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Appendix: Active Learning with Maximum Margin
Sparse Gaussian Processes

Organization. The appendix provides important details that help to understand the key theoretical results and
major technical components presented in the main paper. It also contains additional experimental results on the
real-world data that complements the result presented in the main paper. The organization is as follows: Appendix
A proves the major theoretical results, including Lemma 1 and Theorem 1, presented in Sect. 3. Appendix
B presents the details of the hyperparameter learning results. Appendix C describes the construction of the
augmentation set that is used to conduct the one-time joint augmentation. Appendix 4.1 shows the experimental
results from the synthetic data that help to demonstrate important properties of the proposed MM-SGP model
and the sampling function. Finally, Appendix D shows some additional results on the real-world datasets.

A Proof of Theoretical Results

In this section, we provide the detailed proof of the major theoretical results in the paper.

A.1 Proof of Lemma 1

Proof We start by formulating the Lagrangian function of (1),

L(q(w), ξ,X,γ) = c
∑
n

ξn +KL(q(w)||p(w|X))− Eq(w)[log g(w,γ,X)]

−
∑
n

αn
{
Eq(w)[yn(wTkxn

)
}
−∆ln(y) + ξn) + α0

[∫
q(w)dw − 1

]
(15)

We proceed by taking the partial derivative of L over q(w). Using the calculus of variations, we get:

∂L

∂q(w)
= ln q(w)− ln p(w|X) + α0 − ln g(w,γ, X)−

N∑
n=1

αnyn(wTkxn
) (16)

We then substitute the local variational bound g(w,γ,X) as defined by (2) and the SGP prior p(w|X) ∼
N (0,K−1MM ) into (16). By setting it to zero, we have

ln q(w) =− M

2
ln(2π) +

1

2
ln |K−1MM | −

1

2
wTK−1MMw− α0

+

N∑
n=1

{
lnσ(γn) + λ(γn)γ2n −

1

2
γn + (yn −

1

2
)wTkxn

−λ(γn)wTkxnk
T
xn

w + αnynwTkxn

}
=− 1

2
wT

[
K−1MM + 2

N∑
n=1

λ(γn)kxn
kTxn

]
w +

N∑
n=1

[
(αn +

1

2
)ynwTkxn

]
+ const (17)

where terms irrelevant to w are absorbed into the const term. By identifying the linear and quadratic terms of w,
we complete the square to get

q(w) ∼N (µq(α),Σ−1q ) (18)

µq(α) =Σq

[
N∑
n=1

(αn +
1

2
)ynkxn

]
(19)

Σ−1q =KMM + 2

N∑
n=1

λ(γn)kxn
kTxn

(20)
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A.2 Proof of Theorem 1

Proof We start by showing the dual problem of (1) that solves the Lagrangian multipliers. To proceed, we first
substitute q(w) back to L and with some algebra, we arrive at a general formulation similar to [6]:

max
α
− lnZ(α)− U∗(α) s.t. αi ≥ 0 (21)

where Z(α) is the normalization term of q(w) and U∗(α) is the conjugate of the slack function given by
U∗(α) = sup(

∑N
n=1 αnξn − c

∑N
n=1 ξn). Here, we leverage the property that the conjugate of the convex function

U(ξ), which is given by U(α)∗ = sup[αT ξ − U(ξ)] in the maximum margin setting [29]. Substitute the specific
form of the slack function, U(ξ) = c

∑N
n=1 ξn, it can be shown that

U∗(α) =

{
0

∑N
n=1 αn ≤ c

∞ otherwise

Furthermore, the inequality can be ignored since its corresponding solution, ξ = 0 is still included. Therefore, we
use constraints

∑N
n=1 αn = c to replace −U∗(α) in (21).

We further compute Z(α) by integrating out w:

Z(α) =

∫
(2π)−

M
2 |KMM |

1
2

N∏
n=1

σ(γn) exp

{
−1

2
(w − µq(α))TΣ−1q (w − µq(α))

+
1

2
µq(α)TΣ−1q µq(α) +

N∑
n=1

λ(γn)γ2n −
1

2
γn

}
dw (22)

=

(
|KMM |
|Σq|

) 1
2

N∏
n=1

σ(γn) exp

{
1

2
µ∗TΣqµ

∗ +

N∑
n=1

λ(γn)γ2n −
1

2
γn

}
(23)

where µ∗ =
∑N
n=1(αn + 1

2 )ynkxn
Substituting Z(α) back to (21), and removing terms irrelevant to α, we arrive

at the dual problem given by (6), where

Q = ΛKNMΣqK
T
NMΛ, Λ = diag(y) (24)

Since Σq is positive definite (according to (20)), we have Σq = (Σ
1
2
q )2. Therefore, we can represent Q as Q = V V T ,

where V = ΛKNMΣ
1
2
q . Since the rank of matrix V is at most M , the bound of time complexity of each step in

the iterative QP solving process is reduced to O(NM2) from O(N3).

