , we can obtain
high probability bounds on the suprema of the norms
of the first and second order derivatives. Thus the term
δ0 in the above assumption can be made arbitrarily
small with suitable choices of the constants c0, c1, c2
and ε0.

Assumption 3. For some δ1 > 0 and ρ0 ∈ (0, 1/2),
with probability at least 1−δ1 the maximizer x∗ satisfies
‖x∗ − ∂X‖ ≥ ρ0, i.e., with probability at least 1 − δ1,
the maximizer lies ρ0 distance away from the boundary
of the domain, ∂X .
Remark 1. Assumption 3 requires the maximizer to
lie strictly within the interior of the domain X . Un-
like Assumption 2, the probability of satisfying this
condition (δ1) cannot, in general, be made arbitrarily
small. There exist cases, such as when the length-scale
of the GP kernel is large as compared to the diameter
of X , when δ1 is large and the maximizer x∗ lies on
or close to the boundary ∂X (Scarlett, 2018). How-
ever, in the case of Bayesian Optimization problems,
the algorithm designer also wields significant control
over the design of the input space X , and can often
ensure that the maximizer x∗ lies in the interior of X
by suitably selecting the input ranges or by applying
appropriate input transforms. An example of input

transformations is the cylindrical-transformation pro-
posed by Oh et al. (2018), which been used to address
the so-called boundary issue (Swersky, 2017, § 4.4.1)
and prevent algorithms from sampling too many points
near ∂X .

To summarize the assumptions, we introduce the fol-
lowing definition.

Definition 4 (Event Ω0). We will state the results of
our paper conditioned on the event Ω0 under which
Assumptions 2 and 3 are assumed to occur. Note that
the probability of the event Ω0 is at least 1− δ0 − δ1.

Finally, as an immediate consequence of the assump-
tions, we can state the following result which says that
under the event Ω0, the samples of the GP have locally
quadratic behavior in the near-optimal region.

Claim 1. There exist 0 < c2 ≤ c2 such that the fol-
lowing are true under the event Ω0:

f(x) + 〈g(x), z − x〉 − c2
2
‖z − x‖2 ≤ f(z) and

f(x) + 〈g(x), z − x〉 − c2

2
‖z − x‖2 ≥ f(z)

for all x, z ∈ B(x∗, ρ0). In particular, by setting x = x∗

we get
c2

2
‖z − x∗‖2 ≤ f(x∗)− f(z) ≤ c2

2
‖z − x∗‖2 (2)

for all z ∈ B(x∗, ρ0).

Proof. Since x∗ is the maximizer, by the second-order-
necessary-condition we know that∇2f(x∗) is a negative
semi-definite matrix. This along with the fact that the
Hessian is almost sure non-singular at x∗ (De Freitas
et al., 2012) implies that it is in-fact strictly negative-
definite. Also due to the continuously differentiable
condition in Assumption 2, we can find a ρ′0 > 0 and
c2 > 0 such that λmin

(
∇2f(x)

)
≤ −c2 for all x ∈

B(x∗, ρ′0). Finally we can update ρ0 to min{ρ′0, ρ0} if
needed to get the required statement.

3 Lower Bound on Regret with ZOO

We first revisit Scarlett (2018) to restate/obtain a
Ω(σ
√
n) lower bound on the regret with ZOO access

in Prop. 1 via a direct extension of the binary hy-
pothesis testing technique of Scarlett (2018) to higher
dimensions. This result serves to demonstrate the
limitations of the binary testing approach in higher
dimensions, since it does not capture the scaling of
the regret w.r.t. the dimension d. We then obtain
improved Ω

(
2d/2σ

√
n
)
lower bound in Theorem 1 by

using our novel approach of mapping the BO problem
to an appropriately constructed multi-armed bandit
problem.
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Proposition 1. Consider a problem of optimizing a
black-box function f ∼ GP(0,K) with ZOO access and
additive observation noise η ∼ N(0, σ2). If the kernel
K satisfies Assumptions 1, 2, and 3 with 1−δ0−δ1 > 0,
then for any adaptive optimization scheme A, we have

E [Rn(A, f)] ≥ C ′l
(
1 + σ

√
n
)
. (3)

where C ′l is a constant which does not depend on the
dimension d.

Remark 2. The proof of Prop. 1, as well as the
stronger lower bound in Theorem 1, proceed by con-
structing a collection of randomly shifted GPs, all of
which when restricted to the index set X , are dis-
tributed as GP(0,K) (here we use the shift invariance
of K). As a result, the expectation in Prop. 1 as well
as in Theorem 1 is w.r.t. the noise, the GP as well as
the random shifts.

Proof Outline of Prop. 1: Our result follows
from a generalization of the above-described proof tech-
nique used in (Scarlett, 2018). We present an outline
of the steps here for completeness.

• Suppose f̃ ∼ GP(0,K) is a GP indexed by the ex-
panded domain X̃ := [−∆, 1 + ∆]d. Next, we intro-
duce f̃ restricted to X as f0, i.e., f0 = {f̃(x) : x ∈
X}. Assume that the sample f0 is revealed to the
learner. This is the so called genie argument (Scar-
lett, 2018), which informally says that any additional
information will only result in a weaker bound, and
hence can be used in the lower bound construction.

• Next, we introduce two random variables W ∼
Unif ([d]) and V ∼ Unif ({−1,+1}), independent
of everything else. Let ew ∈ {0, 1}d for w ∈ [d] de-
note the standard normal unit vector with 1 in the
wth coordinate, and define fWV := f̃(x + V∆eW )
for x ∈ X . Due to the translation invariance of the
kernel K, fWV is also distributed as GP(0,K), over
the index set X for all realizations of W,V .

