Significance of Gradient Information in Bayesian Optimization

Shubhanshu Shekhar
ECE Department, UCSD
shshekha@eng.ucsd.edu

Tara Javidi
ECE Department, UCSD
tjavidi@eng.ucsd.edu

Abstract

We consider the problem of optimizing a function \(f : [0, 1]^d \mapsto \mathbb{R} \) with the assumption that \(f \) is a sample from a zero-mean Gaussian Process (GP)\(^1\) with a covariance function \(K \). The agent can access the unknown objective function \(f \) through an oracle, which takes as input any point \(x \in \mathcal{X} \) and returns a value \(u \) in some space \(\mathcal{U} \), which provides some local information (Nesterov, 2013 § 1.1.2) about \(f \) around \(x \). The most commonly used oracle in Bayesian Optimization (BO) is the Zeroth-Order-Oracle (ZOO), which returns a noisy function evaluation at the queried point, i.e., \(u(x) = f(x) + \eta \in \mathbb{R} \). A relatively less considered oracle is the First-Order-Oracle (FOO) which returns both noisy function evaluation and noisy gradient values, i.e, \(u(x) = (f(x) + \eta, \nabla f(x) + \xi) \in \mathbb{R}^{d+1} \).

Given a query budget of \(n \) samples and the oracle, the goal of an agent in BO is to design an adaptive sampling strategy \(\mathcal{A} \) to efficiently learn about the global maximizer \(x^* \) of \(f \). An adaptive (non-randomized) strategy \(\mathcal{A} \) consists of a sequence of mappings \((A_t)_{t=1}^n \) where \(A_t : (\mathcal{X} \times \mathcal{U})^{t-1} \mapsto \mathcal{X} \), which sequentially select a query point \(x_t \) at time \(t \) based on the history of actions and observations up to time \(t-1 \). The performance of the sampling strategy \(\mathcal{A} \) is usually measured by the cumulative regret \(R_n \), defined as

\[
R_n(\mathcal{A}, f) = \sum_{t=1}^{n} f(x^*) - f(A_t(x_{[1:t-1]}, u_{[1:t-1]})).
\]

1 Introduction

We consider the problem of optimizing a function \(f : \mathcal{X} = [0, 1]^d \mapsto \mathbb{R} \) with the assumption that \(f \) is a sample from a zero-mean Gaussian Process (GP)\(^1\) with a covariance function \(K \). The agent can access the unknown objective function \(f \) through an oracle, which takes as input any point \(x \in \mathcal{X} \) and returns a value \(u \) in some space \(\mathcal{U} \), which provides some local information (Nesterov, 2013 § 1.1.2) about \(f \) around \(x \). The most commonly used oracle in Bayesian Optimization (BO) is the Zeroth-Order-Oracle (ZOO), which returns a noisy function evaluation at the queried point, i.e., \(u(x) = f(x) + \eta \in \mathbb{R} \). A relatively less considered oracle is the First-Order-Oracle (FOO) which returns both noisy function evaluation and noisy gradient values, i.e, \(u(x) = (f(x) + \eta, \nabla f(x) + \xi) \in \mathbb{R}^{d+1} \).

Given a query budget of \(n \) samples and the oracle, the goal of an agent in BO is to design an adaptive sampling strategy \(\mathcal{A} \) to efficiently learn about the global maximizer \(x^* \) of \(f \). An adaptive (non-randomized) strategy \(\mathcal{A} \) consists of a sequence of mappings \((A_t)_{t=1}^n \) where \(A_t : (\mathcal{X} \times \mathcal{U})^{t-1} \mapsto \mathcal{X} \), which sequentially select a query point \(x_t \) at time \(t \) based on the history of actions and observations up to time \(t-1 \). The performance of the sampling strategy \(\mathcal{A} \) is usually measured by the cumulative regret \(R_n \), defined as

\[
R_n(\mathcal{A}, f) = \sum_{t=1}^{n} f(x^*) - f(A_t(x_{[1:t-1]}, u_{[1:t-1]})).
\]

Since FOO provides additional information to the agent, it is natural to expect improvement in the achievable cumulative regret under FOO in comparison to ZOO. Some existing works in literature, such as Wu et al. (2017a) and Prabuchandran et al. (2020), have empirically demonstrated benefits of BO algorithms which incorporate gradient information in their execution. However, to the best of our knowledge, no prior work

\(^1\)A related problem, not considered here, called agnostic GP bandit considers this problem in a non-Bayesian setting where \(f \) is a fixed but unknown element of an RKHS.
in literature quantifies the possible reduction in cumulative regret with FOO access. The main contribution of our paper is to provide a lower bound on the reduction in regret that is possible with ZOO access. We do this in two steps: \textit{first}, we establish the fundamental limit of achievable regret with ZOO for all values of d, and \textit{second} we design an algorithm with FOO access which, under some additional prior information, incurs much smaller regret.

We provide an overview of the results in Sec. 1.1 and discuss some relevant background in Sec. 1.2.

1.1 Overview of Results

Our main contributions are:

- In the first part of the paper (Sec. 3), we focus on establishing the limits of the achievable regret of any algorithm with ZOO. We begin by noting in Prop. 1 that the reduction to binary testing approach of Scarlett (2018) (for $d = 1$) can be directly used to obtain a lower bound on R_n of $\Omega(\sqrt{n})$ for all $d \geq 1$. This result however does not capture the conjectured exponential scaling of R_n with d by Scarlett (2018). We rectify this in Theorem 1 by deriving an algorithm-independent lower bound on R_n with ZOO access matching the conjectured order $\Omega(\sqrt{2^d n})$. This result relies on a novel analysis and approach which relates the regret of the BO problem to an appropriately defined multi-armed bandit (MAB) problem, and adapts the lower bounding techniques for MABs to obtain the final result.

- In Sec. 4 we focus on quantifying the possible gain in performance, beyond the limits established in Sec. 3 when the noisy gradient information is also available to the agent. To do so, we propose an algorithm using FOO access, referred to as AlgFOO. We show that under certain technical assumptions (formally stated in Sec. 2.3), AlgFOO can achieve an upper bound on the cumulative regret of $\mathcal{O}(d(\log n)^2)$ (Theorem 2 and Corollary 1). To the best of our knowledge, this is the first result which formally characterizes the significant benefits of using gradient information in Bayesian Optimization.

1.2 Background

In this section we discuss existing results in literature which provide the background context for our results.

