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Abstract

Standard variational schemes for training
deep latent variable models rely on biased
gradient estimates of the target objective.
Techniques based on the Evidence Lower
Bound (ELBO), and tighter variants ob-
tained via importance sampling, produce
biased gradient estimates of the true log-
likelihood. The family of Reweighted Wake-
Sleep (RWS) methods further relies on a
biased estimator of the inference objective,
which biases training of the encoder also. In
this work, we show how multilevel Monte
Carlo (MLMC) can provide a natural frame-
work for debiasing these methods with two
different estimators. We prove rigorously
that this approach yields unbiased gradient
estimators with finite variance under reason-
able conditions. Furthermore, we investigate
methods that can reduce variance and ensure
finite variance in practice. Finally, we show
empirically that the proposed unbiased esti-
mators outperform IWAE and other debias-
ing method on a variety of applications at the
same expected cost.

1 INTRODUCTION

Latent Variable Models (LVM) are ubiquitous in ma-
chine learning and statistics, but performing inference
and learning for such models are typically challenging
because exact likelihoods are rarely tractable. LVMs
model an observation x ∈ X as the marginal of a joint
probability density pθ(x, z) parameterized by θ, where
z ∈ Z denotes some latent variables. A standard ap-
proach to learn θ involves maximizing the log marginal
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likelihood

`(θ) := log pθ(x), where pθ(x) =

∫
Z
pθ(x, z) dz, (1)

averaged across observations of x from the ground
truth model pθ∗(x). However, the integral in (1) is
intractable for all but simple models. This is the case
for example with deep LVMs such as Variational Au-
toencoders (VAEs) (Kingma andWelling, 2014), which
parameterize pθ(x|z) using a neural network.

Common techniques for learning θ in this setting in-
volve the use of biased gradient estimates. A stan-
dard approach introduces a variational approximation
qφ(z|x) of the true posterior and optimizes the Ev-
idence Lower Bound (elbo), or more generally, the
Importance Weighted Autoencoder (iwae) objective
(Burda et al., 2016)1

`
(k)
iwae(θ,φ) = Ez1:k

[
log

(
1

k

k∑
i=1

wi

)]
≤ `(θ), (2)

where zi
i.i.d.∼ qφ(·|x) and wi := pθ(x,zi)

qφ(zi|x) . Optimizing

`
(k)
iwae(θ,φ) is performed jointly in θ and φ. However,
unless qφ(z|x) exactly matches pθ(z|x), then in gen-
eral ∇θ`(k)

iwae(θ,φ) 6= ∇θ`(θ), and hence SGD can op-
timize θ far from the true maximizer of `(θ) unless k
is large, as observed by e.g. Yacoby et al. (2020).

An alternative to iwae is the method of Reweighted
Wake-Sleep (rws) (Bornschein and Bengio, 2015),
which maintains `

(k)
iwae(θ,φ) as the objective for θ,

but for φ proposes to optimize the forward Kullback-
Leibler (KL) divergence KL(pθ(z|x)||qφ(z|x)). How-
ever, φ gradients of the forward KL are also usually in-
tractable and are approximated using Self-Normalized
Importance Sampling (SNIS), which introduces an ad-
ditional source of bias in the φ gradients.

In light of these problems, it is useful to consider how
to optimize `(θ) without relying on biased gradient

1We assume throughout that pθ(z|x) > 0 if and only if
qφ(z|x) > 0, so that wi > 0 almost surely.
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updates. Recently, Luo et al. (2020) proposed sumo,
which yields unbiased estimates of `(θ) via a Russian
Roulette mechanism (McLeish, 2011). However, the
variance of the estimator this produces is potentially
infinite, as noted therein. To address this, in this pa-
per we show how the multilevel Monte Carlo (mlmc)
method described by Blanchet et al. (2019) may be
used to debias `(θ),∇θ`(θ), as well as other quanti-
ties useful for the learning of deep LVMs with provable
control over the variance under weak assumptions.

Concurrently to us, Goda and Ishikawa (2019) and
Ishikawa and Goda (2020) independently proposed one
of the log-likelihood estimators ˆ̀ml-ss(θ) for LVMs that
we consider here, and established a result similar to
Theorem 2 under slightly different assumptions. In
this work, we go further by considering theoretical and
practical aspects of training with unbiased mlmc esti-
mators. In Section 4, we consider theory for debiasing
general SNIS estimators, and establish weak sufficient
conditions to admit finite variance in finite expected
time that do not require the evaluated function to be
bounded. This ensures finite variance for∇θ ˆ̀ml(θ) un-
der reasonable assumptions, as well as various gradient
estimates for the variational distribution qφ, which is
key to the training of LVMs. In Section 5, we pro-
vide further analysis of the variance of the unbiased
estimators, which provides some insight into variance
reduction and suitable training methods for qφ. When
the required finite variance assumptions are violated,
we further relate to thermodynamic integration (Gel-
man and Meng, 1998) and consider an extension of
the method that can still ensure finite variance in Sec-
tion 6. Finally, we provide novel experimental results
that the proposed mlmc estimators outperform iwae
and sumo on density and image modeling tasks at the
same expected cost.