• Now, with f0 revealed and conditioned on W , fol-
lowing (Scarlett, 2018, Lemma 5) we can relate the
regret of any BO algorithm (A) to the probabil-
ity of error in the binary hypothesis test for the
true value of v. This allows us to obtain the bound
E [Rn(A)|W ] ≥ C ′l

√
n for any adaptive scheme A.

• Finally, taking another expectation with respect to
the random variable W completes the proof.

�
As shown in Proposition 1, and as hinted in (Scarlett,
2018, § 5), the reduction to binary testing approach
does not capture the d dependence on regret, and
new techniques are needed to achieve an exponential

dependence in d of the lower bound. In our next result,
we present a new approach to obtain a tighter lower
bound with exponential d dependence.

Theorem 1. Consider the problem of optimizing a
black-box function f ∼ GP(0,K) with additive observa-
tion noise N(0, σ2). Under the assumptions 1 2 and 3,
and ZOO access to f , the cumulative regret of any adap-
tive scheme A can bounded as

E [Rn (A, f)] ≥ σ

√
2dn

32
(4)

if n is large enough (See (14) in Appendix A for exact
condition).

The formal proof of this result is deferred to Ap-
pendix A. Here, we present a detailed outline of the
proof and describe the key ideas involved.

Proof Outline of Theorem 1: Throughout this
discussion we will use X̃ = [−∆, 1 + ∆]d for some
∆ > 0, Z = {−1,+1}d. Suppose the elements of
Z are enumerated as {z1, z2, . . . , zL} for L = 2d in
some fixed order. Introduce the random variable V ∼
Unif ({1, 2, . . . , L}) which is drawn independent of all
other quantities.

1. We begin with the GP f̃ ∼ GP(0,K) indexed by
the larger set X̃ . Next, for a value of l ∈ [L], we
define fl = {f̃(x+ zl∆) : x ∈ X}. Note that due
to the translation invariance of the kernel K, all of
(fl)l∈[L] are distributed according to GP(0,K) on
the index set X . Finally, for the random variable V
introduced above, we define f = fV .

2. Suppose x∗l is the maximizer of the function fl for
l ∈ [L]. Then due to the local quadratic behavior
of f0 under Assumption 3, we can show that if
fl(x) > fl(x

∗
l ) − c2∆2, then fm(x) < fm(x∗m) −

c2 (‖zl − zm‖2 − 1)
2

∆2 for m ∈ [L] \ {l}. We next
introduce the sets Xl := B(x∗l ,∆) for l ∈ [L], and
XL+1 = X \

(
∪Ll=1Xl

)
and observe that for any

algorithm A, the regret given that V = l is lower
bounded as follows:

Rn (A, fl) ≥
∑

l′∈[L]\{l}

c2

∑
t:xt∈Xl′

(‖zl − zl′‖2 − 1)
2

∆2

+
∑

t:xt∈XL+1

c2∆2.

3. To each instance of a GP bandit problem with V = l,
we can associate a multi-armed bandit problem
with (L+ 1) arms, denoted byM

(
L, l, σ, c2∆2

)
=

(p1, p2, . . . , pL+1) with pi ∼ N(0, σ2) for i 6= l and
pl ∼ N(c2∆2, σ2). Furthermore, for any GP ban-
dits algorithm A, we can associate an algorithm for
M(L, l, σ, c2∆2), denoted by A(L) such that if the
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strategy A results in a point xt ∈ Xl′ , then A(L)

plays the arm l′ ofM(L, l, σ, c2∆2) (also referred to
as Ml). Denoting by R(L)

n , the cumulative regret
of the multi-armed bandit problem, we have the
following relation:

Rn (A, fl) ≥ R(L)
n

(
A(L),Ml

)
.

4. Finally, we show that for the L + 1 armed bandit
problems M

(
L, V, σ, c2∆2

)
, we can lower bound

the average regret with the term
√

nLσ2

32 which com-
pletes the proof.

�

4 Improved Upper Bound on Regret
with FOO

4.1 Algorithm with FOO access

Before describing the steps of our algorithm, we first
assume that there exists an algorithm which achieves
the optimal regret bound in n with ZOO access, i.e.,
O (
√
n). One such algorithm can be constructed by

a simple generalization of the algorithm of (Scarlett,
2018) to dimensions larger than one.
Assumption 4. We assume that there exists an algo-
rithm which uses only ZOO feedback, denoted by OptAl
gZOO or A0, that for any n ≥ 1, satisfies the following
properties with probability at least 1−1/n for all t ≤ n:

• It returns a region of the input space, denoted by
St ⊂ B(x∗, rt) where the radius rt is non-increasing
with t, and

• The total regret incurred by the algorithm at any time
t is O

(√
t log n

)
.

We will refer to the above 1− 1
n probability event as Ω1.

With this assumption, we can now describe the steps
of our proposed algorithm, AlgFOO, whose pseudo-code
is in Algorithm 1.

Outline of Algorithm 1. The algorithm proceeds in
two phases consisting of the following steps:

• In the first phase, we implement the OptAlgZOO al-
gorithm for t0 steps, where t0 is large enough (more
precise description of t0 is in Sec. 4.3) to ensure that
the active region returned by the algorithm is con-
tained in the ball B(x∗, ρ0). Note that in this phase,
the additional gradient information is utilized only
to update the posterior and not directly the query
point selection strategy.

• Next, in the second phase we exploit the locally
quadratic behavior of the objective function f in the
vicinity of the maximizer x∗ to perform a version of
a gradient ascent algorithm which proceeds in two
alternating steps: (i) call the RepeatQuery subrou-
tine at the current point xt to repeatedly query the
FOO at xt in order to construct a sufficiently accurate
estimate of the true gradient at that point, and (ii)
perform a gradient-ascent step using the approximate
gradient returned by the RepeatQuery subroutine.