Bayesian Optimization. As mentioned earlier, Bayesian Optimization (BO) refers to the \textit{model based sequential optimization} of a black-box function, in which usually a Gaussian Process (GP) is used to model the function. The prior information about the unknown function is encoded by imposing appropriate restrictions on the kernel (or covariance function) K. Most BO algorithms usually alternate between these two steps: (i) update the model of the function (i.e., GP posterior) based on the data observed, and (ii) use the updated model to guide the design of the next query point, which is in some sense most informative about the maximizer x^*. The informativeness of a candidate point $x \in X$ in step (ii) above is usually quantified via an \textit{acquisition function}. The most commonly used acquisition function is the UCB acquisition function which was proposed and analyzed by Srinivas et al. (2012). Other acquisition functions include the Expected Improvement (EI), Probability of Improvement (PI) and Entropy Search (Hennig and Schuler 2012 Wang and Jegelka 2017). An alternative approach is taken by the Thompson Sampling algorithm of Russo and Van Roy (2014) where the query points are drawn randomly with the probability that they are optimal. For a detailed discussion of various aspects of BO, see the surveys by Brochu et al. (2010) and Shahriari et al. (2015).

Lower Bounds. The algorithms mentioned above (and some others in literature) have guarantees on their cumulative regret of the form $\mathcal{O}(\sqrt{n \log n})$. However, in the absence of corresponding algorithm-agnostic lower bounds, it is not clear whether the existing regret bounds are optimal or they can be improved further. To the best of our knowledge, only Grünewälder et al. (2010) and Scarlett (2018) present lower bounds on the regret for BO, under some restrictions. Grünewälder et al. (2010) derived a worst case lower bound on the \textit{simple regret} by constructing specific hard Gaussian Process. More relevant to our work, for $d = 1$ case, Scarlett (2018) derived $\Omega_\alpha(\sqrt{n})$ lower bound on the average cumulative regret (over two randomly shifted GPs) and also proposed an algorithm with $\mathcal{O}(\sqrt{n})$ upper bound. The lower bound technique of Scarlett (2018) for $d > 1$ doesn’t capture the conjectured exponential dependence on d; our first contribution fills this gap in literature by deriving algorithm-independent lower bounds of $\Omega(2^{d/2} \sqrt{n})$ for all $d \geq 1$.

For the non-Bayesian variant of this problem (where f is assumed to lie in the RKHS of kernel K), there exist algorithm-independent lower bounds on the regret with ZOO access in the noise-less setting (Bull 2011) as well as in the noisy case (Scarlett et al. 2017 Cat and Scarlett 2020). However, the techniques used in obtaining those results are not directly applicable in the fully Bayesian framework considered in this paper.

BO algorithms using derivatives. The above algorithms only utilize the zeroth order information about the objective function. Surprisingly, unlike other continuous optimization problems (such as convex op-
timization), there are very few works in BO literature which incorporate gradient information about \(f \) to guide the search for the optimizer. \cite{Wu:2017} proposed a derivative-based knowledge gradient algorithm and proved its asymptotic consistency and one-step Bayes optimality. \cite{Wu:2017} exploited the first and second order derivative information for improved posterior inference, and applied it to BO and Bayesian Quadrature problems. Both these works also empirically demonstrated the benefits of incorporating gradient information on several benchmark functions. Some other works that use derivative information in BO are \cite{Osborne:2009}, who exploited the derivatives for better conditioning of covariance matrix and \cite{Lizotte:2008}, who empirically studied the variants of EI and PI algorithms with derivative information. More recently, \cite{Prabuchandran:2020} proposed a derivative-based knowledge gradient algorithm which exploits the fact that the gradient vanishes at the optimum, and empirically demonstrated its improved performance. However, to the best of our knowledge, no attempts have been made to provably quantify the improvement in regret that is achievable when the agent is given access to FOO, even in the simplest cases. Our second contribution addresses this issue and shows that there exists an algorithm with FOO, that can achieve a regret of \(O(d(\log n)^2) \) under some technical assumptions stated in Section 2.2.3, greatly improving upon the lower bound with \(\Omega(\sqrt{n}) \).

2 Preliminaries

In this section, we fix the notations used in Sec. 2.1, introduce some definitions in Sec. 2.2 and formally state and discuss all the assumptions in Sec. 2.3.

2.1 Notations

We denote by \(f : \mathcal{X} \rightarrow \mathbb{R} \) the objective function to be maximized, and set the domain \(\mathcal{X} = [0, 1]^d \). We endow the domain with the Euclidean norm \(\| x \| = \| x \|_2 = \sqrt{\sum_{i=1}^d x_i^2} \) and use \(\mathcal{X}^0 \) and \(\partial \mathcal{X} \) to represent the interior and boundary of \(\mathcal{X} \) respectively. Furthermore, for any subset \(A \) of \(\mathcal{X} \) and any \(x \in \mathcal{X} \), we use \(\| x - A \| \) to denote the distance of \(x \) from \(A \), i.e., \(\inf_{z \in A} \| x - z \| \). Also, for any \(x, z \in \mathcal{X} \) we use \(\langle x, z \rangle \) to denote the usual inner product, i.e., \(\sum_{i=1}^d x_i z_i \). For any \(x \in \mathcal{X} \) and \(r > 0 \), we use \(B(x, r) \) to denote the radius \(r \) open-ball around \(x \), i.e., \(B(x, r) = \{ z \in \mathcal{X} : \| z - x \| < r \} \). For square matrices \(M \), we use \(\| M \| \) to represent the spectral norm.

We assume that \(f \) is a sample from a zero mean Gaussian Process denoted by \(\mathcal{GP}(0, K) \), where \(K : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) is the kernel (or covariance function). In this paper, we restrict ourselves to stationary kernels, i.e., kernels which satisfy \(K(x, z) = K(x - z) \) for all \(x, z \in \mathcal{X} \).

For a positive integer \(m \), we use \([m] \) to denote the set \(\{1, 2, \ldots, m\} \). Furthermore, for any finite set \(S \), we use \(\text{Uni}(S) \) to denote the uniform random variable taking values in \(S \). Finally, we will use the notation \(\mathcal{M}(L, l, \sigma, \kappa) \) to represent a \((L + 1) \) armed multi-armed bandit problem with distributions \((p_1, p_2, \ldots, p_{L+1}) \) with \(p_i \sim N(1/2 + \kappa, \sigma^2) \) if \(i = l \) and \(p_i \sim N(1/2, \sigma^2) \) otherwise.

2.2 Definitions

We begin by recalling the definition of Gaussian Processes (GPs).

