
Federated Multi-armed Bandits with Personalization:
Supplementary Materials

A Related Works

We provide a more comprehensive review of the related literature.

Differences to FL. Federated learning was introduced by McMahan et al. (2017); Konečnỳ et al. (2016a,b) to
perform model training with data only locally available at a large number of clients. This paradigm has many
attractive features, as summarized in Section 1. FL has been an active research topic over the past few years,
with studies spanning from communication efficiency (Konečnỳ et al., 2016b; Reisizadeh et al., 2020; Sattler
et al., 2019), security and privacy (Geyer et al., 2017; McMahan et al., 2018; Bagdasaryan et al., 2018), fairness
(Li et al., 2020b), to system designs (Bonawitz et al., 2019; Wang et al., 2019b), with successful applications in
recommender systems (Ammad-Ud-Din et al., 2019), and medical treatment (Li et al., 2019), among others.

Recently, FL with personalization (Kulkarni et al., 2020) draws a lot of attention, where the goal is to train
an individualized model for each client, based on the client’s own dataset and the datasets of other clients.
One representative way of achieving personalization is to learn a mixed local and global model (Hanzely and
Richtárik, 2020; Deng et al., 2020; Mansour et al., 2020), which is also adopted in PF-MAB. There are also
other approaches, e.g., transfer learning (Wang et al., 2019a), multi-task learning (Smith et al., 2017), and meta-
learning (Jiang et al., 2019; Fallah et al., 2020). Nevertheless, existing studies on FL are almost exclusively on
supervised learning and there is limited literature considering bandit (Shi and Shen, 2021; Zhu et al., 2020).

Differences to Multi-player MAB. Multi-armed bandits is a rich research area (Lai and Robbins, 1985; Auer
et al., 2002; Bubeck and Cesa-Bianchi, 2012; Lattimore and Szepesvári, 2020), with many successful applications
such as cognitive radio (Gai et al., 2010; Avner and Mannor, 2016), recommender systems (Li et al., 2010;
Wu et al., 2017; Oh and Iyengar, 2019; Mahadik et al., 2020), and clinical trials (Shen et al., 2020; Lee et al.,
2020). The state-of-the-art decentralized multi-player MAB (MP-MAB) are related to the proposed PF-MAB
but there are several fundamental differences, as elaborated below. One line of MP-MAB research considers
the “cooperative” setting (Landgren et al., 2016, 2018; Mart́ınez-Rubio et al., 2019; Wang et al., 2020), where
players interact with a common MAB game and communicate with each other to accelerate learning under
potential constraints, e.g., communication cost, privacy concern. However, with non-IID local models in PF-
MAB, communications play a more fundamental role since global knowledge cannot be obtained by clients
individually. The other line of research considers the “competitive” setting (Liu and Zhao, 2010; Avner and
Mannor, 2014; Rosenski et al., 2016; Boursier and Perchet, 2019; Shi et al., 2020), where simultaneous pulls on
the same arm by different players lead to a collision with zero reward for all involved players, and no explicit
communications are allowed. Players in this setting focus on finding the best allocation of the common set of
arms in a fully distributed manner, and solving arm collisions is the fundamental difficulty. Also, since explicit
communications are not allowed, communication costs are not considered. However, in the PF-MAB framework,
the clients are interested in finding the optimal arms on their own mixed models. Most importantly, although
user-dependent local models are studied in both MP-MAB settings (Shahrampour et al., 2017; Bistritz and
Leshem, 2018; Boursier et al., 2020), this is the first time that a flexible and mixed learning objective that
balances generalization and personalization is studied in the field of MAB, to the best of our knowledge.

Recent Advances. There are a few very recent works that touch upon the concept of federated bandits
but none of them systemically takes personalization into account. Li et al. (2020) assumes strictly IID local
models and focuses on addressing privacy protection by combining differential privacy with statistics sharing.
Agarwal et al. (2020) studies regression-based contextual bandits as a specific example of the federated residual
learning framework, which does not generalize to the setting of our paper. The recent studies in Zhu et al.
(2020); Shi and Shen (2021) are more related to this work, where federated MAB without personalization (i.e.,
global-only) is studied. Shi and Shen (2021) focuses on dealing with the stochastic relationship between local
and global models and a similar client-server communication protocol is adopted. Zhu et al. (2020) discards
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the client-server structure and applies a gossiping information-sharing strategy, where privacy protection is also
explicitly considered.

