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1 Preliminary Lemmas

In this section we first establish some preliminary results which we use to prove Theorems 2, 3 and 7.

Lemma 1. The following inequalities hold.

(i) ∀0 < p ≤ 1,∃cp > 0 such that ∀x ≥ 0, log (1 + x) ≤ cpxp.

(ii) ∀p ≥ 1,∀j, k > 0,∃cp,j,k > 0 such that ∀x > 0, |log x|p ≤ cp,j,k
(
xj + 1

xk

)
.

Proof. (i) For p = 1 we have the standard inequality log (1 + x) ≤ x. For 0 < p < 1, we have limx→∞
log(1+x)

xp = 0

and limx→0+
log(1+x)

xp = limx→0+
1

1+x
1

pxp−1 = 0. By continuity, log(1+x)
xp attains its maximum and is bounded

above on (0,∞).

(ii) Similarly, this is due to |log x|p increasing slower than xj as x → ∞ and slower than x−k as x → 0+. More
rigorously, we have by standard results 0 ≤ limx→∞

(log x)p

xj+x−k ≤ limx→∞
(log x)p

xj = 0 and 0 ≤ limx→0+
(− log x)p

xj+x−k ≤
limx→0+

(− log x)p

x−k = 0. Hence by continuity |log x|p
xj+x−k attains its maximum and is bounded above on (0,∞).

Lemma 2. Let X1, . . . , Xn be i.i.d. zero mean random variables, whose p-th moments are finite for some p ≥ 2.
Then there exists a constant Cp, independent of n and the distribution of Xi, such that

E

[∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣
p]
≤ Cpn−p/2E [|Xi|p] (1)

Proof. This follows from a direct application of Marcienkiewicz-Zygmund inequality then Jensen inequality.

Lemma 3. Let X1, . . . , Xn be positive i.i.d. random variables, then E
[(

1
n

∑n
i=1Xi

)−p] ≤ E
[
X−p1

]
for all p ≥ 0.

Proof. By Jensen’s inequality, (
1

n

n∑
i=1

Xi

)−p
≤ 1

n

n∑
i=1

X−pi .

Taking expectation over both sides yields the result.

Lemma 4. Suppose {Xk}∞k=1, {Yk}
∞
k=1 are two sequences of random variables satisfying E [|Xk|p] = O

(
2−ck

)
,

E [|Yk|p] = O
(
2−ck

)
, where p ≥ 1, then E [|Xk + Yk|p] = O

(
2−ck

)
.

Proof. By the Cp-inequality, we have for p ≥ 1

E [|Xk + Yk|p] ≤ 2p−1 · (E [|Xk|p] + E [|Yk|p]) .
= O

(
2−ck

)
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2 Proof of Theorem 2

We now give a proof of Theorem 2. We note that concurrently with our work, Goda and Ishikawa (2019);
Ishikawa and Goda (2020) independently proposed the estimator ˆ̀ml-ss(θ) and a related theoretical result under
slightly different assumptions (requiring finite moments for logw(z) when z ∼ qφ).
Theorem. Assume there exists ε, δ > 0 such that Eqφ

[
w(z)2+ε + w(z)−δ

]
<∞. Then ˆ̀ml(θ) satisfies Theorem

1 for r ∈
(

1
2 , 1−

1
21+α

)
, where α = min

(
ε
2 , 1
)
> 0.

Proof. To prove this Theorem, we are going to check that the assumptions of Theorem 1 hold. We first start
proving Assumption (a) and Assumption (c) and then finally Assumption (b) whose proof is more involved.

Assumption (a): We first show that ˆ̀(k)(θ) is uniformly bounded in L2. Observe that by Lemma 1,

E
[
|ˆ̀(k)(θ)|2

]
= E

[∣∣∣log
(

1
k

∑k
i=1 wi

)∣∣∣2] ≤ c · E
[(

1
k

∑k
i=1 wi

)
+
(

1
k

∑k
i=1 wi

)−δ]
. But now E[|wi|] < ∞, and

E
[(

1
k

∑k
i=1 wi

)−δ]
is bounded for all k by Lemma 3. It follows that supk E

[
|ˆ̀(k)(θ)|2

]
<∞. Therefore

E [I0] +

∞∑
k=0

E [∆k] = E [I0] +

∞∑
k=0

E
[
log

(
Ok + Ek

2

)
− 1

2
(logOk + logEk)

]

= E[I0] +

∞∑
k=0

E
[
log

(
Ok + Ek

2

)]
− 1

2
(E[logOk] + E[logEk])

= E
[
ˆ̀(1)(θ)

]
+

∞∑
k=0

(
E
[
ˆ̀(2k+1)(θ)

]
− E

[
ˆ̀(2k)(θ)

])
= lim
k→∞

E
[
ˆ̀(2k+1)(θ)

]
= E

[
lim
k→∞

ˆ̀(2k+1)(θ)

]
= log pθ(x).

Here the integrability requirements of the second equality follow from boundedness of ˆ̀(k)(θ) in L2. The second
last equality holds due to uniform integrability, which likewise follows from boundedness in L2. Finally, the last
equality holds because ˆ̀(k)(θ) = log

(
1
k

∑k
i=1 wi

)
→ log pθ(x) almost surely by the SLLN (which is applicable

due to our moment conditions, which entail E[|wi|] <∞) and the continuous mapping theorem. This shows that
Assumption (a) in Theorem 1 is satisfied.

Assumption (c): This trivially holds.

Assumption (b): We divide our analysis into two cases where OkEk is large and OkEk is small, specifically into
OkEk ≥ 2−2κZ2 and OkEk < 2−2κZ2, where E [Ok] = E [Ek] = Z = pθ(x), and κ > 0 is a constant, independent
of k, taken such that 2−κZ < 1.

