
Hossein S. Ghadikolaei, Sebastian U. Stich, Martin Jaggi

Supplementary materials for “LENA: Communication-Efficient
Distributed Learning with Self-Triggered Gradient Uploads”

A Useful Definitions and Lemmas

Definition 1. We define virtual sequence (w̃t)t≥0 as

w̃t+1 = w̃t − 1

M

∑
m∈[M ]

αtg
t
m , (A.1)

for all t ≥ 0.

Lemma 1. We have the following useful set of inequalities:

• For any vectors a, b ∈ Rd and any γ > 0, we have

‖a+ b‖2 ≤ (1 + γ)‖a‖2 + (1 + γ−1)‖b‖2 . (A.2)

• For any vectors a, b ∈ Rd and any γ > 0, we have

2 〈a, b〉 ≤
(
γ‖a‖2 + γ−1‖b‖2

)
. (A.3)

Lemma 2. Under Assumptions 1 and 3, stochastic gradient gtm := ∇fm(wt) + ξtm satisfies

E

∥∥∥∥∥ 1

M

∑
m

gtm

∥∥∥∥∥
2
 =

∥∥∇F (wt)
∥∥2 +

1

M2

∑
m∈[M ]

E
[∥∥ξtm∥∥2]

(8)

≤
∥∥∇F (wt)

∥∥2 +
σ2

M
(A.4)

where the expectation is with respect to ξt1, . . . , ξ
t
M .

If in addition, the function F is convex, then

E

∥∥∥∥∥ 1

M

∑
m

gtm

∥∥∥∥∥
2
 ≤ 2L

(
F (wt)− F ?

)
+
σ2

M
, (A.5)

Lemma 3. Let {wt,vt, et}t≥0 follow iterates of Algorithm 1, and Assumptions 1–3 hold. Consider the definition
of virtual sequence, given in (A.1). When α ≤ 1/4L for all t ≥ 0, we have

E
[∥∥∥w̃t+1 −w?

∥∥∥2] ≤ (1− µα

2

)
E
[∥∥∥w̃t −w?

∥∥∥2]+ 3LαE
[∥∥∥wt − w̃t

∥∥∥2]− α

2
E
[
F (wt)− F ?

]
+
α2σ2

M
. (A.6)

Lemma 4. Let {wt,vt, et}t≥0 follow iterates of Algorithm 1, and Assumptions 1 and 3 hold. When α ≤ 1/2L
for all t ≥ 0, the virtual sequence, defined in (A.1) follows

E
[
F (w̃t+1)

]
≤ E

[
F (w̃t)

]
− α

4
E
[∥∥∇F (wt)

∥∥2]+
αL2

2
E
[∥∥∥wt − w̃t

∥∥∥2]+
α2σ2L

2M
. (A.7)

Lemma 5. Let sequence (etm)t≥0 follows iterates of Algorithm 1 and assume inequality ‖∇fm(w)‖2 ≤ G2 hold
for every m and w and some positive G. It holds:

E
[∥∥etm∥∥2] ≤ βα2

(
G2 + σ2

)
. (A.8)



LENA: Communication-Efficient Distributed Learning with Self-Triggered Gradient Uploads

Lemma 6 (Based on Appendix A.2 of (Koloskova et al., 2020)). Let (rt)t≥0 and (st)t≥0 be sequences of positive
numbers satisfying

rt+1 ≤ (1− αA)rt −Bαst + Cα2 +Dα3 ,

for some positive constants A,B > 0, C,D ≥ 0, and for constant step-sizes 0 < α ≤ 1
E , for E ≥ 0. Then there

exists a constant stepsize α ≤ 1
E such that

B

WT

T∑
t=0

wtst ≤ 2r0E exp

[
−A(T + 1)

E

]
+
C(1 + ln τ)

A(T + 1)
+
D ln τ(1 + ln τ)

A2(T + 1)2

for wt := (1− αA)−(t+1), WT :=
∑T
t=0 wt and

τ = max

{
2,min

{
A2r0(T + 1)2

C
,

A(T + 1)

E exp [−A(T + 1)/E]

}}
(A.9)

Lemma 7. Let (rt)t≥0 and (st)t≥0 be sequences of positive numbers satisfying

rt+1 ≤ rt −Bαst + Cα2 +Dα3 ,

for some positive constants B > 0, C,D ≥ 0, and for constant step-sizes 0 < α ≤ 1
E , for E ≥ 0. Then there

exists a constant stepsize α ≤ 1
E such that

B

T + 1

T∑
t=0

st ≤
Er0
T + 1

+ 2D1/3

(
r0

T + 1

)2/3

+ 2

(
Cr0
T + 1

)1/2

. (A.10)

B Proofs

B.1 Lemma 3

By definition (A.1),

∥∥∥w̃t+1 −w?
∥∥∥2 ≤

∥∥∥∥∥∥w̃t − 1

M

∑
m∈[M ]

αgtm −w?