B Details of Choosing Exploration Lengths and Algorithm Enhancement

As stated in Section 4, the key challenge to solve PF-MAB is how to gain sufficient but not excessive local and
global information simultaneously based on the required degree of personalization. Sections 4 and 6 provide two
choices and here the details behind these choices are elaborated.

From client m’s perspective on a locally active arm k 6= k′∗,m, in order to maintain the convergence rate
of 1/(MF (p)) (as specified in Section 4) while reducing the loss, an optimization problem over Nk,m(p) and
Ng
k,n(p),∀n 6= m can be formulated as:

minimize Nk,m(p)∆′k,m +
∑

n 6=m,k′∗,n 6=k
Ng
k,n(p)∆′k,n

subject to
[α+ (1− α)/M ]

2

Nk,m(p)
+
∑
n 6=m

[(1− α)/M ]
2

Ng
k,n(p)

≤ 1

MF (p)

where Nk,m(p) is the number of pulls on arm k at client m up to phase p, and Ng
k,n(p) is the guaranteed number

of global pulls on arm k at a different client n up to phase p. The optimization objective is the loss associated
with client m’s local and global information estimation for arm k, while the constraint is a sufficient condition
for Bp =

√
4 log(T )/(MF (p)) and Lemma 1 to hold. Note that the convergence rate constraint can have many

forms, and the choice here is to match the discussion in the main paper.

Using the Cauchy-Schwarz inequality, the exploration length described in Section 6 can be obtained as:

nlk,m(p) ∝
αMf(p)

(∆′k,m)1/2
, ∀k ∈ Am(p), k 6= k′∗,m;

ngk,m(p) ∝
(1− α)f(p)

(∆′k,m)1/2
, ∀k ∈ A(p), k 6= k′∗,m,

and N l
k,m(p) =

∑p
q=1 n

l
k,m(q), Ng

k,m(p) =
∑p
q=1 n

g
k,m(q) and Nk,m(p) = N l

k,m(p) + Ng
k,m(p). This result is the

key to choosing exploration lengths as it builds up the relationship between local and global explorations.

The issue however is that the knowledge of ∆′k,m is unavailable. An easy way to tackle this problem is to
assume all the sub-optimal gaps are the same, which results in the chosen length in PF-UCB in Section 4.
The alternative way proposed in Section 6 is to use ∆̄′k,m(p) = maxl∈[K] µ̄

′
l,m(p− 1) − µ̄′k,m(p − 1) + 2Bp−1 in

place of ∆′k,m(p). This approach leverages information collected in the game. However, ∆̄′k,m(p) needs to be
communicated to the server and then broadcast to maintain synchronization among clients, which may increase
the risk of privacy leaking.

C Proof for the Lower Bound Analysis in Theorem 1

Proof. First, the following lemma recalls the classic result from the single-player MAB (Lai and Robbins, 1985),
which directly leads to the lower bound in Eqn. (2).

Lemma 6. For any consistent policy Π, for any arm k such that µk < µk∗ , it holds that

lim inf
T→∞

Tk
log(T )

≥ 1

kl (Xk, Xk∗)
,

where Tk is the expected number of pulls performed on arm k during T .

Then, from client m’s perspective of her suboptimal arm k 6= k∗,m on the mixed model, the mixed reward in
Eqn. (4) can be decomposed as

X ′k,m =

(
α+

1− α
M

)
Xk,m +

1− α
M

∑
n 6=m

Xk,n.
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The difficulty is that X ′k,m involves the rewards from all M clients, which are M sources of randomness. Next
we attempt to isolate these sources of randomness.