Algorithm 1: AlgFOO (A1).
Input: n, K, c1, c1, c2, c2, ρ0.

1 Initialize: t = 1, ne = 0, St = X , α = c2/(4c2)
/* Phase 1: Zoom into the near-
optimal region using OptAlgZOO */

2 while St ∩ ∂X 6= ∅ OR diam(St) > ρ0 do
3 Run OptAlgZOO to update St
4 t← t+ 1

5 end

/* Phase 2: Perform gradient ascent with
uncertain gradients */

6 xt ∼ Unif(S(ρ0, δ))
7 while t ≤ n do
8 t, gt, µt, σt ← RepeatQuery(xt, t, µt, σt, α)
9 xt ← xt + stgt

10 end
Output: xn

Algorithm 2: RepeatQuery Subroutine
Input: x, t, µt(·), σt(·), α

1 Initialize: τ = 0, flag = True, b = 2
√
d/α.

2 while flag do
3 Query FOO at x
4 t← t+ 1, τ ← τ + 1
5 Update µt(·), σt(·).

/* Check Stopping condition */
6 Set ut,i = µt,i(x) + βnσ/

√
τ , and

lt,i = µt,i(x)− βnσ/
√
τ

7 if max1≤i≤d max (lt,i, −ut,i) > 2bβnσ/
√
τ then

8 flag = False
9 end

10 end
11 g̃t = [µt,1(x), . . . , µt,d(x)]T

Output: t, g̃t, µt(·), σt(·)

4.2 Regret Bound for AlgFOO

We begin by stating a concentration result for the
function and derivative values at the points queried by
the algorithm.
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Proposition 2. Suppose the first phase of the algo-
rithm AlgFOO ends after t0 ≤ n rounds, and the algo-
rithm queries FOO at the points {xt : t0 + 1 ≤ t ≤ n}.
Define the event Ω2 under which we have |µt,0(xt) −
f(xt)| ≤ βtσt,0(xt) and |µt,i(xt) − gi(xt)| ≤ βtσt,i(xt)
for all 1 ≤ i ≤ d and t0 + 1 ≤ t ≤ n. Then we have

P (Ωc2) ≤ 1/n, for βt =

√
2 log

(
6nt2

(d+1)π2

)
.

Proof Outline of Prop. 2: The result
follows from the following two facts: (1) xt is a
measurable function of the history of observations
and actions up to and including time t − 1 for all
t ≥ N0(ρ0, δ) + 1, and (2) the conditional distribu-
tion of [f(xt), g1(xt), . . . , gd(xt)]

T is a multivariate
Gaussian (here g(x) = [g1(x), . . . , gd(x)] denotes the
gradient of f at x). Combining the two in a manner
similar to (Srinivas et al., 2012, Lemma 5.6) gives us
the result. �

We can now state the following bound on the regret
incurred by AlgFOO.

Theorem 2. Suppose Assumptions 1, 2, 3 and 4 hold.
Then, under the event2 Ω = Ω0 ∩Ω1 ∩Ω2, which occurs
with probability at least 1− δ0 − δ1 − 2/n, there exists
an NΩ0 < ∞ (depending on the event Ω0 introduced
in Def. 4) such that for all n ≥ NΩ0

, the algorithm
AlgFOO achieves the following bound:

Rn (A1) = O
(
d (log n)

2
)

(5)

Remark 3. The term NΩ0
in the above result is the

minimum sampling budget which ensures that the re-
gret incurred by phase 2 of AlgFOO, which as we show

in the proof of Theorem 2 is O
(

(
√
d log n)2

)
, domi-

nates the corresponding regret of the first phase, which
is O

(√
t0 log n

)
where t0 is the (random) time at which

phase 1 stops. A sufficient condition for this is that
n ≥ NΩ0

= exp(t0). Since the distance of x∗ from the
boundary ∂X is at least ρ0 by Assumption 3, the term
t0 can be set to min{t ≥ 1 : rt < ρ0/2} where rt was
introduced in Assumption 4.

As mentioned in Remark 1, the term δ0, unlike δ1, can
be made arbitrarily close to 0 by appropriate choice
of the terms ε0, c0, c1 and c2. In light of this, we can
reformulate the result of Theorem 2 as follows.

Corollary 1. Conditioned on the 1 − δ1 probability
event of Assumption 3 (i.e., ‖x∗−∂X‖ ≥ ρ0), the regret
incurred by AlgFOO satisfies Rn(A1) = O

(
d(log n)2

)
with high probability (i.e., at least 1− (2/n+δ0)/(1−δ1)).

Remark 4. The above corollary says that if we have
2Ω0 introduced in Def. 4, Ω1 in Assumption 4 and Ω2

in Prop. 2

the prior knowledge that the optimizer of the unknown
function f lies away from the boundary of the do-
main, ∂X , then AlgFOO achieves a regret of the order
O
(
d(log n)2

)
. This prior knowledge is often available

in the canonical BO application of Hyperparameter Op-
timization (HPO) of machine learning models. More
specifically, in HPO problems, the experimenter has
significant control over the choice of the search space
X , and often designs X with the goal of ensuring that
x∗ lies in the interior, as described in (Swersky, 2017,
§ 4.4.1). For instance, in the hyperparameter tuning
of a convolutional neural network (CNN), it is known
that very small and very large choices of kernel size
are sub-optimal, and hence the range of kernel size can
be chosen to ensure that the optimal value lies in the
interior. This suggests that in practical applications,
the prior knowledge required for achieving the benefits
of incorporating gradient information in BO is often
available.

We end this section by stating the upper bound on the
expected regret of AlgFOO.