∥∥∥∥∥∥
2

≤
∥∥∥w̃t −w?

∥∥∥2 + α2

∥∥∥∥∑m g
t
m

M

∥∥∥∥2 − 2α

M

∑
m

〈
gtm,w

t −w?
〉

+
2α

M

∑
m

〈
gtm,w

t − w̃t
〉
.

From (A.5) and Assumption 3,

E
[∥∥∥w̃t+1 −w?

∥∥∥2 | w̃t

]
≤
∥∥∥w̃t −w?

∥∥∥2 + 2α2L
(
F (wt)− F ?

)
+
α2σ2

M

− 2α
〈
∇Fm(wt),wt −w?

〉
+ 2α

〈
∇F (wt),wt − w̃t

〉
(a)

≤
∥∥∥w̃t −w?

∥∥∥2 + 2α2L
(
F (wt)− F ?

)
+
α2σ2

M

− α
(
µ‖wt −w?‖2 + 2

(
F (wt)− F ?

))
+ 2α

〈
∇F (wt),wt − w̃t

〉
. (A.11)

where (a) is due to the quasi-convexity of F . Moreover, inequality (A.3) yields

2α
〈
∇F (wt),wt − w̃t

〉
≤ α

2L

∥∥∇F (wt)
∥∥2 + 2αL

∥∥∥wt − w̃t
∥∥∥2

≤ α
(
F (wt)− F ?

)
+ 2αL

∥∥∥wt − w̃t
∥∥∥2 . (A.12)



Hossein S. Ghadikolaei, Sebastian U. Stich, Martin Jaggi

Similarly, (A.2) yields

−µα‖wt −w?‖2 ≤ −µα
2

∥∥∥w̃t −w?
∥∥∥2 + µα

∥∥∥wt − w̃t
∥∥∥2 . (A.13)

Substituting (A.12) and (A.13) into (A.11) and rearranging the terms give

E
[∥∥∥w̃t+1 −w?

∥∥∥2 | w̃t

]
≤
(

1− µα

2

)∥∥∥w̃t −w?
∥∥∥2 + α

(
2αL− 1

) (
F (wt)− F ?

)
+
α2σ2

M

+ α
(
2L+ µ

)
‖wt − w̃t‖2 ,

which completes the proof noting that α ≤ 1/4L and µ ≤ L.

B.2 Lemma 4

Notice that F is L-smooth, so

F (w̃t+1) ≤ F (w̃t)−

〈
∇F (w̃t),

α

M

∑
m

gtm

〉
+
α2L

2

∥∥∥∥∑m g
t
m

M

∥∥∥∥2
= F (w̃t)− α

〈
∇F (w̃t),∇F (wt) +

1

M

∑
m

ξtm

〉
+
α2L

2

∥∥∥∥∑m g
t
m

M

∥∥∥∥2 .
Taking expectation with respect to {ξtm}m∈[M ] and using (A.4) yield

E
[
F (w̃t+1) | wt

]
≤ F (w̃t)− α

〈
∇F (w̃t),∇F (wt)

〉
+
α2L

2

∥∥∇F (wt)
∥∥2 +

σ2α2L

2M

≤ F (w̃t) + α

(
αL

2
− 1

)∥∥∇F (wt)
∥∥2 + α

〈
∇F (wt)−∇F (w̃t),∇F (wt)

〉
+
σ2α2L

2M
.

From (A.3),

α
〈
∇F (wt)−∇F (w̃t),∇F (wt)

〉
≤ α

2

(∥∥∥∇F (wt)−∇F (w̃t)
∥∥∥2 +

∥∥∇F (wt)
∥∥2)

(a)

≤ αL2

2

∥∥∥wt − w̃t
∥∥∥2 +

α

2

∥∥∇F (wt)
∥∥2 ,

where (a) is due to the smoothness of F . Therefore,

E
[
F (w̃t+1) | wt

]
≤ F (w̃t) +

α

2

(
αL− 1

) ∥∥∇F (wt)
∥∥2 +

αL2

2

∥∥∥wt − w̃t
∥∥∥2 +

σ2α2L

2M
.

which completes the proof noting that α ≤ 1/2L.