Definition 1 (GP). A zero mean Gaussian Process \(\mathcal{GP}(0, K) \) indexed by a set \(\mathcal{X} \) is a collection of random variables \(\{Z_x : x \in \mathcal{X}\} \) such that for any finite \(S \subset \mathcal{X} \), the random vector \(\{Z_x : x \in S\} \) is distributed as \(N(0, C_S) \) with covariance matrix \(C_S = [K(x, z)]_{x, z \in S} \).

If \(f \sim \mathcal{GP}(0, K) \) and given noisy \(\text{ZOO} \) observations \(\bar{y}_S = (y_1, \ldots, y_l) \) at points in \(S = \{x_1, \ldots, x_l\} \), with the noise \(\eta \sim N(0, \sigma^2) \), the posterior distribution over \(f \) given \(\{x_i, y_i\}_{i=1}^l \) is again a GP with posterior mean and variance given by

\[
\begin{align*}
\mu_t(x) &= K_t(x)^T (C_t + \sigma^2 I_t)^{-1} \bar{y}_S, \\
\sigma_t^2(x) &= K(x, x) - K_t(x) (C_t + \sigma^2 I_t)^{-1} K_t(x),
\end{align*}
\]

where \(K_t(x) = [K(x, x_1), \ldots, K(x, x_l)]^T \), \(C_t = [K(x_i, x_j)]_{i, j \leq t} \) and \(I_t \) is the \(t \times t \) identity matrix. In addition, under some smoothness assumptions on \(K \), the derivative of \(f \) is also a GP and its posterior (jointly with \(f \)) can also be computed in a similar manner. The reader is referred to \cite{Williams:2006} § 9.4 for further details.

Next, we formally introduce the \(\text{ZOO} \) and \(\text{FOO} \) oracles used in this paper.

Definition 2 (Zeroth-Order-Oracle (ZOO)). The zeroth order oracle \((\text{ZOO}) \) takes as input any point \(x \) in the domain \(\mathcal{X} \), and returns \(y = f(x) + \eta \), where \(\eta \sim N(0, \sigma^2) \). The noise \(\eta \) for different calls to the oracle is assumed to be independent.

Definition 3 (First-Order-Oracle (FOO)). The first order oracle \((\text{FOO}) \) takes as input any point \(x \) in the domain \(\mathcal{X} = [0, 1]^d \), and returns \((y, y') = (f(x) + \eta, g(x) + \xi) \) where \(g(x) = \nabla f(x) \), \(\eta \sim N(0, \sigma^2) \) and \(\xi \sim N(0, \sigma^2 I_d) \) where \(I_d \) is the identity matrix.

2.3 Assumptions

We now state the assumptions on \(K \) required to derive our results. These assumptions generalize those used
Significance of Gradient Information in Bayesian Optimization

used in the derivation of lower bound in one dimension by Scarlett (2018) to higher dimensions.

Assumption 1. We assume that \(f \sim GP(0, K) \) where \(K \) is stationary, i.e., \(K(x_1, x_2) = K(x_1 - x_2) \) for all \(x_1, x_2 \in \mathcal{X} \) and also, \(K(x, x) = K(0) \leq 1 \) for all \(x \in \mathcal{X} \). Furthermore, we assume that the observation noise is distributed as \(N(0, \sigma^2) \) for 200 and \(N(0, \sigma^2 I_{D+1}) \) for 300 where \(I_m \) is the \(m \times m \) identity matrix for \(m \geq 1 \).

The stationarity and boundedness assumptions on the kernel \(K \) are standard in the theoretical Bayesian Optimization literature, while assuming the same noise variance \(\sigma^2 \) for the function values as well as all the partial derivatives is a matter of notational convenience. Our results will easily carry over to the case where the observation noise is \(N(0, \Lambda) \) for some diagonal matrix \(\Lambda \) with non-negative entries.

Assumption 2. For some \(\delta_0 > 0 \), with probability at least \(1 - \delta_0 \), \(f \) has a unique maximizer \(x^* \) and \(f(x^*) \geq f(\check{x}) + c_0 \) for some \(c_0 > 0 \) and \(\check{x} \) is any other local maximum of \(f \). Furthermore, we assume that \(f \) is twice differentiable and \(|f(x)| \leq c_0, \|\nabla f(x)\| \leq \bar{c}_1 \) and \(\|\nabla^2 f(x)\| \leq \bar{c}_2 \) for all \(x \in \mathcal{X} \).

As mentioned by Scarlett (2018) and De Freitas et al. (2012), the existence of unique \(x^* \) occurs w.p. 1 in most cases. Furthermore, as shown in Ghosal et al. (2006) Theorem 5), the second-order differentiability of \(f \) can be almost surely satisfied by imposing smoothness conditions on the covariance function \(K \). Finally, due to the compactness of the domain \(\mathcal{X} \), we can obtain high probability bounds on the suprema of the norms of the first and second order derivatives. Thus the term \(\delta_0 \) in the above assumption can be made arbitrarily small with suitable choices of the constants \(c_0, \bar{c}_1, \bar{c}_2 \) and \(c_0 \).

Assumption 3. For some \(\delta_1 > 0 \) and \(\rho_0 \in (0, 1/2) \), with probability at least \(1 - \delta_1 \) the maximizer \(x^* \) satisfies \(\|x^* - \partial\mathcal{X}\| \geq \rho_0 \), i.e., with probability at least \(1 - \delta_1 \), the maximizer lies \(\rho_0 \) distance away from the boundary of the domain, \(\partial\mathcal{X} \).

Remark 1. Assumption 3 requires the maximizer to lie strictly within the interior of the domain \(\mathcal{X} \). Unlike Assumption 2, the probability of satisfying this condition (\(\delta_1 \)) cannot, in general, be made arbitrarily small. There exist cases, such as when the length-scale of the GP kernel is large as compared to the diameter of \(\mathcal{X} \), when \(\delta_1 \) is large and the maximizer \(x^* \) lies on or close to the boundary \(\partial\mathcal{X} \) (Scarlett 2018). However, in the case of Bayesian Optimization problems, the algorithm designer also wields significant control over the design of the input space \(\mathcal{X} \), and can often ensure that the maximizer \(x^* \) lies in the interior of \(\mathcal{X} \) by suitably selecting the input ranges or by applying appropriate input transforms. An example of input transformations is the cylindrical-transformation proposed by Oh et al. (2018), which been used to address the so-called boundary issue (Swersky 2017 § 4.4.1) and prevent algorithms from sampling too many points near \(\partial\mathcal{X} \).

To summarize the assumptions, we introduce the following definition.

Definition 4 (Event \(\Omega_0 \)). We will state the results of our paper conditioned on the event \(\Omega_0 \) under which Assumptions 2 and 3 are assumed to occur. Note that the probability of the event \(\Omega_0 \) is at least \(1 - \delta_0 - \delta_1 \).