Corollary 2. As an immediate corollary of Theorem 2
and Assumption 4, the expected regret of AlgFOO satis-
fies

E [Rn (A)] = O
(
d (log n)

2
+ δ1

√
n log n

)
(6)

Thus for the GPs for which the optimizer can be en-
sured to lie within the interior of the domain with
probability at least 1 − (logn)3/2/

√
n the overall regret

of AlgFOO is O
(
d(log n)2

)
.

4.3 Proof Outline for Theorem 2

Suppose Z = {x1, x2, . . . , xn} denotes the multiset
of points queried by the algorithm A1. This can be
partitioned into Z1 and Z2, where Z1 is the multiset of
points queried by OptAlgZOO (or A0) in the first phase
and Z2 denotes the multiset of points queried by A1
in the second phase, and the total regret incurred by
AlgFOO can also be written accordingly as follows:

Rn(A1) =

:=R(1)︷ ︸︸ ︷∑
z∈Z1

f(x∗)− f(z) +

:=R(2)︷ ︸︸ ︷∑
z∈Z2

f(x∗)− f(z) .

Throughout this proof, we assume that the event
Ω = ∩2

i=0Ωi occurs. Recall that we have P (Ω) ≥
1− δ0 − δ1 − 2/n.

We first present a bound on the term R(1) since it is
easier to handle. For this, we recall the stopping time
t0 and term NΩ0

defined as:

t0 = min
{
t ≥ 1 : rt < ρ0/2

}
, NΩ0

:= exp (t0) .

In the above display, rt denotes the radius of the ball
centered at x∗, i.e, B(x∗, rt), within which the active
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set St returned by OptAlgZOO in Assumption 4 lies.
With these definitions we can state the bound on R(1).

Lemma 1. Under the event Ω, if n ≥ NΩ0 , then the
regret incurred in the first phase, denoted by R(1), is
O (log n).

Proof. First note that due to Assumption 3, the opti-
mizer x∗ of any realization of the GP(0,K) must lie in
the interior and hence its distance from the boundary
‖x∗ − ∂X‖2 is greater ρ0.

Next, we observe that the total number of rounds
spent by AlgFOO in the first phase is upper bounded
by t0. This is due to the fact that at time t0, since
St0 ⊂ B(x∗, rt0), we have St0 ∩ ∂X = ∅. Furthermore,
since rt0 < ρ0/2, we also have diam(St0) < ρ0. Thus
neither of the conditions on Line 2 of Algorithm 1 is
satisfied, which implies that this while loop ends at
some time t ≤ t0.

Finally, since by Assumption 4 the total regret incurred
in first phase is O

(√
t0 log n

)
, and that n ≥ NΩ0 ≥

exp(t0) we get that R(1) = O
(√

log n logNΩ0

)
=

O (log n).

It remains to show that R(2) = O
(
d(log n)2

)
. To

obtain this result, we proceed in the following steps:

• First we show, in Lemma 2, that the RepeatQuery
subroutine returns a sufficiently accurate estimate
of the true gradient g(x) at some point x. More
formally, that the approximate gradient g̃t(x) satis-
fies the property that ‖g(x)− g̃t(x)‖ ≤ α‖g(x)‖ for
α = c2/4c2.

• Next, in Lemma 3, we show that if the Repeat-
Query subroutine at some point x ∈ Z2 halts at
time t and with τ queries , then the total regret in-
curred (i.e., τ (f(x∗)− f(x))) can be upper bounded
by O (log n).

• Next, we partition Z2 into Z2,1 and Z2,2 where
Z2,2 = {z ∈ Z2 : ‖x∗ − z‖ ≤ 1/

√
c2n} and Z2,1 =

Z2 \Z2,2. Similarly, we can write R(2) = R2,1 +R2,2,
where R2,i is the contribution to R(2) by points in
Z2,i for i = 1, 2. The term R2,2 is easy to bound,
since by Assumption 3, we know that for any z ∈ Z2,2

we have f(x∗)− f(z) ≤ c2‖x∗ − z‖2 ≤ c2/nc2 which
implies that R2,2 ≤ |Z2,2|/n ≤ 1.

It remains to show that R2,1 = O
(
d(log n)2

)
. Sup-

pose the unique points in Z2,1 are denoted by
z1, z2, . . . , zN1

. Then we proceed in three steps:

– First, from Lemma 3, we know that the regret at
any zi is upper bounded by O

(
d(log n)2

)
.

– Then, in Lemma 4, we show that after every
gradient-ascent step (i.e, moving from zi to zi+1),

the distance of the new point from the opti-
mizer x∗ shrinks at a geometric rate, i.e., v2

t+1 ≤(
1− c2

2

64c22

)
v2
t .

– Finally, in Lemma 5 we show that |Z2,1| = N1 =
O (log n) because of the geometric shrinkage of
the distance to the optimal proved in Lemma 4.
This result, along with Lemma 3, implies that
R2,1 = O

(
d(log n)2

)
.

• To summarize, under the 1 − δ0 − δ1 − 2/n prob-
ability event Ω, we can decompose the regret into
Rn = R(1)+R2,1+R2,2. In Lemma 1 we showed that
R(1) = O (log n) under the requirement on n ≥ NΩ0 .
In Lemma 5 we show that R2,1 = O

(
d(log n)2

)
,

while the a simple computation outlined above im-
plies that R2,2 = O (1). Together, these statements
complete the proof of Theorem 2.

We now present the formal versions of the remaining
steps of the proof outlined above.

Lemma 2. Suppose the RepeatQuery subroutine halts
at time t with τ queries at a point x. Then the returned
gradient estimate satisfies ‖g(x) − g̃t‖ ≤ α‖g‖ under
the event Ω (see Theorem 2), where α = c2/4c2.