1. Case OkEk large, i.e. OkEk ≥ 2−2κZ2:

We have ∆k = log
(
Ok+Ek

2

)
− 1

2 (logOk + logEk) = log
(
Ok+Ek
2
√
OkEk

)
= log

(
1 + (Ok−Ek)2

2
√
OkEk(

√
Ok+

√
Ek)

2

)
. By Lemma

1, ∀0 < p ≤ 1,∃cp > 0 such that

∆k ≤ cp

(
(Ok − Ek)

2

2
√
OkEk

(√
Ok +

√
Ek
)2
)p

and ∆2
k ≤ c2p

(
(Ok − Ek)

4

4OkEk
(√
Ok +

√
Ek
)4
)p

. (2)

The denominator in (2) is clearly bounded from below in this case, since
(√
Ok +

√
Ek
)4 ≥ OkEk ≥ 2−2κZ2.

For the numerator, we can take p = min
(

2+ε
4 , 1

)
. Hence by Lemma 4,

E
[
|Ok − Ek|4p

]
= O

(
2−2pk

)
,



since E
[
|Ok − Z|4p

]
,E
[
|Ek − Z|4p

]
are both O

(
2−2pk

)
by Lemma 2. Hence E

[
∆2
kI
(
OkEk ≥ 2−2κZ2

)]
=

O
(
2−(1+α)k

)
, where α = min

(
ε
2 , 1
)
.

2. Case OkEk small, i.e. OkEk < 2−2κZ2: In this case, we must have either Ok < 2−κZ < 1 or Ek < 2−κZ < 1.
Suppose that Ok < 2−κZ < 1, then since log (1 + x) ≤ max (1 + log x, 1), we have

∆k = log

(
1 +

(√
Ok −

√
Ek
)2

2
√
OkEk

)

≤ max

(
1 + log

((√
Ok −

√
Ek
)2

2
√
OkEk

)
, 1

)

= max

(
1 + 2 log

∣∣∣√Ok −√Ek∣∣∣− 1

2
(logOk + logEk)− log 2, 1

)
.

For 2 log
∣∣√Ok −√Ek∣∣, we know that if Ok ≤ Ek, then 2 log

∣∣√Ok −√Ek∣∣ ≤ logEk ≤ logEkI (Ek ≥ 1). If
Ok > Ek, then 2 log

∣∣√Ok −√Ek∣∣ ≤ logOk < 0 ≤ logEkI (Ek ≥ 1). Hence we have

∆k ≤ max

(
1 + logEkI (Ek ≥ 1)− 1

2
(logOk + logEk) , 1

)
.

We also have − 1
2 logEk ≤ − 1

2 logEkI (Ek < 1), and − 1
2 logOk > 0. Overall, we thus have

∆k ≤ max

(
1 + logEkI (Ek ≥ 1)− 1

2
logEkI (Ek < 1)− 1

2
logOk, 1

)
= 1 + logEkI (Ek ≥ 1)− 1

2
logEkI (Ek < 1)− 1

2
logOk.

Let Yk = 1 + logEkI (Ek ≥ 1)− 1
2 logEkI (Ek < 1). Then we have

∆2
k ≤ Y 2

k − Yk logOk +
1

4
(logOk)

2
,

Y 2
k = 1 +

(
(logEk)

2
+ 2 logEk

)
I (Ek ≥ 1) +

(
1

4
(logEk)

2 − logEk

)
I (Ek < 1) .

By independence of Ok and Ek, we have

E
[
∆2
kI
(
Ok < 2−κZ

)]
≤ E

[
Y 2
k

]
· P
(
Ok < 2−κZ

)
− E [Yk]E

[
logOkI

(
Ok < 2−κZ

)]
+

1

4
E
[
(logOk)

2 I
(
Ok < 2−κZ

)]
.

We first prove that E [Yk] and E
[
Y 2
k

]
are O(1). By Hölder’s inequality, we have for any event A

E [|logEk|p I (A)] ≤ E
[
|logEk|2p

] 1
2

. However, ∀p ≥ 1,∃cp > 0 s.t. |log x|p ≤ cp
(
x−δ + x

)
by Lemma 1.

By Lemma 3, E
[
E−δk

]
is bounded above. Therefore, E [Yk] and E

[
Y 2
k

]
are both O(1).

Next, we prove that P (Ok < 2−κZ) and E [|logOk|p I (Ok < 2−κZ)] are both arbitrarily close
to the convergence speed O(2−(1+α)k). By Hölder’s inequality, E [|logOk|p I (Ok < 2−κZ)] ≤
E [|logOk|pq]

1
q P (Ok < 2−κZ)(

1− 1
q ). We have shown above that E [|logOk|pq]

1
q is O(1) for fixed p, q, and

P (Ok < 2−κZ) ≤ P (|Ok − Z| > (1− 2−κ)Z) ≤ E[|Ok−Z|2+ε]
((1−2−κ)Z)2+ε

= O
(
2−(1+ε/2)k

)
, by Markov’s inequality and

Lemma 2. Take q to be sufficiently large to obtain P (Ok < 2−κZ)(
1− 1

q ) = O
(
2−(1+α)k

)
, where α can be

arbitrarily close to ε
2 .

Hence P (Ok < 2−κZ) and E [|logOk|p I (Ok < 2−κZ)] are both O
(
2−(1+α)k

)
, where α can be arbitrarily close to

ε
2 . Therefore, E

[
∆2
kI (Ok < 2−κZ)

]
= O

(
2−(1+α)k

)
, and by symmetry the case is similar for Ek < 2−κZ.

Combining all the results, since E
[
∆2
k

]
≤ E

[
∆2
kI
(
OkEk ≥ 2−2κZ2

)]
+ E

[
∆2
kI (Ok < 2−κZ)

]
+

E
[
∆2
kI (Ek < 2−κZ)

]
, we obtain E

[
∆2
k

]
= O

(
2−(1+α)k

)
, where α can be taken arbitrarily close to min

(
ε
2 , 1
)
.