B Details of Hyperparameter Learning

In this section, we provide details of learning the key hyperparameters in the model.

B.1 Learning Variational Local Parameter γ

To derive the closed-form update rule for γ, we set ∂L
∂γ = 0

∂L

∂γn
=

∂

∂γn
E

[
N∑
n=1

lnσ(γn)− γn
2
− λ(γn)(kTxn

wwTkxn
− γ2n)

]
(25)

=λ′(γn)(kTxn
E[wwT ]kxn

− γ2n) (26)

where we have used dσ = σ(1 − σ). From the definition of λ(γn), it is easy to see that λ′(γn) is a monotonic
function for γn ≥ 0. Since γn is non-negative, we have λ′(γn) 6= 0 and solving (26) leads to

γ2n = kTxn
E[wwT ]kxn

= kTxn
(Σq + µq(α)µq(α)T )kxn

(27)
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B.2 Learning the Support Set

A key step to update X is to express the Lagrangian function (15) as the function of X. After that, we can resort
to standard gradient based optimization method to solve for X. First, we represent both KNM and KMM as
functions of X: KNM = F (X),KMM = G(X). We can reformulate the moments of w as:

µq(α) =ΣqF (X)TΛα̂ (28)

Σ−1q =G(X) + F (X)TΓF (X) (29)

Then we express L as a function of F , G and the moments of w. Specifically, there are three terms in L related
to X. The first term is the KL divergence:

KL(q(w)||p(w|X)) =
1

2

(
ln |G(X)| − ln |Σq|+ Tr[G(X)−1Σq] + µq(α)TG(X)−1µq(α)

)
(30)

The second term is the expected log of the variational lower bound (approximation of the likelihood):

Eq(w)[log g(w,γ,X)] = yTF (X)µq(α)− 1

2
1TF (X)µq(α)− Tr[F (X)(Σq + µq(α)µq(α)T )F (X)T ] (31)

The last term is from the expected max-margin constraint:∑
n

αn
{
Eq(w)[yn(wTkxn

)
}

= αTΛF (X)µq(α) (32)

For any differentiable kernel function, we first compute the gradients ∂F (X)

∂X
and ∂G(X)

∂X
. Then we substitute them

back to (30), (31), and (32) and apply the chain rule to get the ∂L
∂X

and solve for X with gradient decent.

To simplify the expression, we first define the following terms:

• Term 1:
∂Σq

∂X
= Σq(

∂G(X)

∂X
+

2∂F (X)TΓF (X)

∂F (X)

∂F (X)

∂X
)Σq (33)

where
∂(F (X)TΓF (X))

∂F (X)ij
= F (X)TΓJ ij + JjiΓF (X) (34)

J ij is a single - entry matrix with 1 at its (i, j)-th element and zeros elsewhere. We also have J ijkl = δikδjl in
addition where k, l are indices of the first and second dimensions of F (X)TΓF (X). It might be easier to
understand (34) element-wisely:

∂(F (X)TΓF (X))kl

∂F (X)ij
= δlj(F (X)TΓ)ki + δkj(ΓF (X))il (35)

• Term 2:
∂µq(α)

∂X
= (

∂Σq

∂X
F (X)T + Σq(

∂F (X)

∂X
)T )Λα̂ (36)

• Term 3: (We focus on the two kernel functions used by our experiments and other differentiable kernels can
be similarly derived.)
When a linear kernel is applied (F (X)kl = xTk xl),

∂F (X)kl
∂xj

= δjlxTk (37)

When a RBF kernel is applied (F (X)kl = exp (− (xk−xl)
T (xk−xl)

2σ2 )),

∂F (X)kl
∂xj

= exp (− (xk − xl)T (xk − xl)
2σ2

)(
δlj(x̂l − 2xk)

−2σ2
) (38)

where xj denotes the j-th row of X
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• Term 4:

When linear kernel is applied (G(X)kl = xTk xl),

∂G(X)kl
∂xj

= δjlxk + δjkxl (39)

When RBF kernel is applied (G(X)kl = exp (− (xk−xl)
T (xk−xl)

2σ2 )),

∂G(X)kl
∂xj

= exp (− (xk − xl)T (xk − xl)
2σ2

)(−δkjxk − 2(δkjxl + δljxk) + δljxl
2σ2

) (40)

Now we can express the gradients of the objective as a function of terms 1-4. Specifically,

∂KL(q(w)||p(w|X))

∂X
=

1

2
(Tr[G(X)−1

∂G(X)

∂X
]− Tr[Σ−1q

∂Σq

∂X
]

+G(X)−1(
∂G(X)