2 BACKGROUND AND RELATED
WORK

2.1 Setup and Problem Statement

Consider the joint probability density pθ(x, z) defined
on X × Z, where the normalizing constant pθ(x) is
intractable, and define π(z) := pθ(z|x) = pθ(x,z)

pθ(x) to be
the posterior. Given a proposal density qφ(z|x) whose
support is equal to the support of π(z), we have the
following importance sampling identities

pθ(x) = qφ[w], π[ψ] =
qφ[wψ]

qφ[w]
, for w(z) :=

pθ(x, z)

qφ(z|x)
,

where we use the notation µ[f ] := Eµ[f(z)] for any
density µ and test function f . Using zi

i.i.d.∼ qφ(·|x) for
i = 1, ..., k, we obtain the following biased estimator

of the log marginal likelihood `(θ) = log pθ(x)

ˆ̀(k)(θ) = log

(
1

k

k∑
i=1

wi

)
, wi := w(zi), (3)

and the Self-Normalized Importance Sampling (SNIS)
estimator of π[ψ] for test function ψ

π̂(k)[ψ] =

k∑
i=1

w̄iψ(zi), w̄i :=
w(zi)∑k
j=1 w(zj)

. (4)

The iwae objective (Burda et al., 2016) is precisely
`
(k)
iwae(θ,φ) = Ez1:k [ˆ̀(k)(θ)]. The estimators ˆ̀(k)(θ)
and π̂(k)[ψ] are both consistent, but biased for any
finite k. For iwae, we further have that `(k)

iwae(θ,φ) is
a lower bound for `(θ) (Burda et al., 2016).

2.2 Unbiased Estimators of Approximable
Quantities

We now review a general framework for debiasing esti-
mators: that is, for producing unbiased estimators of
some quantity given only biased estimates. Denote a
quantity of interest by I∞, which may correspond to
log pθ(x) or π[ψ] in our context. Suppose I∞ can be
written as

I∞ = E[I0] +

∞∑
k=0

E[∆k]

for random variables I0 and (∆k)k≥0. We can estimate
I∞ unbiasedly via the following “single sample” (ss) or
“Russian Roulette” (rr) estimators (McLeish, 2011;
Rhee and Glynn, 2015; Blanchet et al., 2019):

ss = I0 +
∆K

p(K)
, rr = I0 +

K∑
k=0

∆k

P (K ≥ k)
, (5)

whereK ∼ p(·) is a non-negative integer sampled inde-
pendently. Unbiasedness follows directly when K has
full support, e.g.

E[ss] = E[I0] +

∞∑
k=0

E
[

∆K

p(K)
| K = k

]
︸ ︷︷ ︸

=E[∆k]/p(k)

p(k) = I∞.

However, the variance of ss and rr may be very large
or even infinite (McLeish, 2011; Rhee and Glynn, 2015;
Beatson and Adams, 2019) and depends crucially on
the choice of p(K) as well as ∆k. In order to guarantee
both finite variance and finite expected computation
time, we make use of the following result (Rhee and
Glynn, 2015; Blanchet et al., 2019) for ss and rr.

Theorem 1. If the following conditions hold:

(a) E [I0] +
∑∞
k=0 E [∆k] = I∞;
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(b) I0 has finite variance, and there exists α, c > 0
such that E

[
∆2
k

]
≤ c · 2−(1+α)k for all k;2

(c) E [Ck] ≤ c′ · 2k for some c′ > 0, where Ck is the
sampling cost of ∆k;

then for K ∼ Geom(r) where r ∈ ( 1
2 , 1−

1
21+α ), ss and

rr are unbiased estimators3 of I∞, whose variance and
expected sampling cost are both finite.

2.3 SUMO (Luo et al., 2020)

To estimate the log-likelihood I∞ = log pθ(x), it
appears natural to consider ∆sumo

k := ˆ̀(k+2)(θ) −
ˆ̀(k+1)(θ). The rr estimator with ∆sumo

k is precisely
the sumo estimator ˆ̀sumo(θ) (Luo et al., 2020). How-
ever, sumo is not guaranteed to have finite variance in
finite expected time, unless

E[(∆sumo
k )2] = O(k−(2+α))∑

j>kE[∆sumo
j ∆sumo

k ] = O(k−(2+α))
(6)

for some α > 0. Luo et al. (2020) only establish that
E[(∆sumo

k )2] = O(k−2) (and indeed under the strong
assumption that all moments of w(z) exist), resulting
in potentially unbounded variance as reported therein.

Note that the sampling cost of ∆sumo
k grows linearly

with k, and so falls outside of the context of Theorem
1, which assumes an exponentially increasing sample
cost in k. In order to obtain guarantees of finite vari-
ance, we might attempt to bring sumo closer to this
setting by considering ∆sumo′

k := ˆ̀(2k+1)(θ) − ˆ̀(2k)(θ).
However, this construction does not address the limita-
tions of sumo in general: Figure 1 shows an example
in which E[(∆sumo′

k )2] ≈ O(2−k) so that sumo′ also
appears to have infinite variance.

We next show how one can instead apply the multilevel
Monte Carlo (mlmc) methodology to obtain unbiased
estimators of log pθ(x) and π[ψ], and provide sufficient
conditions to verify Theorem 1.