Therefore, all values of r strictly in
(

1
2 , 1−

1
21+α

)
admit finite variance for ˆ̀ml(θ) by Theorem 1, where

α = min
(
ε
2 , 1
)
.
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3 Proof of Theorem 3

We first provide here a general result for the SNIS estimator

π̂(k)[ψ] =

k∑
i=1

w̄iψ(zi), w̄i =
wi∑k
j=1 wj

introduced in Section 2.1. We will use the following notation for the standard Monte Carlo estimator of the
expectation of a function ψ with respect to a measure µ, µ̂(k)

MC[ψ] := 1
k

∑k
i=1 ψ(zi) for zi

i.i.d.∼ µ.

Lemma 5. Assume that the SNIS estimator π̂(k)[ψ], with unnormalized target density γ(z), normalizing constant
Z, normalized density π(z), proposal density q(z) and importance weight w(z) = γ(z)

q(z) , satisfies Eq[w(z)2p] <∞

for some p ≥ 1. Then for any bounded test function ψ, E
[∣∣π̂(k)[ψ]− π[ψ]

∣∣2p] = O(k−p).

Proof. We note that

π[ψ] =
q[wψ]

q[w]
=
q[wψ]

Z
, π̂(k)[ψ] =

q̂
(k)
MC[wψ]

q̂
(k)
MC[w]

.

We have the following decomposition

π̂(k)[ψ]− π[ψ] = π̂(k)[ψ]− 1

Z
q̂

(k)
MC[wψ] +

1

Z
q̂

(k)
MC[wψ]− π[ψ]

=
1

Z

[(
q[w]− q̂(k)

MC[w]
)
π̂(k)[ψ] +

(
q̂

(k)
MC[wψ]− q[wψ]

)]
By the Cp-inequality, we have for p ≥ 1/2∣∣∣π̂(k)[ψ]− π[ψ]

∣∣∣2p ≤ 1

Z2p

(∣∣∣(q[w]− q̂(k)
MC[w]

)
π̂(k)[ψ]

∣∣∣+
∣∣∣q̂(k)

MC[wψ]− q[wψ]
∣∣∣)2p

≤ 22p−1

Z2p

(∣∣∣(q[w]− q̂(k)
MC[w]

)
π̂(k)[ψ]

∣∣∣2p +
∣∣∣q̂(k)

MC[wψ]− q[wψ]
∣∣∣2p) . (3)

For |ψ| ≤ B, ∣∣∣π̂(k)[ψ]− π[ψ]
∣∣∣2p ≤ 22p−1

Z2p

(
B2p

∣∣∣q[w]− q̂(k)
MC[w]

∣∣∣2p +
∣∣∣q̂(k)

MC[wψ]− q[wψ]
∣∣∣2p) .

Hence we can conclude by by Lemma 2.

Lemma 6. With the same notation as in Lemma 5, suppose instead Eq[w(z)2ps] <∞ and Eq
[
|ψ(z)|2pt

]
<∞,

where s, t ≥ 1 and 1
s + 1

t = 1, then E
[∣∣π̂(k)[ψ]− π[ψ]

∣∣2p] = O(k−p+1/t).

Proof. Following (3), it is sufficient to study the term E
[∣∣∣(q[w]− q̂(k)

MC[w]
)
π̂(k)[ψ]

∣∣∣2p]. By Hölder’s inequality,

we have

E
[∣∣∣(q[w]− q̂(k)

MC[w]
)
π̂(k)[ψ]

∣∣∣2p] ≤ E
[∣∣∣q[w]− q̂(k)

MC[w]
∣∣∣2ps]1/s

E
[∣∣∣π̂(k)[ψ]

∣∣∣2pt]1/t

where s, t ≥ 1 such that 1
s + 1

t = 1. The first term E
[∣∣∣q[w]− q̂(k)

MC[w]
∣∣∣2ps]1/s

decays at O (k−p) by Lemma 2.

For the second term E
[∣∣π̂(k)[ψ]

∣∣2pt]1/t = E
[∣∣∣∑k

i=1 w̄iψ(zi)
∣∣∣2pt]1/t

, we have E
[∣∣∣∑k

i=1 w̄iψ(zi)
∣∣∣2pt]1/t

≤

E
[∣∣∣∑k

i=1 w̄i |ψ(zi)|
∣∣∣2pt]1/t

≤ E
[∑k

i=1 |ψ(zi)|2pt
]1/t

≤ k1/tE
[
|ψ(zi)|2pt

]1/t
where the second inequality follows

from w̄i ≥ 0,
∑k
i=1 w̄i = 1. Hence E

[∣∣∣(q[w]− q̂(k)
MC[w]

)
π̂(k)[ψ]

∣∣∣2p] converges to 0 at a O(k−p+1/t) rate.



We recall below the statement of Theorem 3 and give its proof.

Theorem. Assume there exists a > 4, b ≥ 2a
a−4 such that Eqφ

[
w(z)a + |ψ(z)|b

]
< ∞. Then π̂ml[ψ] satisfies

Theorem 1 for r ∈
(

1
2 , 1−

1
21+α

)
, where α = 1− 2

b > 0.

Alternatively, if 2 < a ≤ 4, b > 2a+4
a−2 , or a > 4, 2a+4

a−2 < b ≤ 2a
a−4 , then π̂ml[ψ] satisfies Theorem 1 for

r ∈
(

1
2 , 1−

1
21+α

)
, where α = a

2 −
a+2
b − 1 > 0.

Proof. We check that the assumptions of Theorem 1 are satisfied.