B.3 Lemma 5

From Algorithm 1,

E
[∥∥et+1

m

∥∥2] = E
[∥∥etm + αgtm − vtm

∥∥2] (4)

≤ βE
[∥∥αgt−1m

∥∥2]
= βα2E

[∥∥∇fm(wt−1) + ξt−1m

∥∥2]
(a)

≤ βα2
(
G2 + σ2

)
, (A.14)

where (a) is due to ‖∇fm(w)‖ ≤ G2 for all w and m ∈ [M ].

Similarly, if we use the average over the last silent window, given by (7), for the RHS of the update rule, from

(A.4), we end up to the same bound E
[∥∥et+1

m

∥∥2] ≤ βα2
(
G2 + σ2

)
by noticing that σ2/(tim − ti−1m ) ≤ σ2.



LENA: Communication-Efficient Distributed Learning with Self-Triggered Gradient Uploads

B.4 Lemma 6

After rearranging and multiplying by wt we obtain

Bwtst ≤
(1− αA)wtrt

α
− wtrt+1

α
+ αC + α2D .

Observing that that wt(1− αA) = wt−1 we obtain a telescoping sum,

B

WT

T∑
t=0

wtst ≤
1

αWT
((1− αA)w0r0 − wT rT+1) + αC + α2D ≤ r0

αWT
− wT rT+1

αWT
+ αC + α2D .

Using that WT = wT
∑T
t=0(1− αA)t ≤ wT

αA and WT ≥ wT = (1− αA)−(T+1) we can simplify

B

WT

T∑
t=0

wtst +ArT+1 ≤
(1− αA)T+1r0

α
+ αC + α2D

≤ r0
α

exp [−αA(T + 1)] + αC + α2D =: ΨT (A.15)

Now the lemma follows by tuning α in the same way as in (Stich, 2019b, Lemma 2) (slightly more carefully):

• If 1
E ≥

ln τ
A(T+1) then we choose α = ln τ

A(T+1) and get (after some simple calculations) that

ΨT ≤
1

ln τ
max

{
C

A(T + 1)
, r0E exp

[
−A(T + 1)

E

]}
+

C ln τ

A(T + 1)
+

D ln2 τ

A2(T + 1)2

• Otherwise 1
E ≤

ln τ
A(T+1) and we pick α = 1

E and get that

ΨT ≤ r0E exp

[
−A(T + 1)

E

]
+
C

E
+

D

E2

≤ r0E exp

[
−A(T + 1)

E

]
+

C ln τ

A(T + 1)
+

D ln τ

A2(T + 1)2

B.5 Lemma 7

Rearranging and dividing by α > 0 gives

Bst ≤
rt
α
− rt+1

α
+ Cα+Dα2

and summing from t = 0 to T yields

B

T + 1

T∑
t=0

≤ r0
α(T + 1)

+ Cα+Dα2 .

Now the claim follows from (Koloskova et al., 2020, Lemma 15).

B.6 Upload Intervals

In this we will estimate how often uploads are triggered in Algorithm 1 for a specific worker m. If we denote by
tim the iteration indices when node m sends an update to the server, tim + 1 ≤ ti+1

m , then we are thus interested
to estimate ti+1

m − tim.

Instead of considering the momentum based estimator as proposed in (6), let us first consider the choice q
tim
m :=

∇fm(wtim) for simplicity.

In this section, let aim := max
{∥∥∥wtim −w?

∥∥∥ , . . . ,∥∥∥wti+1
m −w?

∥∥∥}.



Hossein S. Ghadikolaei, Sebastian U. Stich, Martin Jaggi

It holds e
tim+1
m = 0 for all i, and vtm = α∇fm(wtim) for tim + 1 ≤ k ≤ ti+1

m , by definition of the algorithm. We
will now estimate how fast the left hand side in our criterion grows.