Finally, as an immediate consequence of the assumptions, we can state the following result which says that under the event \(\Omega_0 \), the samples of the GP have locally quadratic behavior in the near-optimal region.

Claim 1. There exist \(0 < \tilde{c}_2 \leq \bar{c}_2 \) such that the following are true under the event \(\Omega_0 \):

\[
\begin{align*}
 f(x) + \langle g(x), z - x \rangle - \frac{\tilde{c}_2}{2} \|z - x\|^2 &\leq f(z) \\
 f(x) + \langle g(x), z - x \rangle - \frac{\bar{c}_2}{2} \|z - x\|^2 &\geq f(z)
\end{align*}
\]

for all \(x, z \in B(x^*, \rho_0) \). In particular, by setting \(x = x^* \) we get

\[
\frac{\tilde{c}_2}{2} \|z - x^*\|^2 \leq f(x^*) - f(z) \leq \frac{\bar{c}_2}{2} \|z - x^*\|^2
\]

for all \(z \in B(x^*, \rho_0) \).

Proof. Since \(x^* \) is the maximizer, by the second-order-necessary-condition we know that \(\nabla^2 f(x^*) \) is a negative semi-definite matrix. This along with the fact that the Hessian is almost sure non-singular at \(x^* \) (De Freitas et al. 2012) implies that it is in-fact strictly negative-definite. Also due to the continuously differentiable condition in Assumption 3, we can find a \(\rho_0 > 0 \) and \(\tilde{c}_2 > 0 \) such that \(\lambda_{\min}(\nabla^2 f(x)) \leq -\tilde{c}_2 \) for all \(x \in B(x^*, \rho_0) \). Finally we can update \(\rho_0 \) to \(\min\{\rho_0, \rho_0'\} \) if needed to get the required statement.

3 Lower Bound on Regret with 200

We first revisit Scarlett (2018) to restate/obtain a \(\Omega(\sqrt{d/n}) \) lower bound on the regret with 200 access in Prop. 1 via a direct extension of the binary hypothesis testing technique of Scarlett (2018) to higher dimensions. This result serves to demonstrate the limitations of the binary testing approach in higher dimensions, since it does not capture the scaling of the regret w.r.t. the dimension \(d \). We then obtain improved \(\Omega(2^{d/2}/\sigma\sqrt{n}) \) lower bound in Theorem 1 by using our novel approach of mapping the BO problem to an appropriately constructed multi-armed bandit problem.
Proposition 1. Consider a problem of optimizing a black-box function \(f \sim \mathcal{GP}(0, K) \) with 200 access and additive observation noise \(\eta \sim N(0, \sigma^2) \). If the kernel \(K \) satisfies Assumptions 1 and 2 and \(1 - \delta_0 - \delta_1 > 0 \), then for any adaptive optimization scheme \(\mathcal{A} \), we have
\[
\mathbb{E}[R_n(\mathcal{A}, f)] \geq C'_1 (1 + \sqrt{n}) \tag{3}
\]
where \(C'_1 \) is a constant which does not depend on the dimension \(d \).

Remark 2. The proof of Prop. 1 as well as the stronger lower bound in Theorem 1 proceed by constructing a collection of randomly shifted GPs, all of which when restricted to the index set \(\mathcal{X} \), are distributed as \(\mathcal{GP}(0, K) \) (here we use the shift invariance of \(K \)). As a result, the expectation in Prop. 1 as well as in Theorem 1 is w.r.t. the noise, the GP as well as the random shifts.

Proof Outline of Prop. 1. Our result follows from a generalization of the above-described proof technique used in Scarlett (2018). We present an outline of the steps here for completeness.

- Suppose \(\tilde{f} \sim \mathcal{GP}(0, K) \) is a GP indexed by the expanded domain \(\mathcal{X} := [-\Delta, 1 + \Delta]^d \). Next, we introduce \(\tilde{f} \) restricted to \(\mathcal{X} \) as \(f_0 \), i.e., \(f_0 = \{ \tilde{f}(x) : x \in \mathcal{X} \} \). Assume that the sample \(f_0 \) is revealed to the learner. This is the so called genie argument Scarlett (2018), which informally says that any additional information will only result in a weaker bound, and hence can be used in the lower bound construction.

- Next, we introduce two random variables \(W \sim \text{Unif}(\{d\}) \) and \(V \sim \text{Unif}(\{1, \ldots, 1\}) \), independent of everything else. Let \(\epsilon_w \in \{0, 1\}^d \) for \(w \in [d] \) denote the standard normal unit vector in the \(w^{th} \) coordinate, and define \(f_{WV} := \tilde{f}(x + V \Delta \epsilon_W) \) for \(x \in \mathcal{X} \). Due to the translation invariance of the kernel \(K \), \(f_{WV} \) is also distributed as \(\mathcal{GP}(0, K) \), over the index set \(\mathcal{X} \) for all realizations of \(W, V \).

- Now, with \(f_0 \) revealed and conditioned on \(W \), following Scarlett (2018) Lemma 5) we can relate the regret of any BO algorithm \(\{\mathcal{A}\} \) to the probability of error in the binary hypothesis test for the true value of \(v \). This allows us to obtain the bound \(\mathbb{E}[R_n(\mathcal{A})] \geq C'_1 \sqrt{n} \) for any adaptive scheme \(\mathcal{A} \).

- Finally, taking another expectation with respect to the random variable \(W \) completes the proof.

As shown in Proposition 1 and as hinted in Scarlett (2018) § 5), the reduction to binary testing approach does not capture the \(d \) dependence on regret, and new techniques are needed to achieve an exponential dependence in \(d \) of the lower bound. In our next result, we present a new approach to obtain a tighter lower bound with exponential \(d \) dependence.

Theorem 1. Consider the problem of optimizing a black-box function \(f \sim \mathcal{GP}(0, K) \) with additive observation noise \(N(0, \sigma^2) \). Under the assumptions 1 and 2 and 200 access to \(f \), the cumulative regret of any adaptive scheme \(\mathcal{A} \) can be bounded as
\[
\mathbb{E}[R_n(\mathcal{A}, f)] \geq \sigma \sqrt{\frac{2^d n}{32}} \tag{4}
\]
if \(n \) is large enough (See (14) in Appendix A for exact condition).

The formal proof of this result is deferred to Appendix A. Here, we present a detailed outline of the proof and describe the key ideas involved.