Assumption (a): π̂(k)[ψ] → π[ψ] in L2q by Lemma 6 (choice of q, s, t established later), so π̂(k)[ψ] is uniformly
integrable, hence similarly to the proof of Theorem 2 π̂ml[ψ] is an unbiased estimator of π[ψ].

Assumption (c): This trivially holds.

Assumption (b): We have

∆k = π̂
(2(k+1))
O∪E [ψ]− 1

2

(
π̂

(2k)
O [ψ] + π̂

(2k)
E [ψ]

)
=

2k∑
i=1

w̄
O/O∪E
i ψ(zOi ) +

2k∑
i=1

w̄
E/O∪E
i ψ(zEi )− 1

2

 2k∑
i=1

w̄Oi ψ(zOi ) +

2k∑
i=1

w̄Ei ψ(zEi )


where

w̄
O/O∪E
i =

wOi∑2k

j=1 w
O
j +

∑2k

j=1 w
E
j

, w̄
E/O∪E
i =

wEi∑2k

j=1 w
O
j +

∑2k

j=1 w
E
j

.

Consider the coefficients cOi , cEi for each ψ(zOi ) and ψ(zEi ). Rearranging the terms gives that

cOi = w̄
O/O∪E
i − 1

2
w̄Oi =

wOi∑2k

j=1 w
O
j +

∑2k

j=1 w
E
j

− 1

2

wOi∑2k

j=1 w
O
j

=
wOi

(∑2k

j=1 w
O
j −

∑2k

j=1 w
E
j

)
2
(∑2k

j=1 w
O
j

)(∑2k

j=1 w
O
j +

∑2k

j=1 w
E
j

) =
wOi (Ok − Ek)

2
∑2k

j=1 w
O
j (Ok + Ek)

and similarly cEi =
wEi (Ek−Ok)

2
∑2k

i=j w
E
j (Ok+Ek)

. Hence,

∆k =

2k∑
i=1

cOi ψ(zOi ) +

2k∑
i=1

cEi ψ(zEi ) =
Ok − Ek

2 (Ok + Ek)

 2k∑
i=1

w̄Oi ψ(zOi )−
2k∑
i=1

w̄Ei ψ(zEi )

 .

Consequently, we have

E
[
∆2
k

]
= E

[
(Ok − Ek)

2

4 (Ok + Ek)
2

(
π̂

(2k)
O [ψ]− π̂(2k)

E [ψ]
)2
]
≤ E

[
|Ok − Ek|2p

4p (Ok + Ek)
2p

]1/p

E
[∣∣∣π̂(2k)

O [ψ]− π̂(2k)
E [ψ]

∣∣∣2q]1/q

for 1
p + 1

q = 1 by Hölder’s inequality.

By Lemma 6, E
[∣∣∣π̂(2k)

O [ψ]− π[ψ]
∣∣∣2q] decays at rate O(2−(q−1/t)k) if Eq[w(z)2qs] < ∞, Eq

[
|ψ(z)|2qt

]
< ∞, and

1
s + 1

t = 1. By Lemma 4, we conclude that if a ≥ 2qs, b ≥ 2qt, E
[∣∣∣π̂(2k)

O [ψ]− π̂(2k)
E [ψ]

∣∣∣2q]1/q

= O
(

2−(1− 1
qt )k

)
.

For E
[
|Ok−Ek|2p

4p(Ok+Ek)2p

]
, we can similarly consider two cases.

1. Case Ok, Ek large, i.e. Ok ≥ 2−κZ and Ek ≥ 2−κZ, where κ > 0 is a constant:
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Since wi has finite a moments, if we choose 2p ≤ a, we have for the numerator E
[
|Ok − Ek|2p

]
= O(2−pk) using

Lemma 2 and 4, and the denominator is bounded below. Hence E
[
|Ok−Ek|2p

(Ok+Ek)2p
I {Ok ≥ 2−κZ,Ek ≥ 2−κZ}

]
=

O(2−pk).

If we choose 2p ≥ a, we have that

|Ok − Ek|2p

(Ok + Ek)
2p ≤

|Ok − Ek|a

(Ok + Ek)
a ,

since |Ok−Ek|
2p

(Ok+Ek)2p
is bounded above by 1, and similarly E

[
|Ok−Ek|2p

(Ok+Ek)2p
I {Ok ≥ 2−κZ,Ek ≥ 2−κZ}

]
= O(2−ak/2).

2. Case Ok or Ek small, i.e. Ok < 2−κZ or Ek < 2−κZ:

We have that |Ok−Ek|
2p

(Ok+Ek)2p
is bounded above by 1. Hence, we have

E

[
|Ok − Ek|2p

(Ok + Ek)
2p I
(
Ok < 2−κZ

)]
≤ P

(
Ok < 2−κZ

)
= O(2−ak/2),

where the last line is by the proof of Theorem 2. The case is similar for Ek < 2−κZ.

Therefore, we have that if we choose 2p ≤ a, E
[
|Ok−Ek|2p

4p(Ok+Ek)2p

]
is O(2−pk), hence E

[
|Ok−Ek|2p

4p(Ok+Ek)2p

]1/p
is O

(
2−k

)
.

Aggregating the results, we have that E
[
∆2
k

]
= O

(
2−k · 2−(1− 1

qt )k
)

= O
(

2−(2− 1
qt )k

)
. Collecting together the

conditions, we must have that

2qs ≤ a
2qt ≤ b
2p ≤ a

as well as the Hölder conjugate conditions 1
p + 1

q = 1, 1
s + 1

t = 1, p, q, s, t ≥ 1.

Let u = qt, which we would like to maximize. Then solving the equation we have equivalently that

u ≤ a

2
t− a

2

u ≤ b

2

u ≥ a

a− 2
t.