3 UNBIASED MLMC
LOG-LIKELIHOOD ESTIMATOR

3.1 Definition

Multilevel Monte Carlo methodology of Blanchet and
Glynn (2015); Giles (2015); Blanchet et al. (2019) re-
lies on an alternative clever scheme to construct ∆k,

2Intuitively, since p(k) or P(K ≥ k) is O
(
(1− r)k

)
for

K ∼ Geom(r), we need E[∆2
k] to decay at least as fast to

ensure finite variance of the ∆K
p(K)

and
∑K
k=0

∆k
P(K≥k)

terms.
3Precisely, E [ss] = E [rr] = I∞, where the expectations

are taken over K, I0, and (∆k)k≥1.
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O(2−1.5k)
O(2−2k)

Figure 1: On the linear Gaussian example from Rain-
forth et al. (2018), while the importance weights w(z)
are suitably well-behaved, E[(∆sumo′

k )2] only converges
at approximately O(2−k), which results in infinite vari-
ance. On the other hand, E[(∆ml

k )2] ≈ O(2−2k), and
∆ml
k also has smaller variance than ∆sumo′

k .

which can ensure the construction of unbiased esti-
mators of `(θ) that admit finite variance and can be
computed in finite expected time.

We denote by zOi , zEi two independent sequences of
i.i.d. samples of qφ, where O,E denotes odd, even re-
spectively, and wOi , wEi the corresponding importance
weights. We then let I0 = ˆ̀(1)(θ) and

∆ml
k = ˆ̀(2

k+1)
O∪E (θ)− 1

2

(
ˆ̀(2

k)
O (θ) + ˆ̀(2

k)
E (θ)

)
, (7)

where ˆ̀(2
k)

O (θ) is computed as in (3) using the odd
samples {zOi }2

k

i=1 , ˆ̀(2
k)

E (θ) using the even samples
{zEi }2

k

i=1, and ˆ̀(2
k+1)

O∪E (θ) using {zOi }2
k

i=1 ∪{zEi }2
k

i=1. We
denote the corresponding multilevel ss/rr estimators
of `(θ) as ˆ̀ml-ss(θ) and ˆ̀ml-rr(θ), and collectively as
ˆ̀ml(θ).

3.1.1 Implementation Details

Several design choices are available in terms of prac-
tical implementation. For I0, it is possible to choose
any I0 such that E[I0] = E[ˆ̀(1)(θ)]. Therefore, we
can compute an average of ˆ̀(1)(θ) using all available
samples {zOi }2

k

i=1 ∪ {zEi }2
k

i=1.

It is also possible to start at a higher level l ≥ 1,
i.e. taking I0 = ˆ̀(2l)(θ) and ∆ml

k = ˆ̀(2
k+l+1)

O∪E (θ) −
1
2

(
ˆ̀(2

k+l)
O (θ) + ˆ̀(2

k+l)
E (θ)

)
. Using more samples in

each ∆k reduces the variance of the estimator, at
the cost of an increased computational cost. It can
be checked that the expected sampling cost is thus∑∞
k=0 2k+l+1p(k) = r·2l+1

1−2(1−r) .
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Algorithm 1 Unbiased multilevel estimator ˆ̀ml-ss(θ) of `(θ).

Input: Proposal qφ(z|x), unnormalized target pθ(x, z), probability mass function p(k).
1: Sample K ∼ p(k).
2: Sample {zi}2

K+1

i=1 = {zOi }2
K

i=1 ∪ {zEi }2
K

i=1
i.i.d.∼ qφ(z|x), compute logwi ← log pθ(x,zi)

qφ(zi|x) .

3: Compute I0 = mean
(
{logwi}2

K+1

i=1

)
.

4: Compute ˆ̀(2
K)

O (θ)← logmeanexp
(
{logwOi }2

K

i=1

)
, ˆ̀(2

K)
E (θ)← logmeanexp

(
{logwEi }2

K

i=1

)
.

5: Compute ˆ̀(2
K+1)

O∪E (θ)← logmeanexp
(
{logwi}2

K+1

i=1

)
= logmeanexp

(
ˆ̀(2

K)
O (θ), ˆ̀(2

K)
E (θ)

)
.

6: Compute ∆K = ˆ̀(2
K+1)

O∪E (θ)− 1
2

(
ˆ̀(2

K)
O (θ) + ˆ̀(2

K)
E (θ)

)
.

return ˆ̀ml-ss(θ) = I0 + ∆K

p(K) .

3.2 Theoretical Guarantees

Under the following weak assumptions on the moments
of the importance weights, Theorem 1 is satisfied by
ˆ̀ml(θ), i.e. ˆ̀ml(θ) is an unbiased estimator of `(θ),
admits finite variance and can be computed in finite
expected time:

Theorem 2. Assume there exists ε, δ > 0 such that
Eqφ

[
w(z)2+ε + w(z)−δ

]
< ∞. Then ˆ̀ml(θ) satis-

fies Theorem 1 for r ∈
(

1
2 , 1−

1
21+α

)
, where α =

min
(
ε
2 , 1
)
> 0.

We note that the finite 2 + ε moment condition on
w(z) are weaker than Blanchet et al. (2019), and are
assumed in general by other existing works such as
Domke and Sheldon (2018).