First, if we assume client m has perfect knowledge of {µk,n}n 6=m, a new random variable Yk,m is constructed as

Yk,m =

(
α+

1− α
M

)
Xk,m +

1− α
M

∑
n 6=m

µk,n =

(
α+

1− α
M

)
Xk,m + µ′k,m −

(
α+

1− α
M

)
µk,m.

Under this construction, Yk,m shares the same mean with X ′k,m while the randomness only comes from Xk,m.
Then, Yk,m forms a new hypothetical bandit game degenerated from client m’s mixed model, where the mean
rewards and the optimal arm remain the same. With Lemma 6, if client m individually interacts with this new
game, her pulls on arm k can be bounded as

lim inf
T→∞

Tk,m
log(T )

≥ 1

kl
(
Yk,m, Yk′∗,m,m

) .
On the other hand, from a different client n’s perspective, whose arm k is also sub-optimal, she also needs
information of client m’s arm k. However, client n’s mixed reward is constructed as

X ′k,n =

(
α+

1− α
M

)
Xk,n +

1− α
M

Xk,m +
1− α
M

∑
l 6=m,n

Xk,l,

which is different from X ′k,m. Following a similar idea of isolating randomness, if we assume client n has perfect
knowledge of l 6= m,µk,l, including µk,n, a new random variable Zmk,n can be constructed as

Zmk,n =

(
α+

1− α
M

)
µk,n +

1− α
M

Xk,m +
1− α
M

∑
l 6=m,n

µk,l =
1− α
M

Xk,m + µ′k,n −
1− α
M

µk,m.

Under this construction, Zmk,n shares the same mean as Xk,n while the randomness only comes from Xk,m. Then
Zmk,n forms another new hypothetical bandit game degenerated from client n’s mixed model, where the optimal
arm remains the same and client m has to provide information to help client n distinguish arm k. Similarly,
with Lemma 6, if client m individually interacts with this new game, her pulls on arm k can be bounded as

lim inf
T→∞

Tk,m
log(T )

≥ 1

kl
(
Zmk,n, Z

m
k′∗,n,n

) .
Since Zmk,n can be constructed for any client, it must hold that

lim inf
T→∞

Tk,m
log(T )

≥ max
n:n 6=m,k′∗,n 6=k

 1

kl
(
Zmk,n, Z

m
k′∗,n,n

)
 =

1

minn:n 6=m,k′∗,n 6=k

{
kl
(
Zmk,n, Z

m
k′∗,n,n

)} .
Combining the above results, we can have

lim inf
T→∞

Tk,m
log(T )

≥ max

 1

kl
(
Yk,m, Yk′∗,m,m

) , 1

minn:n 6=m,k′∗,n 6=k

{
kl
(
Zmk,n, Z

m
k′∗,n,n

)}
 .

Since the regret can be decomposed as

R(T ) =

M∑
m=1

∑
k:k 6=k′∗,m

Tk,m∆′k,m,

Theorem 1 can be established.

Note that the randomness isolation utilized in the proof reduces the hardness of the problem, which results in a
relaxed lower bound. Although it can recover the single-player stochastic MAB lower bound with α = 1, when
α moves away from 1, the lower bound becomes less tight.
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f(p) pk,m, k 6= k′∗,m R(T )

λ O
(

log(T )
Mλ(∆′k,m)2

)
O

(∑M
m=1

∑
k 6=k′∗,m

[
α

∆′k,m
+

1−α
M ∆′k,m

∆
′2
k

]
log(T ) + C log(T )

λ(∆′min)2

)
λ log(T ) O

(
1

Mλ(∆′k,m)2

)
O

(∑M
m=1

∑
k 6=k′∗,m

[
α

∆′k,m
+

1−α
M ∆′k,m

∆
′2
k

]
log(T ) + C

λ(∆′min)2

)
2p O

(
log
(

log(T )
M(∆′k,m)2

))
O

(∑M
m=1

∑
k 6=k′∗,m

[
α

∆′k,m
+

1−α
M ∆′k,m

∆
′2
k

]
log(T ) + CM log

(
log(T )

M(∆′min)2

))
2p log(T ) O

(
log
(

1
M(∆′k,m)2

))
O

(∑M
m=1

∑
k 6=k′∗,m

[
α

∆′k,m
+

1−α
M ∆′k,m
(∆′k)2

]
log(T ) + CM log

(
1

M(∆′min)2

))
Table 1: Regret of PF-UCB algorithm with different choices of f(p)

λ is a constant; ∆′k = minn:k′∗,n 6=k{∆
′
k,n}; ∆′min = mink{∆′k}.