The proof of this result is in Appendix B.1. The previ-
ous proposition shows that the RepeatQuery subrou-
tine indeed returns a ‘sufficiently accurate’ gradient
estimate. In the next result, we show that the regret
incurred by the RepeatQuery subroutine in the process
of constructing this gradient estimate is not too large.

Lemma 3. Suppose a point x is evaluated τ times
by the RepeatQuery subroutine before halting. Un-
der the event Ω, the total regret accumulated, i.e.,
τ (f(x∗)− f(x)) is O (log n).

The proof of this result is in Appendix B.2. In our
next result, we show that every time performs the noisy
gradient-ascent step (i.e., Line 11 of Algorithm 1), the
distance of the new point from the optimizer x∗ shrinks
by at least a constant factor.
Lemma 4. Suppose the event Ω occurs. Then if
at some time t, AlgFOO performs the approximate
gradient-ascent step to go from zt to zt+1 = zt + stg̃t,
we have

‖zt+1 − x∗‖2 ≤ ‖zt − x∗‖2
(

1− c22
64c2

)
. (7)

The proof of this result is in Appendix B.3. Finally,
we combine the previous two results to bound R2,1.

Lemma 5. Under the event Ω, we have R2,1 =
O
(
d(log n)2

)
.

The proof of this result is in Appendix B.4.



Shubhanshu Shekhar, Tara Javidi

4.4 Numerical Illustration

We now empirically compare the performance of a
heuristic variant of AlgFOO (denoted by AlgFOO-h)
against the GP-UCB baseline. Implementing the ex-
act version of AlgFOO requires the knowledge of the
constants c1, c1, c2, c2 and ρ0, which may not be easy
to obtain in practical problems. To address this, we
consider the heuristic AlgFOO-h, which:

• implements the first phase of Algorithm 1 with a
fraction r ∈ (0, 1] of the budget,
• calls RepeatQuery a fixed number (denoted by
reps) of times in the second phase, and
• uses a fixed step size s in Line 9 of Algorithm 1.

With these three changes, AlgFOO-h no longer depends
on the above-mentioned parameters. However, this
comes at the cost of losing the theoretical performance
guarantees.

We compared the performance of AlgFOO-h algorithm
with the GP-UCB algorithm of Srinivas et al. (2012)
on two commonly used optimization benchmark func-
tions: Himmelblau function and Booth function. In the
experiments, we used three instances of AlgFOO-h:

• AlgFOO-h-1 with (r, reps, s) = (0.6, 8, 0.0005),
• AlgFOO-h-2 with (r, reps, s) = (0.6, 6, 0.0002),
• AlgFOO-h-3 with (r, reps, s) = (0.6, 4, 0.0001).

For every objective function and algorithm pair, we
ran 20 trials with a budget of n = 100 and report the
performance in Table 1 (for Himmelblau function) and
Table 2 (for Booth function). The results in the tables
provide evidence for the fact that the FOO algorithms
could lead to improved optimization performance on
an average. However, we note that the heuristic FOO
algorithms also demonstrated higher variability in per-
formance over different trials as well as sensitivity to
the choice of the hyperparameters (r, reps, s).

Algo. mean Rn median Rn std. Rn
GP-UCB 1235.23 1206.18 104.81

AlgFOO-h-1 1108.86 993.57 429.58

AlgFOO-h-2 1057.29 890.32 422.32

AlgFOO-h-3 1011.61 877.09 407.20

Table 1: Performance of the algorithms on Himmelblau
objective function.

These preliminary empirical results suggest that the
algorithmic ideas analyzed in this paper can be used to
design principled heuristics which can lead to improved
performance in practical tasks. We leave a systematic
empirical investigation of these ideas for future work.

Algo. mean Rn median Rn std. Rn
GP-UCB 3304.62 2954.70 503.28

AlgFOO-h-1 2576.29 2287.72 1013.96

AlgFOO-h-2 2763.45 2074.64 1431.62

AlgFOO-h-3 1971.46 1616.14 588.01

Table 2: Performance of the algorithms on Booth ob-
jective function.

5 Conclusion and Future Work

In this paper we took the first step towards quan-
tifying the improvement in regret (Rn) that can be
achieved in Bayesian Optimization when the agent has
access to gradient information, in addition to the usual
noisy function evaluations. To do this, we first derived
algorithm-independent lower bound on Rn with ZOO ac-
cess for all d ≥ 1. This result captures the exponential
scaling of Rn with dimension d, and relies on a novel
approach which proceeds by connecting the regret of
the BO problem to that of a certain multi-armed ban-
dit problem. Next, we consider the case in which the
agent has FOO access to f , and construct an algorithm
which achieves a regret bound of O

(
d(log n)2

)
under

the condition that the optimizer x∗ lies in the interior
of the domain. Together these two results imply that
exploiting gradient information can be very beneficial
in Bayesian optimization.

Our results in this paper open several questions for fu-
ture work. First, it is interesting to investigate whether
the lower bounding technique for ZOO used in Theorem 1
of this paper can be used to obtain tight lower bounds
for related problems such as contextual GP bandits, ad-
ditive GP bandits and GP level set estimation. Second,
it is also crucial to obtain the algorithm-independent
lower bounds for BO with FOO access. For the case of
d = 1, a combination of the reduction to binary hypoth-
esis testing of Scarlett (2018) along with appropriate
KL-divergence bounds for FOO due to Raginsky and
Rakhlin (2011) might work, but obtaining the lower
bound for d > 1 may require some new ideas. Finally,
similar to Algorithm 1 of Scarlett (2018), our proposed
algorithm AlgFOO is primarily a theoretical device to
show that faster convergence can be achieved with
gradient information, and is not suitable for practical
applications. Thus an important question for future
work is to design practically viable algorithms using
gradient information, which can also provably achieve
tighter than Ω(

√
2dn) regret bound.
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A Proof of Theorem 1.