Intuitively, the key to this construction is that
E[∆ml

k ] = E[∆sumo′
k ], but when performing a Taylor

expansion the first order error in ∆ml
k are canceled.

Specifically, if we define Ok = 1
2k

∑2k

i=1 w
O
i , and Tay-

lor expand ˆ̀(2
k)

O (θ) = logOk at E[Ok] = pθ(x), we
have ˆ̀(2

k)
O (θ) = log pθ(x) + Ok−pθ(x)

pθ(x) + O(Ok−pθ(x)
pθ(x) )2

Similar expressions hold for ˆ̀(2
k)

E (θ) = logEk and
ˆ̀(2

k+1)
O∪E (θ) = log Ok+Ek

2 . Therefore, the 1st order er-
ror in ∆ml

k equals to

1
2 (Ok + Ek)− pθ(x)

pθ(x)
−1

2

(
Ok − pθ(x)

pθ(x)
+
Ek − pθ(x)

pθ(x)

)
= 0. (8)

This leads to E[(∆ml
k )2] converging at a faster rate

O(2−(1+α)k), which satisfies Theorem 1 and guaran-
tees finite variance for ˆ̀ml(θ).

4 UNBIASED MLMC ESTIMATOR
OF EXPECTATIONS

4.1 Definition

Similarly, in order to estimate I∞ = π[ψ] unbiasedly,
we can consider

∆ml
k = π̂

(2k+1)
O∪E [ψ]− 1

2

(
π̂

(2k)
O [ψ] + π̂

(2k)
E [ψ]

)
, (9)

where π̂(2k)
O [ψ], π̂

(2k)
E [ψ], π̂

(2k+1)
O∪E [ψ] are similarly com-

puted using odd, even, and all samples of z using equa-
tion (4). The corresponding ss/rr estimators of π[ψ]
are denoted π̂ml-ss[ψ] and π̂ml-rr[ψ], and collectively
as π̂ml[ψ].

In particular, if qφ(z|x) = pθ(z|x) exactly, it can be
shown easily that ∆ml

k ≡ 0, but such property does
not hold for sumo. This shows that when we have
an unbiased quantity I0 to start with, π̂ml[ψ] does not
introduce extra variance into the estimator.

4.2 Unbiased Estimation of ∇θ log pθ(x)

We now apply the introduced method to the problem
of learning LVMs. We are here interested in estimat-
ing unbiasedly the gradient ∇θ`(θ). Fisher’s identity
states that

∇θ`(θ) =

∫
pθ(z|x)∇θ log pθ(x, z)dz. (10)

This identity shows that estimating ∇θ`(θ) corre-
sponds to estimating π[ψ] for ψ(z) := ∇θ log pθ(x, z).
For iwae, π[ψ] is estimated using biased SNIS esti-
mates

π̂(k)[ψ] = ∇θ ˆ̀(k)(θ) =

k∑
i=1

w̄i∇θ log pθ(x, zi). (11)

Using mlmc, unbiased estimators π̂ml[ψ] can instead
be constructed with ss/rr. Since π̂(k)[ψ] = ∇θ ˆ̀(k)(θ),
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similarly π̂ml[ψ] = ∇θ ˆ̀ml(θ). This is not surprising as
E[ˆ̀ml(θ)] = `(θ), so under regularity conditions allow-
ing to swap differentiation and expectation, ∇θ ˆ̀ml(θ)
is indeed an unbiased estimator of ∇θ`(θ).

4.2.1 Implementation Details

Since π̂ml[ψ] = ∇θ ˆ̀ml(θ), it suffices to directly differ-
entiate the unbiased log-likelihood estimator ˆ̀ml(θ).
Compared to iwae with the same average sampling
cost, ˆ̀ml(θ) uses a stochastic number of particles, but
only performs elementary operations on logw in the
final layer of the computational graph. Therefore, dif-
ferentiating ˆ̀ml(θ) has roughly the same average cost
as differentiating iwae.

4.3 Theoretical Guarantees

We now establish theoretical guarantees of finite vari-
ance for the gradient estimator π̂ml[ψ], which are key
for the unbiased training of LVMs. By Luo et al. (2020,
Appendix A5), sumo also has unbounded variance in
this setting under the strong assumption that w(z)

is bounded. However, we show that ˆ̀ml(θ) instead
admits finite variance and can be computed in finite
expected time under the following conditions:
Theorem 3. Assume there exists a > 4, b ≥ 2a

a−4 such
that Eqφ

[
w(z)a + |ψ(z)|b

]
<∞. Then π̂ml[ψ] satisfies

Theorem 1 for r ∈
(

1
2 , 1−

1
21+α

)
, where α = 1− 2

b > 0.

Alternatively, if 2 < a ≤ 4, b > 2a+4
a−2 , or a > 4,

2a+4
a−2 < b ≤ 2a

a−4 , then π̂ml[ψ] satisfies Theorem 1 for
r ∈

(
1
2 , 1−

1
21+α

)
, where α = a

2 −
a+2
b − 1 > 0.