Proof Outline of Theorem 1. Throughout this discussion we will use \(\tilde{\mathcal{X}} = [-\Delta, 1 + \Delta]^d \) for some \(\Delta > 0 \), \(\mathcal{Z} = \{-1, 1\}^d \). Suppose the elements of \(\mathcal{Z} \) are enumerated as \(\{z_1, z_2, \ldots, z_L\} \) for \(L = 2^d \) in some fixed order. Introduce the random variable \(V \sim \text{Unif}(\{1, 2, \ldots, L\}) \) which is drawn independent of all other quantities.

1. We begin with the GP \(\tilde{f} \sim \mathcal{GP}(0, K) \) indexed by the larger set \(\tilde{\mathcal{X}} \). Next, for a value of \(l \in [L] \), we define \(f_l = \{ \tilde{f}(x + z_l \Delta) : x \in \tilde{\mathcal{X}} \} \). Note that due to the translation invariance of the kernel \(K \), all of \(\{f_l\}_{l \in [L]} \) are distributed according to \(\mathcal{GP}(0, K) \) on the index set \(\mathcal{X} \). Finally, for the random variable \(V \) introduced above, we define \(f = f_V \).

2. Suppose \(x_l^* \) is the maximizer of the function \(f_l \) for \(l \in [L] \). Then due to the local quadratic behavior of \(f_0 \) under Assumption 3, we can show that if \(f_l(i) > f_l(x_l^*) \), then \(f_m(i) > f_m(x_m^*) \), for \(m \in [L] \) and \(x_m^* = x_l^* \). Next introduce the sets \(\mathcal{X}_l = B(x_l^*, \Delta) \) for \(l \in [L] \), and \(\mathcal{X}_{l+1} = \mathcal{X} \setminus (\cup_{l'=1}^{l-1} \mathcal{X}_{l'}) \) and observe that for any algorithm \(\mathcal{A} \), the regret given that \(V = l \) is lower bounded as follows:
\[
R_n(\mathcal{A}, f_l) \geq \sum_{l' \in [L] \setminus \{l\}} c_2 \sum_{t : t \in \mathcal{X}_{l'}} (\|z_l - z_t\|_2^2) \Delta^2 + \sum_{t : t \in \mathcal{X}_{L+1}} c_2 \Delta^2.
\]

3. To each instance of a GP bandit problem with \(V = l \), we can associate a multi-armed bandit problem with \((L + 1) \) arms, denoted by \(\mathcal{M}(L, l, \sigma, c_2 \Delta^2) = (p_1, p_2, \ldots, p_{L+1}) \) with \(p_i \sim N(0, \sigma^2) \) for \(i \neq l \) and \(p_l \sim N(c_2 \Delta^2, \sigma^2) \). Furthermore, for any GP bandits algorithm \(\mathcal{A} \), we can associate an algorithm for \(\mathcal{M}(L, l, \sigma, c_2 \Delta^2) \), denoted by \(\mathcal{A}^{(L)} \) such that if the
strategy \mathcal{A} results in a point $x_t \in \mathcal{X}$, then $\mathcal{A}^{(L)}$ plays the arm l' of $\mathcal{M}(L, l, \sigma, c_2 \Delta^2)$ (also referred to as \mathcal{M}_t). Denoting by $\mathcal{R}_n^{(L)}$ the cumulative regret of the multi-armed bandit problem, we have the following relation:

$$\mathcal{R}_n (\mathcal{A}, f_t) \geq \mathcal{R}_n^{(L)} (\mathcal{A}^{(L)}, \mathcal{M}_t).$$

4. Finally, we show that for the $L + 1$ armed bandit problems $\mathcal{M}(L, V, \sigma, c_2 \Delta^2)$, we can lower bound the average regret with the term $\sqrt{\frac{nL\Delta^2}{32}}$ which completes the proof.

4 Improved Upper Bound on Regret with FOO

4.1 Algorithm with FOO access

Before describing the steps of our algorithm, we first assume that there exists an algorithm which achieves the optimal regret bound in n with ZOO access, i.e., $\mathcal{O}(\sqrt{n})$. One such algorithm can be constructed by a simple generalization of the algorithm of [Scarlett 2018] to dimensions larger than one.

Assumption 4. We assume that there exists an algorithm which uses only ZOO feedback, denoted by OptAlgZOO or \mathcal{A}_0, that for any $n \geq 1$, satisfies the following properties with probability at least $1 - 1/n$ for all $t \leq n$:

- It returns a region of the input space, denoted by $S_t \subset B(x^*, r_t)$ where the radius r_t is non-increasing with t, and

- The total regret incurred by the algorithm at any time t is $\mathcal{O}(\sqrt{t \log n})$.

We will refer to the above $1 - 1/n$ probability event as Ω_1.

With this assumption, we can now describe the steps of our proposed algorithm, AlgFOO, whose pseudo-code is in Algorithm 1.

Outline of Algorithm. The algorithm proceeds in two phases consisting of the following steps:

- In the first phase, we implement the OptAlgZOO algorithm for t_0 steps, where t_0 is large enough (more precise description of t_0 is in Sec. 4.3) to ensure that the active region returned by the algorithm is contained in the ball $B(x^*, \rho_0)$. Note that in this phase, the additional gradient information is utilized only to update the posterior and not directly the query point selection strategy.

- Next, in the second phase we exploit the locally quadratic behavior of the objective function f in the vicinity of the maximizer x^* to perform a version of a gradient ascent algorithm which proceeds in two alternating steps: (i) call the RepeatQuery subroutine at the current point x_t to repeatedly query the FOO at x_t in order to construct a sufficiently accurate estimate of the true gradient at that point, and (ii) perform a gradient-ascent step using the approximate gradient returned by the RepeatQuery subroutine.

Algorithm 1: AlgFOO (\mathcal{A}_i).

Input: $n, K, \xi_1, \xi_2, \xi_3, \xi_4, \Delta, \rho_0,\alpha$.

1. Initialize: $t = 1$, $n_e = 0$, $S_t = \mathcal{X}$, $\alpha = \frac{\xi_2}{(4 \xi_3)}$.

 /* Phase 1: Zoom into the near-optimal region using OptAlgZOO */

2. while $S_t \cap \partial \mathcal{X} \neq \emptyset \space OR \space \text{diam}(S_t) > \rho_0$ do

3. Run OptAlgZOO to update S_t

4. $t \leftarrow t + 1$

end

/* Phase 2: Perform gradient ascent with uncertain gradients */

6. $x_t \sim \text{Unif}(S(\rho_0, \delta))$

7. while $t \leq n$ do

8. $t, g_t, \mu_t, \sigma_t \leftarrow \text{RepeatQuery}(x_t, t, \mu_t, \sigma_t, \alpha)$

9. $x_t \leftarrow x_t + \tau_t g_t$

10. end

Output: x_n

Algorithm 2: RepeatQuery Subroutine

Input: $x, t, \mu_t(\cdot), \sigma_t(\cdot), \alpha$.