∂X
G(X)−1Σq +

∂Σq

∂X
)

+ µq(α)µq(α)TG(X)−1
∂G(X)

∂X
G(X)−1

+ (G(X)−1 +G(X)−T )µq(α)
∂G(X)

∂X
) (41)

∂Eq(w)[log g(w,γ,X)]

∂X
= (yT − 1

2
1T )(

∂F (X)

∂X
µq(α) + F (X)

∂µq(α)

∂X
)

− F (X)((Σq + µq(α)µq(α)T )

− (Σq + µq(α)µq(α)T )T
∂F (X)

∂X
)

+ F (X)TF (X)(
∂Σq + µq(α)µq(α)T

∂X
) (42)

∂αTΛF (X)µq(α)

∂X
= αTΛ(

∂F (X)

∂X
µq(α) + F (X)

∂µq(α)

∂X
) (43)

The final gradient ∂L
∂X is given by the sum of (41), (42), (43) with terms 1-4 plugged in.

B.3 Learning Kernel Hyperparameters

In this section, we present the approach to update σ2, the hyper-parameter of the RBF kernel. The dot product
kernel used in our work does not have any tunable hyper-parameter. The derivation of the gradient is similar to
section B.2. We only need to update the four terms as follow:

• Term 1:

∂Σq
∂σ2

=
∂G(X)

∂σ2
+ 2F (X)(Γ + ΓT )

∂F (X)

∂σ2
(44)

• Term 2:

∂µq(α)

∂σ2
= (

Σq
σ2
F (X)T + Σq

∂F (X)

∂σ2
)Λα̂ (45)
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• Term 3:

∂F (X)kl
∂σ2

= −σ exp (
(xk − xl)T (xk − xl)

−2σ2
) (46)

• Term 4:
∂G(X)kl
∂σ2

= −σ exp (
(xk − xl)T (xk − xl)

−2σ2
) (47)

Then, we use the updated terms 1-4 to compute the gradient ∂L
∂σ2 using the same procedure as described in section

B.2.

C Augmentation Set Construction

Let Xu and Xt denote the sets of unlabeled candidate and training samples, respectively. The probability density
of the two populations can be estimated as

pu(x) =
∑

xn∈Xu

k(x,xn)/|Xu| (48)

pt(x) =
∑

xn∈Xt

k(x,xn)/|Xu| (49)

Since we aim to identify unlabeled samples to inform the model areas in the space that are less explored by the
training data, these samples should be from areas having a high density mass with respect to pu(x) but low
density mass with respect to pt(x). The problem is formalized as:

max
A⊆Xu

λ
∑
x∈A

pu(x)−
∑
x∈A

pt(x) (50)

The first term ensures that the selected area has abundant candidate data points to sample so that it has lower
risk of containing isolated noise. The second term makes sure the selected region is not too close to the current
training data. The optimal set is given by

Â = {x|λpu(x)− pt(x) > 0} (51)

where λ controls the size of Â for the given candidate and training datasets.

Posterior Augmentation. Once the augmented samples are identified, they will be used to augment the
posterior distribution. Let [KMA]mi = k(xm, x̂i), KNA = KNMK

−1
MMKMA, and [KAA]ii′ = k(x̂i, x̂i′), the

augmented covariance of MM-SGP defined by augmentation set Â is given by:

Σ+
q =

[
Σ−1q KMA +KT

NMKNA

KT
MA +KT

NAKNM KAA +KT
NAKNA

]−1
(52)

D Additional Real-Data Experiments

Impact of the balancing parameter: We provide the results on other datasets to demonstrate the impact
the the balancing parameter η. A similar trend can be observed from Figures 5 and 6. First, entropy guided
sampling can lead to slow convergence at the beginning of AL. It behaves more like random sampling when either
the candidate pool or the cardinality of the label space is large (e.g. Auto-drive and Reuters). Second, the fixed
balancing sampling (η = 10) has the performance close to optimal sampling (Adaptive). This is due to the fact
that the mean predictive variance over the candidate pool is monotonically decreasing as AL proceeds. As a
result, the variance will play less and less important role in active sampling as the model efficiently explores the
data space. Third. the mean predictive entropy on the candidate pool does not decrease as significant as the
variance especially in the beginning iterations of AL. There are two possible reasons for the slower decrease of the
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entropy. One is that there may exist highly non-separable classes. In this case, adding samples near the decision
boundaries (exploitation) may not help further reduce the predictive entropy in the corresponding region. In
another case, the entropy is not deceasing since the model is exploiting the wrong decision boundaries resulted
from the poor initialization of AL. For the entropy guided sampling, the model can not tell which case it is
experiencing and the sampling can be less efficient if the second case happens frequently.
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Figure 5: Impact of the balancing parameter η in data sampling
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Figure 6: Change of predictive variance and entropy