Notations. We first recall some notation required for presenting the proof. Given a kernel K, we define a GP f̃
distributed according to GP(0,K) on the extended index set X̃ = [−∆,∆]d for some ∆ > 0 to be decided later.
For L = 2d, let {z1, z2, . . . , zL} denote the set {−1, 1}d where the (zl)

L
l=1 are ordered in some arbitrary but fixed

way, and let V ∼ Unif ([L]) be a random variable independent of everything else.

With z0 = (0, . . . , 0) ∈ Rd, we introduce the Gaussian Processes fl = {f̃(x+∆zl) : x ∈ X} for l ∈ {0}∪ [L]. Note
that due to the translation invariance of the kernel K, all of fl have the same GP(0,K) distribution (although
they are not independent). We will use f∗l and x∗l for all l ∈ [L] to denote the maximum value and the maximizer
of fl on the domain X .

We first state a result which says that there exists no point x at which both fl and fm for l 6= m are arbitrarily
close to their respective maximum values.

Lemma 6. Suppose the event Ω0 (introduced in Definition 4) holds, and ∆ is small enough to ensure that
(2
√
d+ 1)∆ < ρ0. Then, for any m 6= l and x ∈ X , if f∗l − fl(x) < c2∆2 then f∗m − fm > c2(‖zm − zl‖2 − 1)∆2.

Proof. The statement above follows as a consequence of the local quadratic behavior of GP samples under the
event Ω0 as formalized in (2) in Claim 1. The proof is a generalization of the corresponding result in Eq. (28) in
Lemma 3 of (Scarlett, 2018) to the case of higher dimensions, and we present the details here for completion.

Suppose x is such that f∗l −fl(x) ≤ c2∆2, then by the result of Claim 1, we have that c2‖x−x∗l ‖2 ≤ f∗l −f(x) ≤ c2∆2

which implies that ‖x∗l − x‖ < ∆.

Next, we know by definition of x∗l and x∗m that ‖x∗l − x∗m‖ is equal to ‖zm − zl‖∆. By triangle inequality and the
fact that ‖x∗l − x‖ < ∆ , this implies that ‖x∗m − x‖ > (‖zm − zl‖ − 1)∆, which by another application of the
result of Claim 1 implies that f∗m − fm(x) ≥ c2‖x− x∗m‖2 > c2(‖zm − zl‖ − 1)2∆2.

Suppose a GP bandit algorithm A selects the following query points x1, x2, . . . , xn on the objective fl. Let
Ti(n,A, l) denote the (random) number of times the algorithm queries points in the subset Xi. Then the regret
incurred by algorithm A on fl, denoted by Rn (A, fl), satisfies the following inequality

Rn (A, fl) =

n∑
t=1

f∗l − fl(xt)
(a)

≥
n∑
t=1

c2∆2

∑
l′ 6=l

(‖zl − zl′‖2 − 1)1{xt∈Xl′} + 1{xt∈XL+1}


(b)
= c2∆2

TL+1(n,A, fl) +
∑
l′ 6=l

(‖zl′ − zl‖2 − 1)Tl′ (n,A, fl)

 (8)

≥ c2∆2 (n− Tl(n,A, fl)) . (9)

The inequality (a) in the above display follows from an application of Lemma 6 by noting that points which are
not in Xl are at least ∆ away from the optimizer x∗l , and hence at least c2∆2(‖zl − zl′‖ − 1) sub-optimal, while
(b) uses the fact that ‖zl − zl′‖ ≥ 2 for all l, l′.

The expressions in (??) and (9) resemble the regret decomposition in a multi-armed bandit (MAB) problem
with L + 1 arms. Motivated by this, for any GP bandit problem with objective function fl, we associate a
corresponding (L+ 1)−armed MAB problem, denoted byMl =M

(
L, l, σ, c2∆2

)
=
(
P

(l)
1 , P

(l)
2 , . . . , P

(l)
L+1

)
where

P
(l)
i ∼ N

(
c2∆2

1{i=l}, σ
2
)
. Now, corresponding to any GP bandit algorithm A, we can define an algorithm for

the corresponding (L+ 1) armed MAB problem, denoted by A(L), such that if the point xt played by A lies in A
lies in Xi, the scheme A(L) plays arm at = i. With this setup, and from (9), we can now relate the regret incurred
by A(L) onMl, denoted by R(L)

n (A(L),Ml), to the regret of the original GP bandits problem.

Rn (A, fl) ≥ R(L)
n

(
A(L),Ml

)
. (10)

This suggests that in order to lower bound Rn, it suffices to obtain a lower bound on R(L)
n . We follow this
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approach, and in particular, show that

inf
A∈ΠGP

E [Rn (A, fV )] ≥ inf
A(L):A∈ΠGP

E
[
R(L)
n

(
A(L),MV

)]
≥ inf
A∈ΠMAB

E
[
R(L)
n (A,MV )

]
. (11)

In the above display, Π(GP ) and Π(MAB) denote the set of all feasible GP bandit and MAB algorithms respectively.
Thus to complete the proof, we need to obtain a lower bound on the expected regret of any MAB algorithm
for problem instances chosen randomly from the set {Ml; l ∈ [L]}. For any bandit algorithm A, and a MAB
instanceMl, we use the notation Ti(A,Ml, n) to denote the (random) number of times the algorithm A pulled
arm i ∈ [L+ 1]. Denoting by Ei[·], the expectation conditioned on V = i for i ∈ [L], we then have

E
[
R(L)
n (A,MV )