1. Initialize: $\tau = 0$, $\text{flag} = \text{True}$, $b = 2\sqrt{d}/\alpha$.

2. while flag do

3. Query FOO at x

4. $t \leftarrow t + 1, \quad \tau \leftarrow \tau + 1$

5. Update $\mu_t(\cdot), \sigma_t(\cdot)$.

/* Check Stopping condition */

6. Set $u_{t,i} = \mu_{t,i}(x) + \beta_n \sigma / \sqrt{T}$, and $l_{t,i} = \mu_{t,i}(x) - \beta_n \sigma / \sqrt{T}$

7. if $\max_{1 \leq i \leq d} (l_{t,i}, -u_{t,i}) > 2b\beta_n \sigma / \sqrt{T}$ then

8. $\text{flag} = \text{False}$

end

10. $\tilde{g}_t = [\mu_{t,1}(x), \ldots, \mu_{t,d}(x)]^T$

Output: $t, \tilde{g}_t, \mu_t(\cdot), \sigma_t(\cdot)$

4.2 Regret Bound for AlgFOO

We begin by stating a concentration result for the function and derivative values at the points queried by the algorithm.

Proposition 2. Suppose the first phase of the algorithm AlgFOO ends after \(t_0 \leq n \) rounds, and the algorithm queries FOO at the points \(\{x_i : t_0 + 1 \leq t \leq n\} \). Define the event \(\Omega_2 \) under which we have \(|\mu_{i,0}(x_i) - f(x_i)| \leq \beta_1 \sigma_{i,0}(x_i) \) and \(|\mu_{i,t}(x_i) - g_i(x_i)| \leq \beta_2 \sigma_{i,t}(x_i) \) for all \(1 \leq i \leq d \) and \(t_0 + 1 \leq t \leq n \). Then we have
\[
P(\Omega_2) \leq 1/n, \quad \beta_t = \sqrt{2 \log \left(\frac{6n t^2}{(d+1)\pi^2} \right)}.
\]

Proof Outline of Prop. 2: The result follows from the following two facts: (1) \(x_t \) is a measurable function of the history of observations and actions up to and including time \(t - 1 \) for all \(t \geq N_0(\rho_0, \delta) + 1 \) and (2) the conditional distribution of \(\{f(x_1), g_1(x_1), \ldots, g_d(x_1)\} \) is a multivariate Gaussian (here \(g(x) = [g_1(x), \ldots, g_d(x)] \) denotes the gradient of \(f \) at \(x \)). Combining the two in a manner similar to [Srinivas et al. 2012, Lemma 5.6] gives us the result. \(\square \)

We can now state the following bound on the regret incurred by AlgFOO.

Theorem 2. Suppose Assumptions 1, 2, 3, and 4 hold. Then, under the event \(\Omega = \Omega_0 \cap \Omega_1 \cap \Omega_2 \), which occurs with probability at least \(1 - \delta_0 - \delta_1 - 1/2n \), there exists an \(N_{\Omega_0} < \infty \) (depending on the event \(\Omega_0 \)) introduced in Def. 4 such that for all \(n \geq N_{\Omega_0} \), the algorithm AlgFOO achieves the following bound:
\[
\mathcal{R}_n(A_1) = \mathcal{O} \left(d \log(n)^2 \right) \quad (5)
\]

Remark 3. The term \(N_{\Omega_0} \) in the above result is the minimum sampling budget which ensures that the regret incurred by phase 2 of AlgFOO, which as we show in the proof of Theorem 2, is \(\mathcal{O} \left((\sqrt{d} \log(n))^2 \right) \), dominates the corresponding regret of the first phase, which is \(\mathcal{O} \left(\sqrt{t_0 n \log(n)} \right) \), where \(t_0 \) is the (random) time at which phase 1 stops. A sufficient condition for this is that \(n \geq N_{\Omega_0} = \exp(t_0) \). Since the distance of \(x^* \) from the boundary of \(\mathcal{X} \) is at least \(\rho_0 \) by Assumption 3, the term \(t_0 \) can be set to \(\min \{ t \geq 1 : r_t < \rho_0/2 \} \), where \(r_t \) was introduced in Assumption 4.

As mentioned in Remark 1, the term \(\delta_0 \), unlike \(\delta_1 \), can be made arbitrarily close to 0 by appropriate choice of the terms \(c_0, c_0, \tau_1 \) and \(\tau_2 \). In light of this, we can reformulate the result of Theorem 2 as follows.

Corollary 1. Conditioned on the 1 – \(\delta_1 \) probability event of Assumption 3 (i.e., \(\|x^* - \partial \mathcal{X}\| \geq \rho_0 \)), the regret incurred by AlgFOO satisfies \(\mathcal{R}_n(A_1) = \mathcal{O} \left(d \log(n)^2 \right) \) with high probability (i.e., at least \(1 - (2/n^2 + 6\delta_0/(1 - \delta_1)) \)).

Remark 4. The above corollary says that if we have the prior knowledge that the optimizer of the unknown function \(f \) lies away from the boundary of the domain, \(\partial \mathcal{X} \), then AlgFOO achieves a regret of the order \(\mathcal{O} \left(d \log(n)^2 \right) \). This prior knowledge is often available in the canonical BO application of Hyperparameter Optimization (HPO) of machine learning models. More specifically, in HPO problems, the experimenter has significant control over the choice of the search space \(\mathcal{X} \), and often designs \(\mathcal{X} \) with the goal of ensuring that \(x^* \) lies in the interior, as described in [Swersky 2017, §4.4.1]. For instance, in the hyperparameter tuning of a convolutional neural network (CNN), it is known that very small and very large choices of kernel size are sub-optimal, and hence the range of kernel size can be chosen to ensure that the optimal value lies in the interior. This suggests that in practical applications, the prior knowledge required for achieving the benefits of incorporating gradient information in BO is often available.

We end this section by stating the upper bound on the expected regret of AlgFOO.

Corollary 2. As an immediate corollary of Theorem 2 and Assumption 4, the expected regret of AlgFOO satisfies
\[
\mathbb{E}[\mathcal{R}_n(A)] = \mathcal{O} \left(d \log(n)^2 + \delta_1 \sqrt{n \log n} \right) \quad (6)
\]

Thus for the GPs for which the optimizer can be ensured to lie within the interior of the domain with probability at least \(1 - (\log n)^{2/3}/\sqrt{n} \) the overall regret of AlgFOO is \(\mathcal{O}(d \log(n)^2) \).