Observe that if ψ is bounded, then the condition on
b holds trivially and the theorem applies whenever
a > 2, resulting in α = min(a2 − 1, 1), just as in Theo-
rem 2. This result for bounded ψ was also obtained by
Hironaka et al. (2020), as well as Blanchet et al. (2019)
under the stronger assumption that a > 3. However,
the assumption of a bounded ψ is in general unreal-
istic in our context, and so Theorem 3 is of interest
insofar as it applies also to unbounded ψ, unlike these
other results. However, note that, for unbounded ψ,
the condition on w(z) is in general stronger than in
Theorem 2 and depends on the specific function ψ(z).

4.4 Other Applications of π̂ml[ψ]

To minimize the forward KL, the Reweighted Wake-
Sleep (rws) method (Bornschein and Bengio, 2015; Le
et al., 2019) makes use of the following identity

∇φKL(pθ(z|x)||qφ(z|x))

= −
∫
pθ(z|x)∇φ log qφ(z|x)dz, (12)

which corresponds to π[ψ] with ψ(z) :=
−∇φ log qφ(z|x). rws uses biased SNIS estimates
π̂(k)[ψ] = ∇φ ˆ̀(k)(θ) = −

∑k
i=1 w̄i∇φ log qφ(zi|x).

However, unlike the elbo or iwae, which can be
viewed as lower bounds of the true log-likelihood, this
bias is not readily interpretable.

For reparametrizable qφ(z|x),4 Finke and Thiery
(2019) show that ∇φKL(pθ(z|x)||qφ(z|x)) can alter-
natively be written as

∇φKL(pθ(z|x)||qφ(z|x))

= −
∫
pθ(z|x)

∂ logw(z)

∂z

∂hφ(ε)

∂φ
|ε=h−1

φ (z)dz. (13)

which also corresponds to π[ψ] where ψ(z) :=

−∂ logw(z)
∂z

∂hφ(ε)
∂φ |ε=h−1

φ (z). Similar to rws, the RHS

can be approximated using an SNIS estimator π̂(k)[ψ],
which coincides with the “sticking the landing” iwae
(iwae-stl) gradient estimator (Roeder et al., 2017).

To avoid using biased gradient estimates, mlmc can
be used to construct the unbiased estimator π̂ml[ψ] in
both cases, which admits finite variance under Theo-
rem 3. Comparing the two methods, the reparameter-
ized unbiased estimator has the advantage of achieving
zero variance when qφ(z|x) = pθ(z|x) as ψ ≡ 0.

5 VARIANCE ANALYSIS

In general, the unbiased estimators suffer from larger
variance than their biased counterparts, which can hin-
der training in practice. In this section, we further in-
vestigate the variance of the multilevel estimators and
propose variance reduction techniques.

5.1 Comparing Variance of ss and rr

The ss and rr estimates require the same number
of samples when each ∆k in rr is computed using
the same samples, and this number is approximately
doubled when one uses different samples. We illus-
trate here that both estimators present advantages in
different scenarios. For simplicity, we consider the
first term I0 and the telescoping part s̃s = ∆K

p(K) ,

r̃r =
∑K
k=0

∆k

P(K≥k) separately.

Theorem 4. The variance of s̃s and r̃r can be de-
composed into a sum of two parts, where ­ measures
the inherent variance when estimating a deterministic
series

∑∞
k=0 E[∆k], and ¬ measures the extra variance

caused by the variance and covariance of ∆k.

4Precisely, if there exists invertible hφ and a distribu-
tion q(ε) such that hφ(ε) ∼ qφ(z|x) when ε ∼ q(ε).
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For the s̃s estimator,

¬ =

∞∑
k=0

Var ∆k

p (k)
,

­ =

∞∑
k=0

(
1

p (k)
− 1

)
E [∆k]

2 − 2
∑
i,j:i<j

E [∆i]E [∆j ] .

(14)
For the r̃r estimator,

¬ =

∞∑
k=0

Var ∆k

P (K ≥ k)
+ 2

∑
i,j:i<j

Cov(∆i,∆j)

P (K ≥ i)
,

­ =

∞∑
k=0

(
1

P (K ≥ k)
− 1

)
E [∆k]

2

+ 2
∑
i,j:i<j

(
1

P (K ≥ i)
− 1

)
E [∆i]E [∆j ] .

(15)

We notice that the term ¬ for r̃r is clearly smaller
than s̃s in the case ∆k are pairwise independent, and
can achieve almost half the magnitude as s̃s by choos-
ing K ∼ Geom (r) with r → 1

2 . However, the term ­
for r̃r is potentially larger. In particular, we observe
the r̃r estimator can be advantageous if ∆k have high
variances but mean close to 0.

For the two considered debiasing problems, the bias
of ˆ̀(k)(θ) and π̂(k)[ψ] decay at asymptotic rate
O(k−1) under the conditions of Theorem 2 and
3; see e.g. Domke and Sheldon (2018); Nowozin
(2018). This shows that E[∆k]2 = O(2−2k) and∑∞
j=k+1 E[∆k]E[∆j ] = O(2−2k). Using the multilevel

construction, we show in the proofs that E[∆2
k] =

O(2−(1+α)k), where α ≤ 1 is defined as in Theorem
2 or 3. Therefore, in the case α < 1, asymptotically
the term ¬ dominates the term ­, so it suffices to
compare the term ¬ between the two estimators. In
the case that ∆k are almost pairwise independent, i.e.
E[∆i∆j ] ≈ E[∆i]E[∆j ], the rr estimator should be
chosen asymptotically (if we start with I0 = ˆ̀(2l)(θ)

or π̂(2l)[ψ] for l large enough). On the other hand,
if the covariance terms have large magnitude, e.g. in
the worst case E[∆i∆j ] ≈ E[∆2

i ]
1/2E[∆2

j ]
1/2, the ss

estimator should be chosen asymptotically.