Observation 1. It holds

E
[∥∥∥eti+1

m
m + αg

ti+1
m
m − vt

i+1
m
m

∥∥∥2] = E


∥∥∥∥∥∥

ti+1
m∑

t=tim+1

α
(
∇fm(wt) + ξtm −∇fm(wtim

)
)∥∥∥∥∥∥

2


= α2E


∥∥∥∥∥∥

ti+1
m∑

t=tim+1

(
∇fm(wt)−∇fm(wtim)

)∥∥∥∥∥∥
2


+ α2E


∥∥∥∥∥∥

ti+1
m∑

t=tim+1

ξtm

∥∥∥∥∥∥
2


≤ α2(ti+1
m − tim)

ti+1
m∑

t=tim+1

E
[∥∥∥∇fm(wt)−∇fm(wtim)

∥∥∥2]
+ α2(ti+1

m − tim)σ2

≤ 4α2(ti+1
m − tim)2L2

m(aim)2 + α2(ti+1
m − tim)σ2 (A.16)

using ∥∥∥∇fm(wt)−∇fm(wtim)
∥∥∥2 ≤ 2

∥∥∇fm(wt)−∇fm(w?)
∥∥2 + 2

∥∥∥∇fm(wtim)−∇fm(w?)
∥∥∥2

≤ 4L2
m(aim)2

Observation 2. On other hand,

E
[∥∥∥αgti+1

m
m

∥∥∥2] =

(
E
[∥∥∥α∇fm(wti+1

m )
∥∥∥2]+ α2σ2

)
≥ α2

2
‖∇fm(w?)‖2 + α2σ2 − α2

∥∥∥∇fm(wti+1
m )−∇fm(w?)

∥∥∥2
≥ α2

2

(
‖∇fm(w?)‖2 + 2σ2 − 2L2

m(aim)2
)

≥ α2

2

(
‖∇fm(w?)‖2 − 2(ti+1

m − tim)2L2
m(aim)2

)
(A.17)

If we change the RHS of the upload criteria to 1
ti+1
m −tim

∑ti+1
m

t=tim+1 αg
t
m, we get

E


∥∥∥∥∥∥ 1

ti+1
m − tim

ti+1
m∑

t=tim+1

αgtm

∥∥∥∥∥∥
2
 =

E


∥∥∥∥∥∥ α

ti+1
m − tim

ti+1
m∑

t=tim+1

∇fm(wti+1
m )

∥∥∥∥∥∥
2
+

α2σ2

ti+1
m − tim


≥ α2

2
‖∇fm(w?)‖2

− α2

ti+1
m − tim

ti+1
m∑

t=tim+1

∥∥∇fm(wt)−∇fm(w?)
∥∥2

≥ α2

2

(
‖∇fm(w?)‖2 − 2L2

m(aim)2
)

≥ α2

2

(
‖∇fm(w?)‖2 − 2(ti+1

m − tim)2L2
m(aim)2

)
,

which is the same as of (A.17).



LENA: Communication-Efficient Distributed Learning with Self-Triggered Gradient Uploads

Summary. Combining Observation 1 and 2, we conclude that as long as

β ‖∇fm(w?)‖2 ≥ 10
(
ti+1
m − tim

)2
L2
m(aim)2 + 2(ti+1

m − tim)σ2 , (A.18)

then

E
[∥∥∥eti+1

m
m + αg

ti+1
m
m − vt

i+1
m
m

∥∥∥2] ≤ β E
[∥∥∥αgti+1

m
m

∥∥∥2] ,
and also

E
[∥∥∥eti+1

m
m + αg

ti+1
m
m − vt

i+1
m
m

∥∥∥2] ≤ β E


∥∥∥∥∥∥ 1

ti+1
m − tim

ti+1
m∑

t=tim+1

αgtm

∥∥∥∥∥∥
2
 ,

Consequently, in expectation no upload is triggered. In other words, by rearranging (A.18), we get the estimate

ti+1
m − tim

β
= O

(
‖∇fm(w?)‖
Lmaim

+
β ‖∇fm(w?)‖2

σ2

)
(A.19)

.

So far, we have argued only on the upload frequency of the idealistic choice q
tim
m := ∇fm(wtim), i.e. the gradient

evaluated on a full batch. It is easy to check, that our estimates will not significantly change when using a biased

version, q
tim
m = ∇fm(wtim) + ξ instead, as long as the bias is sufficiently small, that is ‖ξ‖2 ≤ 1

ti+1
m −tim

σ2. This

can for instance achieved by averaging (ti+1
m − tim) stochastic gradients (which can be cheaper than evaluating

on the full batch). Furthermore, by smoothness, we observe that it is not essential to estimate the gradient

at the point wtim precisely, instead gradients evaluated at points close by will behave similary. Therefore, we
suggest average-based estimators, where either gradients are (locally on node m) averaged over a window of
increasing size, or, using weighted average of past gradients. Our proposed momentum based estimator for qtm
as in equation (6) performs an exponentially weighted averaging over past iterates, thereby averaging the noise
over a horizon of roughly steps 1

γ .