]
=

1

L

L∑
l=1

El
[
R(L)
n (A,MV )

]
≥ 1

L
c2∆2Ei

∑
i6=l

Ti (A,Ml, n)


=

1

L

L∑
i=1

c2∆2 (n− Ei [Ti (A,Ml, n)])

= c2∆2

(
n− 1

L

L∑
l=1

El [Tl (A,Ml, n)]

)
. (12)

Next, we need to obtain an upper bound on the term 1
L

∑L
l=1 El[Tl (A,Ml, n)], which is the average number

of times the algorithm A pulls the optimal arm on an MAB instance drawn uniformly at random from the
[L] options. The proof of this statement follows by adapting the existing lower bounding techniques in MAB
and statistics literature. Introduce the notation M0 to denote an MAB with all arms with N(0, σ2) and let
E0 denote the corresponding expectation. Furthermore, let ρAi for i ∈ {0, . . . , L} denote the joint distribution
on the action-observation sequences Jn := (R × [L + 1])n induced by the strategy A and MAB Mi. For
i ∈ [L]∪{0} and an MAB algorithm A, we introduce τ0(i, A, n) ⊂ [n]∪{0} defined as τ0(i, A, n) = {t ∈ [n]∪{0} :
ρAi ({Ti(A,Mi, n) = t}) ≥ ρA0 ({Ti(A,M0, n) = t})}. Then we have the following

El [Tl (A,Ml, n)]− E0 [Tl (A,Ml, n)] =

n∑
t=0

t
(
ρAi ({Ti = t})− ρA0 ({Ti = t})

)
(i)

≤
∑

t∈τ0(i,A,n)

t
(
ρAi ({Ti = t})− ρA0 ({Ti = t})

)
(ii)

≤ n sup
E⊂Jn

|ρA0 (E)− ρi(E)| = ndTV
(
ρAi , ρ

A
0

)
(iii)

≤ n

√
1

2
dKL

(
ρA0 , ρ

A
i

)
⇒ El [Tl (A,Ml, n)] ≤ E0 [Tl (A,Ml, n)] + n

√
1

2
dKL

(
ρA0 , ρ

A
i

)
. (13)

In the previous display,
(i) follows from the fact that by definition the set E0(i, A, n) denotes the values of t for which the terms in the
expectation are non-negative,
(ii) follows by upper-bounding t with n, and then taking the supremum over all possible subsets of the action-
observations sequences Jn, and
(iii) follows by an application of Pinsker’s inequality.
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Next, we proceed as follows:

1

L

L∑
l=1

El [Tl (A,Ml, n)]
(i)

≤ 1

L

L∑
l=1

E0 [Tl (A,Ml, n)] + n
1

L

L∑
l=1

√
1

2
dKL

(
ρA0 , ρ

A
l

)
(ii)
=

n

L
+
n

L

L∑
l=1

√
1

2
dKL

(
ρA0 , ρ

A
l

)
(iii)
=

n

L
+
nc2∆2

2Lσ

L∑
l=1

√
E0 [Tl(n)]

(iv)

≤ n

L
+
nc2∆2

2Lσ

√
Ln =

n

L

(
1 +

c2∆2
√
nL

2σ

)
In the previous display,
(i) follows from Eq. (13),
(ii) uses the fact that

∑
l=1 E0 [Tl] ≤ n,

(iii) uses the standard kl-divergence decomposition rule for multi-armed bandits (Lattimore and Szepesvári, 2020,
Lemma 15.1),
(iv) follows from an application of Cauchy-Schwarz inequality to get

∑
l

√
E0 [Tl] ≤

√
L
√

E0 [
∑
l Tl] =

√
Ln.

Finally, combining this result with (12), we get the required inequality as follows:

E
[
R(L)
n (A,MV )

]
≥ c2∆2n

(
1− 1

L

(
1 +

c2∆2
√
nL

2σ

))
(i)
= σ

√
nL

2

(
1− 1

L

(
1 +

L

4

))
(ii)

≥ σ

√
nL

2
(1− 3/4) = σ

√
nL

32
.

In the previous display,
(i) follows from our choice of ∆ =

(
Lσ2

/2nc2
2

)1/4, and
(ii) follows from the assumption that d ≥ 1, which implies that L ≥ 2 and hence 1 + L/4 ≤ L/2 + L/4 = 3L/4.

Finally, to ensure the above choice of ∆ = Lσ2
/2nc2

2 satisfies the condition on ∆ required in Lemma 6, i.e.,
∆ < ρ0/(2

√
d+ 1), we need that n is large enough, i.e.,

n >
2dσ2

2c2
2

(
2
√
d+ 1

ρ0

)4

. (14)

This concludes the proof of Theorem 1.
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B Details of Proof of Theorem 2

B.1 Proof of Lemma 2

Introduce the notation v = max1≤i≤d max(lt,i, −ut,i), which is achieved at the coordinate j. Furthermore, assume
that lt,j > 0 (the other case can be handled in exactly the same way). Then we have 2bβnσ/

√
τ ≤ lt,j ≤

‖g(x)‖∞ ≤ ut,j = lt,j + 4bβnσ/
√
τ .

‖g̃t − g(x)‖2 =

(
d∑
i=1

|µt,i(x)− gj(x)|2
)1/2

(i)

≤ 2
√
dβnσ√
τ

(ii)

≤ 2
√
d

b

bβnσ√
τ

(iii)

≤ 2

b
‖g(x)‖∞

(iv)

≤ 2
√
d

b
‖g(x)‖2.