5.2 Reducing Work-Variance Product by
Optimal Distribution of K

For ss, Blanchet et al. (2019) give that the optimal
choice of K to minimize the work-variance product
should be geometrically distributed with r = 1 −
2−(1+α/2). In the case α = 1, r ≈ 0.6464, resulting
in an average sampling complexity of approximately
4.41 samples per evaluation. For rr, it can be simi-
larly shown that the optimal r ≈ 0.6340 for α = 1.

5.3 Training Objective for qφ

For unbiased estimators ˆ̀sumo(θ) and ˆ̀ml(θ), the vari-
ational distribution qφ does not affect their unbiased-
ness under reasonable conditions that w(z) has finite
moment, so ˆ̀sumo(θ) and ˆ̀ml(θ) also provide no signal
for learning qφ (i.e. ∇φE[ˆ̀sumo(θ)] = ∇φE[ˆ̀ml(θ)] =
0). Instead, the variational distribution qφ is useful in
our context through the variance of ˆ̀ml(θ).

Goda and Ishikawa (2019); Ishikawa and Goda (2020)
propose to learn φ by maximizing the elbo. i.e. min-
imizing KL(qφ(z|x)||pθ(z|x)). However, it is well-
known that the reverse KL is mode-seeking, which typ-
ically leads to qφ admitting thinner tails than pθ(z|x)
with the usual Gaussian parameterization of qφ(z|x).
Thus, the weights w(z) are more prone to have infi-
nite higher moments, violating the conditions of The-
orem 2 and 3. Instead, maximizing `iwae(θ,φ) would
provide a better training objective, as it can be inter-
preted as a proxy to minimize the variance of w(z)
(Domke and Sheldon, 2018). Minimizing the for-
ward KL(pθ(z|x)||qφ(z|x)), which is mean-seeking,
also typically leads to distributions qφ(z|x) having
thicker tails than pθ(z|x). This can be interpreted
as an unbiased version of rws.

In Luo et al. (2020), it is proposed to train qφ(z|x) by
directly minimizing the variance of the sumo estima-
tor with ∇φVar(ˆ̀sumo(θ)) = ∇φE[ˆ̀sumo(θ)2]. How-
ever, the theoretical foundation behind this approach
is somewhat unclear, since the variance of sumo is
possibly infinite. A similar strategy can be applied to
the multilevel estimators ˆ̀ml(θ), where the estimators
now have finite variance.

5.4 Trading off Bias and Variance

While having an unbiased objective is desirable, when
a largeK = k is sampled from p(k) (with a small prob-
ability), the inverse weight p(k)−1 or P(K ≥ k)−1 in
ss or rr can be very large in magnitude. To reduce
variance at the cost of introducing an interpretable
bias, we can simply restrict the support of the distri-
bution of K to {0, . . . , kmax}, thus ensuring K ≤ kmax
almost surely and providing upper bounds on p(k)−1

or P(K ≥ k)−1. In this case, ss and rr for ∆k given
by (7) will be unbiased estimators of the iwae given in
(2) using 2kmax+1 importance samples but computed,
on average, using much less than 2kmax+1 samples.

6 USING THERMODYNAMIC
INTEGRATION

When Z is high-dimensional, simple IS estimators will
typically perform poorly, so the importance weights



Yuyang Shi, Rob Cornish

w(z) can violate the assumptions in Theorem 2 and 3,
and the variance of the IS-based unbiased estimators
can become infinite.

A popular way to mitigate high-dimensionality utilizes
Thermodynamic Integration (ti) (Gelman and Meng,
1998), which transforms the estimation of `(θ) into an
one-dimensional integral

`(θ) =

∫ 1

0

πβ [logw]dβ, (16)

where πβ(z) is the normalized density of π̃β(z) =
pθ(x, z)βqφ(z|x)1−β . We can thus easily obtain an
unbiased estimate of `(θ) by sampling β ∼ Unif[0, 1],
and then debias the SNIS estimate of πβ [ψ] given by

π̂
(k)
β [ψ] =

k∑
i=1

wβi ψ(zi), wβi :=
wβi∑k
j=1 w

β
j

. (17)

We call ˆ̀ml
ti (θ) the resulting estimator. However, al-

though seemingly attractive, this method is actually
not of practical interest as the following result shows:
Proposition 5. The following identity holds

ˆ̀(k)(θ) =

∫ 1

0

π̂
(k)
β [logw]dβ. (18)

It follows that ˆ̀ml(θ) =
∫ 1

0
ˆ̀ml
ti (θ)dβ, i.e. ˆ̀ml(θ)

is a Rao-Blackwellized version of ˆ̀ml
ti (θ) and thus

Var(ˆ̀ml
ti (θ)) ≥ Var(ˆ̀ml(θ)).