D Discussions for Theorem 2

Table 1 summarizes the regrets under several different choices of f(p), including f(p) = 2p log(T ) in Corollary 2.
All choices listed in Table 1 achieve a similar exploration regret and a non-dominating exploitation loss (which is
omitted in the regret expression). However, they lead to varying communication losses. With f(p) = λ, the com-
munication loss is of order O(log(T )) and scales with 1/(∆′min)2, which actually dominates the exploration loss.
This is the result of the unnecessary communications with f(p) = λ. With f(p) = λ log(T ), the communication
loss is no longer of order O(log(T )); however, it still scales with 1/(∆′min)2. The dependency of communication
loss on ∆′min is improved with an exponential f(p), as both f(p) = 2p and f(p) = 2p log(T ) have communication
losses that scale only with log (1/∆′min), which greatly reduces the communication burden. Furthermore, with
f(p) = 2p log(T ), the communication cost is a constant that is independent of T . Thus, among all considered
choices of f(p), the most preferable one is f(p) = 2p log(T ).

We further note that all the choices of f(p) listed in Table 1 do not depend on the communication loss parameter
C. This is made to simplify the problem, as otherwise the analysis will have a convoluted relationship between
the exploration loss and the communication loss. Intuitively, with a larger C, it is better to increase f(p) to
reduce the communication frequency and lower the communication loss, e.g., adding a 1/C multiplicative factor
to the listed choice of f(p).

E Proofs for Regret Analysis

E.1 Proof of Lemma 1

Proof. To decouple the randomness of Am(p), we assume a virtual system without elimination, i.e., in this virtual
system ∀m ∈ [M ],∀p,Am(p) = [K]. At phase p, ∀m ∈ [M ],∀k ∈ Am(p), µ̄′k,m(p) can be decomposed as

µ̄′k,m(p) =

(
α+

1− α
M

)
µ̄k,m(p) +

1− α
M

∑
n 6=m

µ̄k,n(p).

It can be shown that µ̄k,m(p) is a
√

1
Nk,m(p) -subgaussian random variable, since client m has explored arm k for

Nk,m(p) =
∑p
q=1 nk,m(q) times in the global and local exploration sub-phases. However, ∀n ∈ [M ], n 6= m, client

m can only make sure that µ̄k,n(p) is a
√

1
Ngk,n(p)

-subgaussian random variable, where Ng
k,n(p) =

∑p
q=1 n

g
k,n(q),

since she is only assured that each other client has explored arm k in the global exploration sub-phases. Overall,
we can claim that µ̄′k,m(p) is a σ′k,m(p)-subgaussian random variable where

σ′k,m(p) =

√√√√(α+
1− α
M

)2
1

Nk,m(p)
+

(
1− α
M

)2 ∑
n6=m

1

Ng
k,n(p)

≤

√√√√(α+
1− α
M

)2
1

[(1− α) +Mα]F (p)
+

(
1− α
M

)2 ∑
n 6=m

1

(1− α)F (p)
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=

√
1

MF (p)
.

With the concentration inequality for subgaussian random variables, we have

P
(
|µ̄′k,m(p)− µ′k,m| ≥ Bp

)
≤ 2 exp

{
−

B2
p

2(σ′k,m(p))2

}
≤ 2 exp

−
4 log(T )
MF (p)

2 1
MF (p)

 =
2

T 2
.