In order for this set to be valid, one can check that we must have a+b
a ≤ b(a−2)

2a , i.e. a > 4, b ≥ 2a
a−4 . Solving

for the maximum u, we have that u = b
2 , and the rest can be taken as t = b(a−2)

2a , s = t
t−1 , p = u

u−t = a
2 and

q = u
t = a

a−2 . Thus we have overall a convergence rate O
(

2−(2− 2
b )k
)
. For multilevel Monte Carlo to work, we

must have the strict inequality that 2
b < 1, i.e. b > 2, so that α = 1− 2

b > 0, but this is implied by b ≥ 2a
a−4 .

If we choose 2p ≥ a, E
[
|Ok−Ek|2p

4p(Ok+Ek)2p

]
is O(2−ak/2), hence E

[
|Ok−Ek|2p

4p(Ok+Ek)2p

]1/p
is O(2−

ak
2p ). Aggregating the results,

we have that E
[
∆2
k

]
= O

(
2−

ak
2p · 2−(1− 1

qt )k
)

= O
(

2−(1+ a
2p−

1
qt )k

)
. Collecting together the conditions, we must

have that

2qs ≤ a
2qt ≤ b
2p > a
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Figure 1: Empirical confirmation of the convergence rate of E[∆2
k] for (a) ˆ̀ml(θ); (b) π̂ml[ψ] with ψ(z) :=

∇θ log pθ(x, z); and (c) π̂ml[ψ] with ψ(z) := −∇φ log qφ(z|x). For all three estimators, the convergence rate of
E[∆2

k] is close to the theoretical upper bound O(2−2k).

as well as the Hölder conjugate conditions 1
p + 1

q = 1, 1
s + 1

t = 1, p, q, s, t ≥ 1. Notice here that a
2p ≤ 1 by our

assumption, and that 2qt ≤ b, so the overall convergence rate O
(

2−(1+ a
2p−

1
qt )k

)
is slower than O

(
2−(2− 2

b )k
)
.

Therefore, when a > 4, b ≥ 2a
a−4 holds, we already have the best convergence rate O

(
2−(2− 2

b )k
)
.

We would like to maximize 1 + a
2p −

1
qt = 1 + a

2 −
a
2q −

1
qt , so we would like to minimize a

2q + 1
qt = at+2

2qt . Again
letting u = qt, we have equivalently that

u ≤ a

2
t− a

2

u ≤ b

2

u ≤ a

a− 2
t

u ≥ t.

(In the case a ≤ 4 or a > 4, b ≤ 2a
a−4 , the third inequality is slack.) Solving again, the minimum at+2

2qt = 1+ a+2
b is

attained at u = b
2 , t = a+b

a , s = a+b
b , p = u

u−t = ab
ab−2a−2b and q = u

t = ab
2(a+b) . Hence the overall convergence rate

O
(

2−(1+ a
2p−

1
qt )k

)
= O

(
2−( a2−

a+2
b )k

)
. For multilevel Monte Carlo to work, we must have the strict inequality

that a
2 −

a+2
b > 1, i.e. a > 2, b > 2a+4

a−2 , so that α = a
2 −

a+2
b − 1 > 0.

Corollary 7. Assume there exists ε, δ > 0 such that Eqφ
[
w(z)2+ε + w(z)−δ

]
< ∞. Then π̂ml[logw] satisfies

Theorem 1 for r ∈
(

1
2 , 1−

1
21+α

)
, where α = min

(
ε
2 , 1
)
> 0.

Proof. By Lemma 1, all moments of logw are finite under qφ. Therefore, taking b arbitrarily large in Theorem
3 gives us the result.

4 Empirical Confirmation of the Convergence Rate of E[∆2
k]

We confirm our theoretical results and verify the convergence rate of E[∆2
k] using the same example as in

Section 7.1 for the three estimators: ˆ̀ml(θ), π̂ml[ψ] with ψ(z) := ∇θ log pθ(x, z), and π̂ml[ψ] with ψ(z) :=
−∇φ log qφ(z|x). The experiments are conducted with 10 random perturbations and 1000 estimator samples per
each perturbation, and the values of E[∆2

k] are taken as the mean of the 10 trials. We observe that E[∆2
k] for all

estimators converges much faster than O
(
2−1.5k

)
(corresponding to α = 0.5) and very close to our theoretical

limit O(2−2k) (corresponding to α = 1) when k is large. Therefore, Theorem 1 justifies the use of our approach
with approximately r ∈ (0.5, 0.75).
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5 Comparing Single Sample (ss) and Russian Roulette (rr) Estimators

For simplicity, we consider the first term I0 and the telescoping part s̃s = ∆K

p(K) , r̃r =
∑K
k=0

∆k

P(K≥k) in ss and
rr separately. If I0 is sampled independently, the variance of ss or rr is simply the sum of the variance of the
two parts.

5.1 Variance of Single Sample (ss) Estimator

It is straightforward to show that

E [s̃s] =

∞∑
k=0

E [∆k] , E
[
s̃s2
]

=

∞∑
k=0

E
[
∆2
k

]
p(k)

. (4)

Hence we have

Var (s̃s) = E
[
s̃s2
]
− E [s̃s]

2 (5)

=

∞∑
k=0

E
[
∆2
k

]
p(k)

−

( ∞∑
k=0

E [∆k]

)2

(6)

=

∞∑
k=0

Var (∆k)

p(k)︸ ︷︷ ︸
¬

+

 ∞∑
k=0

E [∆k]
2

p(k)
−
∞∑
k=0

E [∆k]
2 − 2

∑
i,j:i<j

E [∆i]E [∆j ]


︸ ︷︷ ︸

­

. (7)

5.2 Variance of Russian Roulette (rr) Estimator

Var (r̃r) = E
[
r̃r2

]
− E [r̃r]

2

= E

E
( K∑

k=0

∆k

P (K ≥ k)

)2

|K

−( ∞∑
k=0

E [∆k]

)2

= E

 K∑
k=0

E
[
∆2
k

]
P (K ≥ k)