However, thermodynamic integration can still be use-
ful in high-dimensional scenarios. By leveraging (16),
it is proposed by Masrani et al. (2019) for 0 = β0 <
β1 < · · · < βT−1 < βT = 1 the tvo objective

`tvo(θ) :=

T−1∑
t=0

(βt+1 − βt)πβt [logw] ≤ `(θ). (19)

This “thermodynamic” evidence lower bound is tighter
than the standard elbo and can be seen as a left Rie-
mann sum approximation of the integral, and empiri-
cally Masrani et al. (2019) show that the values of βt
should be chosen after a point of maximum curvature
to obtain tight approximations.

A limitation of this attractive approach is that one
cannot estimate expectations in the form πβ [ψ] unbi-
asedly, so Masrani et al. (2019) rely on SNIS approxi-
mations therein5. Plugging (17) into (19) and reusing

5In more detail, Masrani et al. (2019) directly considers
the covariance gradient estimator, which verifies for λ =
{θ,φ}

∇λπβ [logw] = πβ [∇λ logw] + Covπβ [∇λ log π̃β , logw].

SNIS is applied for the RHS in Masrani et al. (2019), but
for the θ gradients this is identical to directly differentiat-
ing π̂(k)

β [logw]. See Appendix for details.

the wi samples for all βt, the resulting log-likelihood
estimator ˆ̀(k)

tvo(θ) =
∑T−1
t=0 (βt+1 − βt)π̂

(k)
βt

[logw] has
roughly the same computation cost as iwae. How-
ever, although seemingly attractive, ˆ̀(k)

tvo(θ) is a bi-
ased estimator of `tvo(θ), and we show that the SNIS
approximation actually biases ˆ̀(k)

tvo(θ) to be less tight
than iwae:
Proposition 6. Ez1:k [ˆ̀

(k)
tvo(θ)] ≤ Ez1:k [ˆ̀(k)(θ)], re-

gardless of the placement of all βt, i.e. ˆ̀(k)
tvo(θ) is less

tight than iwae due to the SNIS bias.

Using mlmc, we can instead unbiasedly estimate
`tvo(θ) without the SNIS bias by debiasing (17). The
resulting estimator

ˆ̀ml
tvo(θ) :=

T−1∑
t=0

(βt+1 − βt)π̂ml
βt [logw] (20)

is thus an unbiased estimator of `tvo(θ). We can then
obtain an unbiased estimate of ∇θ`tvo(θ) by directly
differentiating ˆ̀ml

tvo(θ). Moreover, since the impor-
tance weights wβti in π̂ml

βt
[logw] are more well-behaved

than wi, the finite variance condition on w for ˆ̀ml
tvo(θ)

becomes more relaxed than ˆ̀ml(θ), by an application
of Theorem 3:
Theorem 7. Assume there exists ε, δ > 0 such that
Eqφ

[
w(z)βT−1(2+ε) + w(z)−δ

]
< ∞. Then ˆ̀ml

tvo(θ)

satisfies Theorem 1 for r ∈
(

1
2 , 1−

1
21+α

)
, where α =

min
(
ε
2 , 1
)
.

7 EMPIRICAL RESULTS

7.1 Linear Gaussian Experiment

We first consider the linear Gaussian example from
Rainforth et al. (2018); Tucker et al. (2019), where
we can analytically calculate the true log-likelihood
to quantify the bias and variance of all estima-
tors. The generative model is given by pθ(x, z) =
N (z|θ, I)N (x|z, I), where both x, z ∈ R20, so that
pθ(x) = N (x|θ, 2I) and pθ(z|x) = N

(
θ+x

2 , 1
2I
)
. The

encoder distribution is qφ(z|x) = N
(
z|Ax+ b, 2

3I
)
,

where φ = (A, b). Following Rainforth et al. (2018),
we consider random perturbations of the parameters
near the optimal value by a zero-mean Gaussian with
standard deviation 0.01.

We evaluate the performance of ml-ss and ml-rr with
r = 0.6, and compare against iwae and sumo. Fig-
ure 2 displays the empirical bias and variance of `(θ)
and ∇θ`(θ) as the expected computational cost in-
creases from 6 to 384 terms for all methods (computed
by averaging of 1000 realizations of the estimators for
10 random perturbations). As expected, the empiri-
cal biases of ml-ss and ml-rr are much lower than
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iwae at the cost of an increased variance. sumo also
has reduced bias compared to iwae when the over-
all computation cost is low, but its empirical variance
does not decay monotonically as the computation in-
creases, which is strongly suggestive that sumo ad-
mits infinite variance. This results in the empirical
bias of sumo actually underperforming iwae at high
computational cost. A study of different estimators of
∇φKL(pθ(z|x)||qφ(z|x)) is also provided in the Ap-
pendix.