4.3 Proof Outline for Theorem 2

Suppose \(\mathcal{Z} = \{x_1, x_2, \ldots, x_n\} \) denotes the multiset of points queried by the algorithm \(A_1 \). This can be partitioned into \(\mathcal{Z}_1 \) and \(\mathcal{Z}_2 \), where \(\mathcal{Z}_1 \) is the multiset of points queried by \(\text{OptAlgFOO}(A_0) \) in the first phase and \(\mathcal{Z}_2 \) denotes the multiset of points queried by \(A_1 \) in the second phase, and the total regret incurred by AlgFOO can also be written accordingly as follows:
\[
\mathcal{R}_n(A_1) = \sum_{z \in \mathcal{Z}_1} f(x^*) - f(z) + \sum_{z \in \mathcal{Z}_2} f(x^*) - f(z).
\]

Throughout this proof, we assume that the event \(\Omega = \bigcap_{i=0}^{2} \Omega_i \) occurs. Recall that we have \(P(\Omega) \geq 1 - \delta_0 - \delta_1 - 2/n \).

We first present a bound on the term \(\mathcal{R}_1(1) \) since it is easier to handle. For this, we recall the stopping time \(t_0 \) and term \(N_{\Omega_0} \) defined as:
\[
t_0 = \min \{ t \geq 1 : r_t < \rho_0/2 \}, \quad N_{\Omega_0} = \exp(t_0).
\]

In the above display, \(r_t \) denotes the radius of the ball centered at \(x^* \), i.e., \(B(x^*, r_t) \), within which the active
set S_t returned by OptAlg200 in Assumption 1 lies. With these definitions we can state the bound on $R(1)$.

Lemma 1. Under the event Ω, if $n \geq N_{\Omega_0}$, then the regret incurred in the first phase, denoted by $R(1)$, is $O(\log n)$.

Proof. First note that due to Assumption 3, the optimizer x^* of any realization of the $GP(0,K)$ must lie in the interior and hence its distance from the boundary $\lVert x^* - \partial X \rVert_2$ is greater than ρ_0.

Next, we observe that the total number of rounds spent by AlgFOO in the first phase is upper bounded by t_0. This is due to the fact that at time t_0, since $S_{t_0} \subset B(x^*, r_{t_0})$, we have $S_{t_0} \cap \partial X = \emptyset$. Furthermore, since $r_{t_0} < \rho_0/2$, we also have $\text{diam}(S_{t_0}) < \rho_0$. Thus neither of the conditions on Line 2 of Algorithm 1 is satisfied, which implies that this while loop ends at some time $t \leq t_0$.

Finally, since by Assumption 1 the total regret incurred in first phase is $O(\sqrt{t_0 \log n})$, and that $n \geq N_{\Omega_0} \geq \exp(t_0)$ we get that $R(1) = O\left(\sqrt{\log n \log N_{\Omega_0}}\right) = O(\log n)$.

It remains to show that $R(2) = O(d(\log n)^2)$. To obtain this result, we proceed in the following steps:

- First we show, in Lemma 2, that the RepeatQuery subroutine returns a sufficiently accurate estimate of the true gradient $g(x)$ at some point x. More formally, that the approximate gradient $\tilde{g}_t(x)$ satisfies the property that $\lVert g(x) - \tilde{g}_t(x) \rVert \leq \alpha \cdot g(x)$ for $\alpha = L_2/\sigma_2$.

- Next, in Lemma 3 we show that if the RepeatQuery subroutine at some point $x \in Z_2$ halts at time t and with τ queries, then the total regret incurred (i.e., $\tau (f(x^*) - f(x))$) can be upper bounded by $O(\log n)$.

- Next, we partition Z_2 into $Z_{2,1}$ and $Z_{2,2}$ where $Z_{2,2} = \{z \in Z_2 : \lVert x^* - z \rVert \leq 1/\sqrt{\tau_2 n}\}$ and $Z_{2,1} = Z_2 \setminus Z_{2,2}$. Similarly, we can write $R(2) = R_{2,1} + R_{2,2}$, where $R_{2,i}$ is the contribution to $R(2)$ by points in $Z_{2,i}$ for $i = 1, 2$. The term $R_{2,2}$ is easy to bound, since by Assumption 1, we know that for any $z \in Z_{2,2}$ we have $f(x^*) - f(z) \leq \tau_2 \lVert x^* - z \rVert^2 \leq \tau_2/n \sigma_2$ which implies that $R_{2,2} \leq |Z_{2,2}|/n \leq 1$.

It remains to show that $R_{2,1} = O(d(\log n)^2)$. Suppose the unique points in $Z_{2,1}$ are denoted by $z_1, z_2, \ldots, z_{N_1}$. Then we proceed in three steps:

- First, from Lemma 3 we know that the regret at any z_i is upper bounded by $O(d(\log n)^2)$.

- Then, in Lemma 4 we show that after every gradient-ascent step (i.e., moving from z_i to z_{i+1}), the distance of the new point from the optimizer x^* shrinks at a geometric rate, i.e., $\lVert z_{i+1} - x^* \rVert \leq \left(1 - \frac{c_1}{64\epsilon^2}\right) \lVert z_i - x^* \rVert$.

- Finally, in Lemma 5 we show that $|Z_{2,1}| = N_1 = O(d(\log n)^2)$ because of the geometric shrinkage of the distance to the optimal proved in Lemma 4. This result, along with Lemma 3 implies that $R_{2,1} = O(d(\log n)^2)$.

- To summarize, under the $1 - \delta_0 - \delta_1 - 2/n$ probability event Ω, we can decompose the regret into $R_n = R(1) + R_{2,1} + R_{2,2}$. In Lemma 1 we showed that $R(1) = O(\log n)$ under the requirement on $n \geq N_{\Omega_0}$. In Lemma 3 we show that $R_{2,1} = O(d(\log n)^2)$, while the simple computation outlined above implies that $R_{2,2} = O(1)$. Together, these statements complete the proof of Theorem 2.

We now present the formal versions of the remaining steps of the proof outlined above.

Lemma 2. Suppose the RepeatQuery subroutine halts at time t with τ queries at a point x. Then the returned gradient estimate satisfies $\lVert g(x) - \tilde{g}_t(x) \rVert \leq \alpha \cdot g(x)$ under the event Ω (see Theorem 2), where $\alpha = L_2/\sigma_2$.