2 + 2

K∑
i,j:i<j

E [∆i∆j ]

P (K ≥ i)P (K ≥ j)

− ∞∑
k=0

E [∆k]
2 − 2

∑
i,j:i<j

E [∆i]E [∆j ]

=

∞∑
k=0

E
[
∆2
k

]
P (K ≥ k)

+ 2
∑
i,j:i<j

E [∆i∆j ]

P (K ≥ i)
−
∞∑
k=0

E [∆k]
2 − 2

∑
i,j:i<j

E [∆i]E [∆j ]

=

∞∑
k=0

Var (∆k)

P (K ≥ k)
+ 2

∑
i,j:i<j

Cov(∆i,∆j)

P (K ≥ i)︸ ︷︷ ︸
¬

+

 ∞∑
k=0

E [∆k]
2

P (K ≥ k)
+ 2

∑
i,j:i<j

E [∆i]E [∆j ]

P (K ≥ i)
−
∞∑
k=0

E [∆k]
2 − 2

∑
i,j:i<j

E [∆i]E [∆j ]


︸ ︷︷ ︸

­

5.3 Proof of Theorem 1 for Russian Roulette (rr)

In Blanchet et al. (2019), only Theorem 1 for ss is mentioned. Here we show that the theorem similarly holds
for rr.
Theorem. If the following conditions hold:

(a) E [I0] +
∑∞
k=0 E [∆k] = I∞;



(b) I0 has finite variance, and there exists α, c > 0 such that E
[
∆2
k

]
≤ c · 2−(1+α)k for all k;

(c) E [Ck] ≤ c′ · 2k for some c′ > 0, where Ck is the sampling cost of ∆k;

then for K ∼ Geom(r) where r ∈ ( 1
2 , 1−

1
21+α ), rr is an unbiased estimator of I∞, whose variance and expected

sampling cost are both finite.

Proof. The unbiasedness of rr is standard. Finite expected sampling cost follows directly from Theorem 1 for
ss, since the sampling cost of ss and rr are the same. To show finite variance, we show that

E
[
r̃r2

]
=

∞∑
k=0

E
[
∆2
k

]
P (K ≥ k)

+ 2
∑
i,j:i<j

E [∆i∆j ]

P (K ≥ i)

is finite. Since E
[
∆2
k

]
≤ c · 2−(1+α)k, for fixed i

∑
j>i

|E [∆i∆j ]| ≤
√
c · 2− 1

2 (1+α)i ·
√
c · 2− 1

2 (1+α)(i+1) · 1

1− 2−
1
2 (1+α)

= O(2−(1+α)i).

Now P (K ≥ k) = (1− r)k, where 1− r ∈
(
2−(1+α), 1

2

)
. Therefore E

[
r̃r2

]
<∞, and rr has finite variance.

6 Using Thermodynamic Integration

6.1 Proof of Proposition 5

Proposition. The following identity holds

ˆ̀(k)(θ) =

∫ 1

0

π̂
(k)
β [logw]dβ. (8)

It follows that ˆ̀ml(θ) =
∫ 1

0
ˆ̀ml
ti (θ)dβ, i.e. ˆ̀ml(θ) is a Rao-Blackwellized version of ˆ̀ml

ti (θ) and thus Var(ˆ̀ml
ti (θ)) ≥

Var(ˆ̀ml(θ)).

Proof. We have that

π̂
(k)
β [logw] =

k∑
i=1

wβi∑k
j=1 w

β
j

logwi. (9)

By directly differentiating β 7→ F (β) = log
(

1
k

∑k
i=1 w

β
i

)
with respect to β, we have that F ′(β) =∑k

i=1
wβi∑k
j=1 w

β
j

logwi. Hence
∫ 1

0
π̂

(k)
β [logw]dβ = F (1)− F (0) = log

(
1
k

∑k
i=1 wi

)
= `(k)(θ).

For ˆ̀ml
ti (θ),

∆k =

2k∑
i=1

(
wOi
)β∑2k

j=1

(
wOj
)β

+
∑2k

j=1

(
wEj
)β logwOi +

2k∑
i=1

(
wEi
)β∑2k

j=1

(
wOj
)β

+
∑2k

j=1

(
wEj
)β logwEi

− 1

2

 2k∑
i=1

(
wOi
)β∑2k

j=1

(
wOj
)β logwOi +

2k∑
i=1

(
wEi
)β∑2k

j=1

(
wEj
)β logwEi

 .

Directly integrating gives that
∫ 1

0
∆k(β)dβ = log

(
1
2 (OK + EK)

)
− 1

2 (logOK + logEK), which corresponds to ∆k

for ˆ̀ml(θ). Hence ˆ̀ml(θ) =
∫ 1

0
ˆ̀ml
ti (θ)dβ.
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6.2 Proof of Proposition 6

Proposition. Ez1:k [ˆ̀
(k)
tvo(θ)] ≤ Ez1:k [ˆ̀(k)(θ)], regardless of the placement of all βt, i.e. ˆ̀(k)

tvo(θ) is less tight than
iwae due to the SNIS bias.

Proof. ˆ̀(k)
tvo(θ) =

∑T−1
t=0 (βt+1−βt)π̂(k)

βt
[logw] can be viewed as a left Riemann sum approximation of the integral∫ 1

0
π̂

(k)
β [logw]dβ = ˆ̀(k)(θ), where the equality is due to Proposition 5. However,

∂

∂β
π̂

(k)
β [logw] =

(∑k
i=1 w

β
i (logwi)

2
)(∑k

j=1 w
β
j

)
−
(∑k

i=1 w
β
i logwi

)(∑k
j=1 w

β
j logwj

)
(∑k

j=1 w
β
j

)2 ≥ 0

by the Cauchy–Schwarz inequality. Therefore, the integrand π̂
(k)
β [logw] is non-decreasing in β, and the left

Riemann sum approximation ˆ̀(k)
tvo(θ) ≤ ˆ̀(k)(θ), hence E[ˆ̀

(k)
tvo(θ)] ≤ E[ˆ̀(k)(θ)] = `

(k)
iwae(θ).