7.2 2D Density Modeling Experiment

We next consider the 2D density dataset and neural
network model (3 hidden layers each with 50 leaky
ReLU units) considered by Yacoby et al. (2020). We
investigate the effect of training with biased and un-
biased pθ objectives and different qφ objectives as de-
scribed in Section 5.3. We perform three experiments
fixing the expected computational cost k to be 5, 10,
20 with r = 0.625 and choose a learning rate 2.5 ·10−4

with the Adam optimizer without gradient clipping (so
as not to introduce any bias). For the qφ objective, we
find that the variance and unbiased rws-stl objectives
obtained the best results, and both objectives are able
to reuse the samples in the pθ objective. Interestingly,
the variance objective for qφ achieves the best results
especially as k increases. The results are presented in
Table 1. Compared to iwae, the multilevel unbiased
estimators are able to attain higher test log-likelihoods
at the same expected sampling cost. A visualization
of the density the models produce is also provided in
Figure 3. Further results on the effect of using differ-
ent qφ objectives on the multilevel estimators can be
found in the Appendix.

7.3 Image Modeling Experiment

We now compare the performance on a standard VAE
example as in Burda et al. (2016); Luo et al. (2020).
We use the same network architecture and the dynam-
ically binarized MNIST (LeCun et al., 2010), OM-
NIGLOT (Lake et al., 2015) and Fashion MNIST
(Xiao et al., 2017) benchmark datasets following pre-
vious works. We follow the training scheme by Luo
et al. (2020) closely, which makes use of gradient clip-
ping for excessively large gradients. We also modify
the tail of K so that ml-rr is an unbiased estimator
of iwae with k = 128 to limit the memory usage and
reduce variance, similar to sumo which softly trun-
cates the tail of K after k = 80 terms. Unlike Luo
et al. (2020), however, in order to accurately compare
different estimators under the same budget, we fix the
number of training epochs to 3280 for all estimators,
and set iwae as the training objective for qφ, so we
can test the effect of debiasing the pθ objective using

different estimators.

For this task, we observe in Table 2 while sumo
achieves slightly better performance than iwae on two
datasets, ml-rr outperforms sumo at the same com-
putational budget. Nevertheless, the advantage of de-
biased estimators (sumo and ml-rr) seems to be di-
minishing with increasing k as the variational bound
tightens for iwae, especially for the MNIST dataset.

In addition, while we observe tvo underperforms iwae
in this example in line with Masrani et al. (2019), we
find that models trained with ml-tvo-rr obtain bet-
ter test log-likelihood compared to iwae. As discussed
in Section 6, ml-tvo relaxes the finite variance con-
ditions on w(z) while introducing a bias relative to
ml-rr as a tradeoff due to the discrete integral ap-
proximation. However, `tvo(θ) is still guaranteed to
lower bound the log-likelihood, and we observe from
the experiment that `tvo(θ) (with the unbiased es-
timator ml-tvo) can be a more preferable family of
evidence lower bounds than iwae.

8 CONCLUSION

We have shown how the multilevel Monte Carlo
methodology of Blanchet et al. (2019) can be used to
produce various unbiased estimators with finite vari-
ance useful for evaluating and training LVMs, and
demonstrated their advantages on several models in-
volving deep neural networks. As interesting future
work, it may be fruitful to consider variance reduction
techniques such as control variates, as well as alter-
native unbiased estimates of the log-evidence and its
gradients that do not rely on importance sampling.
Promising progress has been made recently by Ruiz
et al. (2020) in this direction, which may provide an-
other possibility for unbiased, finite variance training
of VAEs.
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Figure 2: Empirical bias squared and variance of estimators of (a) `(θ) and (b) ∇θ`(θ), both plotted against
expected computational cost.
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Figure 3: Marginal density plot of (a) the ground truth model; (b) trained model using iwae with k = 5; (c)
trained model using ml-ss with k = 5.

Table 1: Test negative log-likelihood of the trained models for the 2D dataset over 3 runs, estimated using
iwae5000. All results that are statistically insignificant from the best result are highlighted in bold.

pθ objective iwae ml-ss ml-rr

qφ objective iwae Var ml-ss Unbiased rws-stl Var ml-rr Unbiased rws-stl

k = 5 0.9325±0.0054 0.9228±0.0076 0.9216±0.0041 0.9222±0.0071 0.9202±0.0048

k = 10 0.9248±0.0032 0.9191±0.0015 0.9206±0.0026 0.9183±0.0024 0.9193±0.0015

k = 20 0.9198±0.0005 0.9153±0.0016 0.9194±0.0011 0.9158±0.0005 0.9216±0.0011

Table 2: Test negative log-likelihood of the trained models for the image datasets over 3 runs, estimated using
iwae5000. All results that are statistically insignificant from the best result are highlighted in bold.

MNIST OMNIGLOT Fashion MNIST
pθ objective k = 5 k = 15 k = 5 k = 15 k = 5 k = 15

iwae (Our impl.) 85.11±0.02 84.62±0.05 105.40±0.07 104.53±0.10 230.13±0.14 229.77±0.04
sumo (Our impl.) 85.24±0.05 84.78±0.08 105.19±0.03 104.51±0.06 229.97±0.05 229.61±0.08
ml-rr (Ours) 85.06±0.07 84.64±0.03 104.98±0.02 104.26±0.05 229.78±0.13 229.36±0.13
ml-tvo-rr (Ours) 85.04±0.01 84.59±0.03 104.95±0.06 104.22±0.11 229.78±0.05 229.40±0.12
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