In the above display:
(i) follows from the fact that under the event Ω, we have |µt,i(x) − gi(x)| ≤ βnσt,j(x) ≤ βnσ/

√
τ for all t, τ,

and 1 ≤ i ≤ d. The last inequality follows from an application of the first part of (Shekhar and Javidi, 2018,
Proposition 3).
(ii) simply involves multiplication and division by the non-zero term b
(iii) uses the fact (discussed at the beginning of this proof) that due to the stopping rule, we must have
bβnσ/

√
τ ≤ ‖g(x)‖∞, while

(iv) uses the fact that ‖z‖∞ ≤ ‖z‖2 for any z ∈ Rd.

B.2 Proof of Lemma 3

As mentioned earlier we assume that the event Ω (which occurs with probability at least 1− δ0 − δ1 − 2/n) holds
throughout this proof.

For τ = 1, the regret incurred is just f(x∗)− f(x) which can be bounded trivially by the constant 2c0, where the
term c0 was introduced in Assumption 1. Thus for the remaining part of the proof we will assume τ > 1.

Suppose the distance of the point x from the optimizer x∗ is v := d(x∗, x). Then from Assumption 2, we have
c2v ≤ ‖g(x)‖2 ≤ c2v and c2v

2 ≤ f(x∗)− f(x) ≤ c2v2. We have the following chain of inequalities:

c2 v ≤ ‖g(x)‖2 ≤
√
d‖g(x)‖∞ ≤

√
d(b+ 2)βnσ√

τ − 1
.

This result implies the upper bound on the number of queries made by RepeatQuery subroutine, τ ,

τ

2
≤ τ − 1 ≤ (b+ 2)2dβ2

nσ
2

c2
2v

2
⇒ τ ≤ 2(b+ 2)2dβ2

nσ
2

c2
2v

2
(15)

Now the total regret incurred is τ (f(x∗)− f(x)) ≤ τc2v2, which gives us the bound

τ (f(x∗)− f(x)) ≤ c2v2

(
(b+ 2)2dβ2

nσ
2

c2
2v

2

)
=
c2(b+ 2)2dσ2β2

n

c2
2

= O
(
β2
n

)
This completes the proof, since β2

n = 2 log
(

6n3

(d+1)π2

)
= O (log n).
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B.3 Proof of Lemma 4

Suppose {z1, z2, . . . , zN1
} denote the set of unique points resulting from the gradient steps taken by the algorithm

and introduce the notation vt := ‖zt − x∗‖2. Then we have the following:

v2
t+1 = ‖zt − x∗ + stg̃t‖22 = ‖zt − x∗ + stgt + st(g̃t − gt)‖22

= v2
t + s2

t

(
‖gt‖22 + ‖gt − g̃t‖22 + 2〈gt, g̃t − gt〉

)
+ 2st〈zt − x∗, gt〉+ 2st〈zt − x∗, g̃t − gt〉

(i)

≤ v2
t + s2

t c
2
2

(
v2
t + α2v2

t + 2αv2
t

)
+ 2st〈zt − x∗, gt〉+ 2st〈zt − x∗, g̃t − gt〉

(ii)

≤ v2
t + s2

t c
2
2(1 + α)2v2

t − stc2v
2
t + 2st〈zt − x∗, g̃t − gt〉

(iii)

≤ v2
t + s2

t c
2
2(1 + α)2v2

t − stc2v
2
t + 2stc2αv

2
t

(iv)

≤ v2
t

(
1 + 4s2

t c
2
2 + 2stc2α− stc2

)
(v)
= v2

t

(
1 + 4s2

t c
2
2 − stc2/2

)
(v)
= v2

t

(
1− st

(c2

2
− 4stc2

))
= v2

t

(
1− c2

2

64c2

)
.

In the above display,

• (i) uses the fact that ‖gt‖22 ≤ c2v2
t and the fact that ‖gt − g̃t‖2 ≤ α‖gt‖2.

• (ii) uses the fact that due to the local quadratic behavior (under the event Ω0) of the function f in the near
optimal region as described in Claim 1, we have

f(x∗) ≤ f(zt) + 〈gt, x∗ − zt〉 −
c2

2
v2
t

⇒ 〈gt, zt − x∗〉 ≤ f(zt)− f(x∗)− c2

2
v2
t ≤ 0− c2

2
v2
t ,

which implies that 2st〈zt − x∗, gt〉 ≤ −stc2v
2
t .

• (iii) uses the Cauchy-Schwarz inequality, the fact that ‖gt − g̃t‖2 ≤ α‖gt‖2 and the bound ‖gt‖2 ≤ c2vt.

• (iv) simply bounds (1 + α)2 with 4, since α ≤ 1.

• (v) uses the fact that the choice of α = c2/4c2 implies that 2αc2 = c2/2, which means that 2stc2α− stc2 =
−stc2/2.

• (v) follows by plugging in the value of st = c2/16c2.

B.4 Proof of Lemma 5

This result follows from a combination of Lemma 3 and Lemma 4. More specifically, recall that Z2,1 =
{z1, z2, . . . , zN1

} for some N1 ≥ 1. Then to show the required result, it suffices to prove that N1 = O (log n),
because this along with the fact that the total contribution of each zi to R2,1 is O (d log n) (Lemma 3) implies
the required O

(
d(log n)2

)
bound.

Now, Lemma 4 tells us that ‖zi+1 − x∗‖22 ≤ C‖zi − x∗‖22 where C =
(

1− c2
2

64c2

)
< 1. Repeated application of this

implies that ‖zN1
− x∗‖22 ≤ CN1−1‖z1 − x∗‖22 ≤ CN1−1ρ2

0. Furthermore, by the definition of the set Z2,1 we must

have ‖zN1
− x∗‖22 ≥ 1/(c2n). Together, these two conditions imply that N1 ≤ 1 +

log(ρ20c2n)
log(1/C) + 1 = O (log n). This

completes the proof.
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