6.3 Proof of Theorem 7

By the propositions, it is thus not favorable to unbiasedly estimate the log-likelihood via the thermodynamic
identity, or use SNIS to biasedly estimate `tvo(θ). However, it is possible to unbiasedly estimate `tvo(θ), and an
advantage is that the moment conditions in Theorem 1 can be relaxed for multilevel Monte Carlo to have finite
variance:

Theorem. Assume there exists ε, δ > 0 such that Eqφ
[
w(z)βT−1(2+ε) + w(z)−δ

]
< ∞. Then ˆ̀ml

tvo(θ) satisfies
Theorem 1 for r ∈

(
1
2 , 1−

1
21+α

)
, where α = min

(
ε
2 , 1
)
.

Proof. This is a direct application of Corollary 7. Unbiasedness and finite expected computation follows directly
from the unbiasedness and finite expected computation of π̂(k)

βt
[logw] for each βt.

Finite variance follows directly from Corollary 7 as well, since in order for the tempered importance weights
w(z)βt in π̂(k)

βt
[logw] to have finite 2 + ε moments, equivalently w(z) only needs to have finite βt(2 + ε) moments.

Since we require this for all βt in 0 = β0 < β1 < · · · < βT−1 < 1, we require that Eqφ
[
w(z)βT−1(2+ε)

]
<∞.

6.4 SNIS Bias in the Covariance Gradient Estimator for θ

We note that Masrani et al. (2019) directly consider the gradient via the covariance gradient estimator

∇λπβ [logw] = πβ [∇λ logw] + Covπβ [∇λ log π̃β , logw]

for λ = {θ,φ}, where

Covπβ [∇λ log π̃β , logw] = Eπβ
[(
∇λ log π̃β − Eπβ [∇λ log π̃β ]

) (
logw − Eπβ [logw]

)]
.

However, Masrani et al. (2019) use SNIS for the RHS, and in particular for the θ gradients the SNIS estimator
for the covariance gradient estimator is precisely

k∑
i=1

wβi ∇θ logwi +

k∑
i=1

wβi

∇θ log π̃β(zi)−
k∑
j=1

wβj∇θ log π̃β(zj)

logwi −
k∑
j=1

wβj logwj


=

k∑
i=1

wβi ∇θ logwi +

k∑
i=1

wβi logwi∇θ log π̃β(zi)−

(
k∑
i=1

wβi logwi

)(
k∑
i=1

wβi ∇θ log π̃β(zi)

)

=

k∑
i=1

wβi ∇θ logwi + β

k∑
i=1

wβi logwi∇θ log pθ(x, zi)−

(
k∑
i=1

wβi logwi

)(
β

k∑
i=1

wβi ∇θ log pθ(x, zi)

)
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Figure 2: Empirical bias squared, variance and signal-to-noise ratio (SNR) of estimators of
∇φKL(pθ(z|x)||qφ(z|x)), plotted against expected computational cost.

This is the identical to differentiating the SNIS estimator π̂(k)
β [logw] directly, since

∇θπ̂(k)
β [logw] = ∇θ

k∑
i=1

wβi∑k
j=1 w

β
j

logwi

=

k∑
i=1

wβi ∇θ logwi + β

k∑
i=1

wβi logwi∇θ logwi −

(∑k
i=1 w

β
i logwi

)(
β
∑k
j=1 w

β
j∇θ logwj

)
(∑k

j=1 w
β
j

)2

=

k∑
i=1

wβi ∇θ logwi + β

k∑
i=1

wβi logwi∇θ log pθ(x, zi)−

(
k∑
i=1

wβi logwi

)(
β

k∑
i=1

wβi ∇θ log pθ(x, zi)

)
.

Therefore, using the covariance gradient estimator for θ is the same as ∇θπ̂(k)
β [logw], so the SNIS bias in ˆ̀(k)

tvo(θ)
carries over to the covariance estimator.

We note that this analysis applies to the θ objective and its gradients, when viewing tvo as an estimator of
`(θ), but not the use of tvo for the φ gradients.

7 Further Experiment Details

We provide some further experiment details and results in this section.

7.1 Linear Gaussian Experiment

With the same linear Gaussian example, we further analyze different estimators of the gradient of the forward KL
∇φKL(pθ(z|x)||qφ(z|x)). We compare the ml-ss, ml-rr and sumo estimators of π̂[ψ], ψ(z) := −∇φ log qφ(z|x)
against the φ gradient in Reweighted Wake-Sleep (rws), which uses a biased SNIS estimator.

From Figure 2, we observe that ss and rr achieve the lowest bias squared again compared to rws and sumo at
the same computational cost, while obtaining higher variance than rws but lower variance than sumo. As iwae
suffers from the vanishing gradient problem, ss and rr also achieve higher SNR than the iwae estimator, even
at a low computational cost.

7.2 2D Density Modeling Experiment

For the second example, we compare VAE training using different estimators with the Figure-8 dataset proposed
by Yacoby et al. (2020). We use the same flexible VAE architecture, with the encoder and decoder both
parameterized by a neural network with 3 hidden layers and 50 leaky ReLU units in each layer, so that the
model is flexible enough to learn the ground truth model. We use the Adam optimizer with a learning rate of
2.5 · 10−4 and train for a maximum of 2000 epochs with early stopping applied based on the validation set.
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Table 1: Test negative log-likelihood of the trained models for the Figure-8 dataset when trained using different
estimators and qφ objectives. All estimators have an expected sampling cost of 5 terms (except for sumo which
has a expected sampling cost of 6 terms).