Thus, with the union bound, PG can be bounded as

PG = 1− P
{
∃p,∃m ∈ [M ],∃k ∈ Am(p), |µ̄′k,m(p)− µ′k,m| ≥ Bp

}
≥ 1−

T∑
p=1

M∑
m=1

K∑
k=1

P
(
|µ̄′k,m(p)− µ′k,m| ≥ Bp

)
≥ 1− 2MK

T
.

Since this argument applies to k ∈ [K], it also applies to all arms in the local active arm set Am(p) of the real
system, which concludes the proof.

E.2 Proof of Lemma 2

Proof. Recall that ∀k 6= k′∗,m, p′k,m is the smallest integer such that

MF (p′k,m) ≥ 64 log(T )

(∆′k,m)2
,

which ensures that ∀p ≥ p′k,m, Bp ≤
∆′k,m

4 . Thus, based on that event G happens, at phase p′k,m, we have

µ̄′k,m(p′k,m) +Bp′k,m

(i)

≤ µ′k,m + 2Bp′k,m ≤ µ
′
k,m +

∆′k,m
2

= µ′∗,m −
∆′k,m

2

(ii)

≤ µ̄′k′∗,m,m(p′k′∗,m,m) +Bp′k,m −
∆′k,m

2
≤ µ̄′k′∗,m,m(p′k′∗,m,m)−Bp′k,m ,

where inequalities (i) and (ii) are guaranteed by event G. Thus, arm k is guaranteed to be eliminated at phase
p′k,m by client m.

E.3 Proof of Lemma 3

Proof. Lemma 2 indicates for a sub-optimal arm k, after phase p′k,m, it is guaranteed to be eliminated from set

Am(p). Thus, it is pulled for at most
∑p′k,m
p=1 dαMf(p)e times in the local exploration sub-phases, which leads to

the local exploration loss as

Rexprl (T ) ≤
M∑
m=1

∑
k 6=k′∗,m

∆′k,m

p′k,m∑
p=1

dαMf(p)e.

However, arm k is still pulled in the global exploration sub-phases until k /∈ A(p), i.e., arm k is eliminated by
all of the clients whose optimal arm is not it. Since arm k is guaranteed to be eliminated globally by phase

p′k = maxm∈[M ]{p′k,m}, it is pulled for at most
∑p′k
p=1d(1 − α)f(p)e times in the global exploration sub-phases.

Thus, the global exploration loss can be bounded as:

Rexprg (T ) ≤
M∑
m=1

∑
k 6=k′∗,m

∆′k,m

p′k∑
p=1

d(1− α)f(p)e.
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E.4 Proof of Lemma 4

Proof. At phase p, the exploitation time for client m is at most maxn{|An(p)| −Am(p)} dMαf(p)e, which is the
difference between the longest local exploration duration and her local exploration duration. The probability
that the exploited arm in the exploitation phase, i.e., arm k̄′∗,m, is arm k instead of k′∗,m can be bounded as:

P
(
k̄′∗,m = k

)
≤ P

(
µ̄′k′∗,m,m(p− 1) ≤ µ̄k,m(p− 1)

)
= P

(
µ̄′k′∗,m,m(p− 1)− µ̄k,m(p− 1)−∆′k,m ≤ −∆′k,m

)
(i)

≤ 2 exp

{
−

(∆′k,m)2

2(σ
′2
k,m(p− 1) + σ

′2
k′∗,m,m

(p− 1))

}

≤ 2 exp

{
−

(∆′k,m)2MF (p− 1)

4

}
= P ′k,m(p).

Thus, it can be shown that the exploration loss caused by arm k for client m is bounded as

Rexptk,m (T ) ≤ ∆′k,m

p′k,m∑
p=1

(
max
n
{|An(p)| −Am(p)}

)
dMαf(p)eP ′k,m(p)

≤ ∆′k,m

p′k,m∑
p=1

K dMαf(p)e exp

{
−

(∆′k,m)2MF (p− 1)

4

}
.

The overall exploration loss can be obtained by summing over all of the clients and arms:

Rexpt(T ) =

M∑
m=1

K∑
k=1

∆′k,mR
expt
k,m (T ) ≤

M∑
m=1

∑
k 6=k′∗,m

p′k,m∑
p=1

K dMαf(p)e∆′k,m exp

{
−

(∆′k,m)2MF (p− 1)

4

}
.