Impact of the MM constraints: We provide additional comparison results between the proposed MM-SGP
with the standard GP on other datasets as shown in Figure 7. The results are consistent with the ones we have
shown in Figure 4 (c) and (d), which further confirms the contribution of the maximum margin constraints. It is
also worth to note that due to the large number of classes, the standard GP becomes extremely slow to complete
the AL process on the Reuters dataset so the result is not included.
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Figure 7: Impact of integrating MM constraints

Passive learning performance: We show the classification performance of the proposed MM-SGP in passive
learning and compare with other kernel based models, including a standard GP, sparse GP, and SVM. Table 3
shows that MM-SGP has a robust prediction performance when the training size is small. This property makes
MM-SGP a good candidate for active learning. Furthermore, MM-SGP achieves a similar prediction performance
as GP and SVM when the training size becomes larger, indicating that the proposed active sampling method,
rather than the classifier, contributes the most to the good active learning performance.

Compare with another two baselines: In Figure 8 we provide the result comparing MM-SGP with
two specially designed AL models, Hierarchical clustering AL (HC-AL) [32] and margin based AL (MBAL).
https://github.com/google/active-learning. The result shows that HC-AL achieves better AL performance
than MBAL but clearly under-performs MM-SGP in all cases. MBAL appears to lack sufficient exploration
especially in the early stage of AL.

https://github.com/google/active-learning
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Figure 8: Compare with two additional baselines

Table 3: Passive Learning Performance Comparison

Datasets
Train Size Method Yeast Penstroke Auto-drive Reuters Dermatology I Dermatology II

Initial

MM-SGP 0.46 0.07 0.3 0.55 0.08 0.11
GP 0.47 0.07 0.3 0.5 0.08 0.1
SGP 0.42 0.05 0.28 0.47 0.07 0.07
SVM 0.42 0.06 0.27 0.51 0.08 0.1

100

MM-SGP 0.5 0.14 0.32 0.55 0.42 0.18
GP 0.5 0.14 0.32 0.5 0.37 0.16
SGP 0.48 0.12 0.31 0.48 0.3 0.15
SVM 0.46 0.13 0.31 0.51 0.24 0.2

300

MM-SGP 0.51 0.22 0.35 0.57 0.59 0.5
GP 0.52 0.2 0.33 0.52 0.58 0.48
SGP 0.51 0.17 0.34 0.5 0.49 0.44
SVM 0.49 0.19 0.35 0.53 0.55 0.46

500

MM-SGP 0.55 0.25 0.44 0.58 0.82 0.79
GP 0.53 0.22 0.39 0.53 0.79 0.76
SGP 0.52 0.2 0.41 0.5 0.77 0.69
SVM 0.54 0.22 0.4 0.55 0.8 0.72

700

MM-SGP 0.58 0.28 0.47 0.63 0.93 0.9
GP 0.57 0.26 0.45 0.57 0.92 0.89
SGP 0.55 0.25 0.45 0.54 0.89 0.83
SVM 0.56 0.24 0.46 0.64 0.93 0.91

Active sampling speed comparison: In Table 4, we compare the run-time of MM-SGP at 50% sparsity with
three other methods with good AL performance. Our method maintains reasonable execution time among those
top performing methods. It also shows desirable scalability as the size of the dataset increases.

Table 4: Active Sampling Time (seconds) Comparison

Trainsize Dataset Yeast Penstroke Reuters Dermatology1 Dermatology2 Auto-drive

100

MM-SGP 1.3 6.6 37.1 3.7 2.8 2.7
KMC 1.5 5.4 42.9 4.8 4.2 22
VGP 0.9 1.7 25.4 3.4 2.6 2.2
HC-AL 0.2 2.8 254 1.3 1.1 173

300

MM-SGP 6 25.7 110.5 23.6 17.7 12.1
KMC 7.2 21.8 103.3 25.2 19.1 18.6
VGP 4.7 13.2 78.6 20.9 14.3 10.7
HC-AL 0.5 1.8 472 14.6 13.2 198

500

MM-SGP 41 83 263 202.1 98.1 48.6
KMC 32.7 67.8 246 211 79.2 73.1
VGP 20.5 40.2 183.5 162 143 111
HC-AL 3.2 4.6 669 548 512 617

Source code: The code for MM-SGP and the datasets used in the experiments can be found: https:
//github.com/ritmininglab/Active-Learning-with-Maximum-Margin-Sparse-Gaussian-Processes.git

https://github.com/ritmininglab/Active-Learning-with-Maximum-Margin-Sparse-Gaussian-Processes.git
https://github.com/ritmininglab/Active-Learning-with-Maximum-Margin-Sparse-Gaussian-Processes.git