(a)

Baselines

elbo 0.9659±0.0046

iwae 0.9325±0.0054

rws-stl 0.9387±0.0074

(b)

qφ objectives

Estimators elbo iwae Unbiased rws-stl Var

sumo 0.9836±0.0107 0.9278±0.0058 0.9222±0.0036 0.9226±0.0091

ml-ss 0.9843±0.0029 0.9263±0.0019 0.9216±0.0041 0.9228±0.0076

ml-rr 0.9727±0.0057 0.9258±0.0027 0.9202±0.0048 0.9222±0.0071

Table 2: Other test metrics of the trained models for the Figure-8 dataset when trained with the ml-ss log-
likelihood estimator and different φ objectives.

qφ objectives

elbo iwae Unbiased rws-stl Var

KL(qφ ‖ pθ) 0.1570±0.0114 0.7390±0.2292 1.0066±0.2469 1.3684±0.0663

E[w4]1/4 3.6667±0.4088 2.1612±0.7074 1.7557±0.1921 1.7534±0.2612

k̂ 1.0122±0.2337 0.2475±0.1783 0.3259±0.1668 -0.7768±0.1823

We provide a further study of suitable training objectives for qφ here. Although the sumo, ml-ss, and ml-rr
log-likelihood estimators are unbiased estimators under reasonable conditions, we observe from Table 1 that
the choice of the qφ objective can still have a large impact on training. Maximizing the elbo (or equivalently
minimizing the reverse KL) resulted in the worst test log-likelihood among all tested qφ training objectives due
to the mode-seaking property of the reverse KL. In particular, an important quantity we considered is E[w4]1/4,
which is an essential quantity in our proofs of finite variance. We also compute the Pareto-smoothed importance
sampling diagnostic k̂ (Vehtari et al., 2016), whose inverse gives an estimate of the number of existing moments
of w when k̂ > 0. Finite variance of ˆ̀ml(θ) can be achieved approximately when k̂ < 0.5. From Table 2, we see
that maximizing the elbo for qφ resulted in the lowest reverse KL but the highest sample 4th moment and k̂ > 1,
which confirms that qφ(z|x) does not cover the true posterior pθ (z|x) well and can lead to infinite variance even
biased estimators. On the contrary, using the variance or the unbiased rws-stl objective (both reuse samples
and do not require generating new samples) achieved the best test log-likelihood, and in particular the variance
objective achieves the lowest value of k̂ < 0, which justifies our approach and indicates finite variance of ˆ̀ml(θ)
for all r ∈ (0.5, 0.75).

7.3 Image Modeling Experiment

For the image modeling experiment, we follow the training scheme proposed by Luo et al. (2020, Appendix A.8)
with batch size 100, the Amsgrad optimizer (Reddi et al., 2018) and the same gradient norm clipping scheme
for pθ. However, in order to accurately compare different estimators under same budget, we fix the number of
training epochs to 3280 for all estimators and use a linear learning rate decay from 10−3 to 10−4. We also only
modify the pθ objective for this experiment, with different estimators in place of iwae for pθ, which provides a
fair comparison to the iwae baseline. iwae is used to train qφ and new samples are drawn for all estimators.

For this example, we find that the convergence rate of E[∆2
k] at initialization is O

(
2−(1+α)k

)
with α ≈ 0.5,

which justifies the use of r ∈ (0.5, 0.6464), but the value of α decays to less than 0 as training progresses. To
solve this, similar to Luo et al. (2020), we propose to modify the tail of the sampling distribution of K as
described in Section 5.4. We set kmax so that ml-rr is an unbiased estimator of iwae with k = 128, while
having a much smaller expected computational cost (5 or 15 terms in our experiments)1. This can also lower the

1Luo et al. (2020) propose to softly truncates the tail of K after k = 80 terms, so our modification is in line with



computational cost and limit the computation/memory usage to be less than 2kmax+1 samples. For ml-tvo-rr ,
we use 5 intermediate βt values and follow Masrani et al. (2019) for their placement. By applying thermodynamic
integration, faster convergence rate of E[∆2

k] can be established. This shows that the relaxation of the moment
condition from Eqφ

[
w(z)2+ε

]
< ∞ in Theorem 2 of main text to Eqφ

[
w(z)βT−1(2+ε)

]
< ∞ in Theorem 7 is

crucial to the convergence speed of E[∆2
k], at the cost of an approximation error in the numerical integration of

the 1D integral.

existing methods.
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Figure 3: Empirical confirmation of the convergence rate of E[∆2
k] for ˆ̀ml(θ), evaluated on the models trained

with pθ objective ˆ̀ml-ss(θ) and qφ objective (a) elbo; and (b) unbiased rws-stl; (c) Var ˆ̀ml-ss(θ) on the Figure-8
dataset. Clearly training with elbo as the qφ objective results in much slower convergence speed of E[∆2

k].
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Figure 4: Empirical confirmation of the convergence rate of E[∆2
k] for ˆ̀ml(θ), evaluated on (a) model at ini-

tialization; (b) model trained with ˆ̀ml(θ) on the MNIST dataset. (c) Convergence rate of E[∆2
k] for ˆ̀ml

tvo(θ),
evaluated on model trained with ˆ̀ml

tvo(θ). T = 5 and β1 = 0.01, βT−1 ≈ 0.3162 is taken using the log-uniform
spacing as in Masrani et al. (2019).
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Figure 5: Empirical confirmation of the convergence rate of E[∆2
k] for ∇θ ˆ̀ml(θ), evaluated on (a) model at

initialization; (b) model trained with ˆ̀ml(θ) on the MNIST dataset. (c) Convergence rate of E[∆2
k] for ∇θ ˆ̀ml

tvo(θ),
evaluated on model trained with ˆ̀ml

tvo(θ).
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