In addition, we note that in phase p = 1, all the players share the same global and local active arm sets, i.e.,
∀m ∈ [M ], Am(p) = A(p) = [K], which means there would be no exploration loss. Thus, the sum of index p in
the exploitation loss above can start from 2 instead of 1. This fact does not change the scaling of the overall
regret, but would be useful in deriving Corollary 2 from Theorem 2.

E.5 Proof of Lemma 5

Proof. As designed in the PF-UCB algorithm, clients do not communicate any more after they find their optimal
arms. Thus, there is no more communication after phase p′max = maxk∈[K]{p′k,m} = maxm∈[M ] maxk 6=k′∗,m{p

′
k,m}.

Before phase p′max, there are two communications in each phase for arm statistics and active sets, respectively,
which leads to the communication loss upper bound as:

Rcomm(T ) ≤ 2CMp′max.

E.6 Proof of Theorem 2

Proof. Lemmas 3, 4 and 5 are all based on the condition that event G happens, which has probability PG as
shown in Lemma 1. When event G does not happen, the regret is directly upper bounded by MT + 2CMT ,
which assumes full exploration and communication loss. Thus, Theorem 2 follows by putting everything together
as:

R(T ) = PG
(
Rexpr(T ) +Rexpt(T ) +Rcomm(T )

)
+ (1− PG)(1 + 2C)MT
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≤ Rexprl (T ) +Rexprg (T ) +Rexpt(T ) +Rcomm(T ) + 2M2K(1 + 2C)

≤
M∑
m=1

∑
k 6=k′∗,m

∆′k,m

p′k,m∑
p=1

dαMf(p)e+

M∑
m=1

∑
k 6=k′∗,m

∆′k,m

p′k∑
p=1

d(1− α)f(p)e

+

M∑
m=1

∑
k 6=k′∗,m

∆′k,m

p′k,m∑
p=1

K dMαf(p)e exp

{
−

(∆′k,m)2MF (p− 1)

4

}
+ 2CMp′max + 2M2K(1 + 2C).

E.7 Proof of Corollary 2

Proof. With f(p) = 2p log(T ), p′k,m can be bounded from Eqn. (9) as

p′k,m = O

(
log2

(
64

M(∆′k,m)2

))
.

Plugging this into Theorem 2, Corollary 2 follows.

Figure 5: Synthetic Reward Figure 6: Number of Communications Figure 7: Large M and Small K

F Additional Experimental Results

The implementation codes of the PF-UCB and its enhancement used for simulations have been made publicly
available at https://github.com/ShenGroup/PF_MAB, which also contains the synthetic dataset and the pre-
processed real-world MovieLens dataset. The original version of the MovieLens dataset is publicly available at
https://grouplens.org/datasets/hetrec-2011/.

Experimental details and additional experiment results are provided here. First, for the synthetic dataset used
in Fig. 1, the specific arm statistics are given as follows:

1 0 0 0 0.9 0.4 0.35 0.35 0.5
0 1 0 0 0.3 0.9 0.35 0.3 0.5
0 0 1 0 0.35 0.35 0.9 0.3 0.5
0 0 0 1 0.4 0.3 0.35 0.9 0.5

 ,
where the rows and columns correspond to the clients and arms, respectively. This dataset is specially designed
so that the local optimal arm for client m ∈ {1, 2, 3, 4} is arm m, while the global optimal arm is arm 9. Moreover,
each of the local optimal arms perform poorly at other clients. All remaining arms share similar global utilities,
but diverge locally. The averaged per-step reward with PF-UCB under this synthetic dataset is reported in
Fig. 5, which shows a similar trend as in Fig. 3.