The proof of this result is in Appendix B.1. The previous proposition shows that the RepeatQuery subroutine indeed returns a ‘sufficiently accurate’ gradient estimate. In the next result, we show that the regret incurred by the RepeatQuery subroutine in the process of constructing this gradient estimate is not too large.

Lemma 3. Suppose a point x is evaluated τ times by the RepeatQuery subroutine before halting. Under the event Ω, the total regret accumulated, i.e., $\tau (f(x^*) - f(x))$ is $O(\log n)$.

The proof of this result is in Appendix B.2. In our next result, we show that every time performs the noisy gradient-ascent step (i.e., Line 11 of Algorithm 1), the distance of the new point from the optimizer x^* shrinks by at least a constant factor.

Lemma 4. Suppose the event Ω occurs. Then at some time t, AlgFOO performs the approximate gradient-ascent step to go from z_i to $z_{t+1} = z_i + s_t \tilde{g}_t$, we have

$$\lVert z_{t+1} - x^* \rVert^2 \leq \lVert z_t - x^* \rVert^2 \left(1 - \frac{c_1}{64\epsilon^2}\right).$$

The proof of this result is in Appendix B.3. Finally, we combine the previous two results to bound $R_{2,1}$.

Lemma 5. Under the event Ω, we have $R_{2,1} = O(d(\log n)^2)$. The proof of this result is in Appendix B.4.
4.4 Numerical Illustration

We now empirically compare the performance of a heuristic variant of AlgFOO (denoted by AlgFOO-h) against the GP-UCB baseline. Implementing the exact version of AlgFOO requires the knowledge of the constants c_1, r_1, c_2, r_2 and ρ_0, which may not be easy to obtain in practical problems. To address this, we consider the heuristic AlgFOO-h, which:

- implements the first phase of Algorithm 1 with a fraction $r \in (0, 1]$ of the budget,
- calls RepeatQuery a fixed number (denoted by reps) of times in the second phase, and
- uses a fixed step size s in Line 9 of Algorithm 1.

With these three changes, AlgFOO-h no longer depends on the above-mentioned parameters. However, this comes at the cost of losing the theoretical performance guarantees.

We compared the performance of AlgFOO-h algorithm with the GP-UCB algorithm of Srinivas et al. (2012) on two commonly used optimization benchmark functions: Himmelblau function and Booth function. In the experiments, we used three instances of AlgFOO-h:

- AlgFOO-h-1 with $(r, \text{reps}, s) = (0.6, 8, 0.0005)$,
- AlgFOO-h-2 with $(r, \text{reps}, s) = (0.6, 6, 0.0002)$,
- AlgFOO-h-3 with $(r, \text{reps}, s) = (0.6, 4, 0.0001)$.

For every objective function and algorithm pair, we ran 20 trials with a budget of $n = 100$ and report the performance in Table 1 (for Himmelblau function) and Table 2 (for Booth function). The results in the tables provide evidence for the fact that the FOO algorithms could lead to improved optimization performance on an average. However, we note that the heuristic FOO algorithms also demonstrated higher variability in performance over different trials as well as sensitivity to the choice of the hyperparameters (r, reps, s).

<table>
<thead>
<tr>
<th>Algo.</th>
<th>mean \mathcal{R}_n</th>
<th>median \mathcal{R}_n</th>
<th>std. \mathcal{R}_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP-UCB</td>
<td>1235.23</td>
<td>1206.18</td>
<td>104.81</td>
</tr>
<tr>
<td>AlgFOO-h-1</td>
<td>1108.86</td>
<td>993.57</td>
<td>429.58</td>
</tr>
<tr>
<td>AlgFOO-h-2</td>
<td>1057.29</td>
<td>890.32</td>
<td>422.32</td>
</tr>
<tr>
<td>AlgFOO-h-3</td>
<td>1011.61</td>
<td>877.09</td>
<td>407.20</td>
</tr>
</tbody>
</table>

Table 1: Performance of the algorithms on Himmelblau objective function.

<table>
<thead>
<tr>
<th>Algo.</th>
<th>mean \mathcal{R}_n</th>
<th>median \mathcal{R}_n</th>
<th>std. \mathcal{R}_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP-UCB</td>
<td>3304.62</td>
<td>2954.70</td>
<td>503.28</td>
</tr>
<tr>
<td>AlgFOO-h-1</td>
<td>2576.29</td>
<td>2287.72</td>
<td>1013.96</td>
</tr>
<tr>
<td>AlgFOO-h-2</td>
<td>2763.45</td>
<td>2074.64</td>
<td>1431.62</td>
</tr>
<tr>
<td>AlgFOO-h-3</td>
<td>1971.46</td>
<td>1616.14</td>
<td>588.01</td>
</tr>
</tbody>
</table>

Table 2: Performance of the algorithms on Booth objective function.

5 Conclusion and Future Work

In this paper we took the first step towards quantifying the improvement in regret (\mathcal{R}_n) that can be achieved in Bayesian Optimization when the agent has access to gradient information, in addition to the usual noisy function evaluations. To do this, we first derived algorithm-independent lower bound on \mathcal{R}_n with ZOO access for all $d \geq 1$. This result captures the exponential scaling of \mathcal{R}_n with dimension d, and relies on a novel approach which proceeds by connecting the regret of the BO problem to that of a certain multi-armed bandit problem. Next, we consider the case in which the agent has FOO access to f, and construct an algorithm which achieves a regret bound of $\mathcal{O}(d(\log n)^2)$ under the condition that the optimizer x^* lies in the interior of the domain. Together these two results imply that exploiting gradient information can be very beneficial in Bayesian optimization.

Our results in this paper open several questions for future work. First, it is interesting to investigate whether the lower bounding technique for ZOO used in Theorem 1 of this paper can be used to obtain tight lower bounds for related problems such as contextual GP bandits, additive GP bandits and GP level set estimation. Second, it is also crucial to obtain the algorithm-independent lower bounds for BO with FOO access. For the case of $d = 1$, a combination of the reduction to binary hypothesis testing of Scarlett (2018) along with appropriate KL-divergence bounds for FOO due to Raginsky and Rakhlin (2011) might work, but obtaining the lower bound for $d > 1$ may require some new ideas. Finally, similar to Algorithm 1 of Scarlett (2018), our proposed algorithm AlgFOO is primarily a theoretical device to show that faster convergence can be achieved with gradient information, and is not suitable for practical applications. Thus an important question for future work is to design practically viable algorithms using gradient information, which can also provably achieve tighter than $\Omega(\sqrt{d/n})$ regret bound.
References