The communication times in the horizon of 106 for the synthetic game are provided in Table 2. Compared
with the time horizon, the overall communication times are almost negligible, which shows the efficiency of
communication under the choice of f(p) = 2p log(T ). The communication times under different time horizons
for different choices of f(p) are reported in Fig. 6 with the same synthetic game and α = 0.5, which illustrates
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α Comm Times
0 104

0.2 64
0.5 72
0.9 80
1 56

Table 2: Synthetic Communication Times

that f(p) = 10 log(T ) leads to more communications for large T than the other two choices and f(p) = 2p log(T )
is the most efficient one. This observation coincides with the results in Table 1.

As in real-world FL systems, it is common to have a small K (number of arms) and a large M (number of
clients). Additional experiments are performed with a small K = 4 and a large M = 40 with results reported in
Fig. 7. It can be observed that PF-UCB still achieves stable performance in this scenario.

References

Agarwal, A., Langford, J., and Wei, C.-Y. (2020). Federated residual learning. arXiv preprint arXiv:2003.12880.

Ammad-Ud-Din, M., Ivannikova, E., Khan, S. A., Oyomno, W., Fu, Q., Tan, K. E., and Flanagan, A. (2019).
Federated collaborative filtering for privacy-preserving personalized recommendation system. arXiv preprint
arXiv:1901.09888.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2-3):235–256.

Avner, O. and Mannor, S. (2014). Concurrent bandits and cognitive radio networks. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 66–81. Springer.

Avner, O. and Mannor, S. (2016). Multi-user lax communications: a multi-armed bandit approach. In IEEE
INFOCOM 2016, pages 1–9. IEEE.

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and Shmatikov, V. (2018). How to backdoor federated learning.
arXiv preprint arXiv:1807.00459.

Bistritz, I. and Leshem, A. (2018). Distributed multi-player bandits-a game of thrones approach. In Advances
in Neural Information Processing Systems, pages 7222–7232.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V., Kiddon, C., Konecny, J.,
Mazzocchi, S., McMahan, H. B., Overveldt, T. V., Petrou, D., Ramage, D., and Roselander, J. (2019).
Towards federated learning at scale: System design. In Proceedings of the 2nd SysML Conference, pages 1–15.

Boursier, E., Kaufmann, E., Mehrabian, A., and Perchet, V. (2020). A practical algorithm for multiplayer
bandits when arm means vary among players. In Proceedings of the 23rd International Conference on Artificial
Intelligence and Statistics (AISTATS), Palermo, Sicily, Italy.

Boursier, E. and Perchet, V. (2019). SIC-MMAB: synchronisation involves communication in multiplayer multi-
armed bandits. In Advances in Neural Information Processing Systems, pages 12071–12080.

Brânzei, S. and Peres, Y. (2019). Multiplayer bandit learning, from competition to cooperation. arXiv preprint
arXiv:1908.01135.

Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-armed bandit
problems. arXiv preprint arXiv:1204.5721.

Cantador, I., Brusilovsky, P., and Kuflik, T. (2011). 2nd Workshop on Information Heterogeneity and Fusion in
Recommender Systems (HetRec 2011). In Proceedings of the 5th ACM Conference on Recommender Systems,
RecSys 2011, New York, NY, USA. ACM.

Deng, Y., Kamani, M. M., and Mahdavi, M. (2020). Adaptive personalized federated learning. arXiv preprint
arXiv:2003.13461.

Dubey, A. and Pentland, A. (2020). Differentially-private federated linear bandits. Advances in Neural Informa-
tion Processing Systems, 33.



Chengshuai Shi, Cong Shen, Jing Yang

Fallah, A., Mokhtari, A., and Ozdaglar, A. (2020). Personalized federated learning: A meta-learning approach.
arXiv preprint arXiv:2002.07948.

Gai, Y., Krishnamachari, B., and Jain, R. (2010). Learning multiuser channel allocations in cognitive radio
networks: A combinatorial multi-armed bandit formulation. In 2010 IEEE Symposium on New Frontiers in
Dynamic Spectrum (DySPAN), pages 1–9. IEEE.

Geyer, R. C., Klein, T., and Nabi, M. (2017). Differentially private federated learning: A client level perspective.
arXiv preprint arXiv:1712.07557.
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