B.7 Proof of Proposition 1

Note that ∥∥∥wt − w̃t
∥∥∥2 =

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

etm

∥∥∥∥∥∥
2

≤ 1

M

∑
m∈[M ]

‖etm‖2 (A.20)

holds by the convexity of squared norm operator.

Claim 1: Define st := E [F (wt) − F ?] and rt := E [‖w̃t − w?‖2]. From Lemma 3, (A.20), and Lemma 5, we
obtain the inequality

rt+1 ≤
(

1− αµ

2

)
rt − α

st
2

+ α2 σ
2

M
+ α33βL

(
G2 + σ2

)
(A.21)

The proof follows from Lemma 6.

Claim 2: By setting µ = 0 in Equation (A.21) we obtain the inequality

rt+1 ≤ rt − α
st
2

+ α2 σ
2

M
+ α33βL

(
G2 + σ2

)
The proof follows from Lemma 7.

Claim 3: Define rt := E [F (w̃t) − F ?] and st := E [‖∇F (wt)‖2]. From Lemma 4, (A.20), and Lemma 5, we
obtain the inequality

rt+1 ≤ rt − α
st
4

+ α2σ
2L

2M
+ α3L

2(1− β)

β

(
2G2

β
+ σ2

)
.

The proof follows from Lemma 7.



Hossein S. Ghadikolaei, Sebastian U. Stich, Martin Jaggi

C Additional Experiments

C.1 Impact of β

Figure A.1 shows the impact of β. Adopting a high value for β would lead to a unnecessarily high upload rate,
especially toward the end of iterations. Extension to adaptive β would is an interesting future direction.

100 101 102 103
102

103

104

β

T
o
ta

l
u
p
li
n
k

la
te

n
cy

[s
ec

o
n
d
s]

Figure A.1: Impact of β for a network of M = 500 nodes.

C.2 Reducing Noisy Uploads

LENA algorithm may trigger the upload criteria due to some unfortunate noisy gradients. To make it more
robust, we have changed the line 8 of Algorithm 1 to activate the upload trigger once that condition is multiple
times (over a window of some size). Figure A.2 shows the impact of this window size on the upload decision
criteria. From the figure, a window size of 2 is enough to effectively eliminate unnecessary uploads.

1 2 3 4 5
60

80

100

120

Window size for the upload trigger

T
o
ta

l
u
p
li
n
k

la
te

n
cy

[s
ec

o
n
d
s]

Figure A.2: Impact of upload trigger window size on the latency.

C.3 Impact of local smoothness on upload frequency

Figure A.3 shows the upload events of two nodes with different local smoothness parameters, Lm. We have
computed the maximum eigenvalue of the hessian matrix for both nodes, with respect to their private datasets,
leading to L20 = 3.9 and L180 = 4.7. A higher Lm has led to a higher upload rate. Notice that when momentum
is applied to qm, it may average the noise and change the upload rate. Moreover, for the case of IID datasets
where ‖∇fm‖ → 0 for all m, we have observed a higher upload frequency for all nodes, irrespective of their local
smoothness, which is in agreement with (9).



LENA: Communication-Efficient Distributed Learning with Self-Triggered Gradient Uploads

0 2 4 6 8 10
0

1

Iteration (t× 1000)

U
p
lo

a
d

(a) Node number 20.

0 2 4 6 8 10
0

1

Iteration (t× 1000)

U
p
lo

a
d

(b) Node number 180.

Figure A.3: Upload events for node 20 and 180, M = 200 and minibatch size of 15 with qtm = vt−1m upon being
silent.

C.4 Quantization

To further save the bandwidth, one can modify (4) as

vtm =

{
Quantize (etm + αgtm) if ‖etm + αgtm − vt−1m ‖2 ≥ β‖gt−1m ‖2

Quantize (qtm) otherwise ,
(A.22)

where Quantize is a quantization operator. Figure A.4 shows the performance of LENA after this modification.
Optimizing over the quantizer is left as a future work.

20 40 60 80 100 120 140
0.8

0.85

0.9

0.95

1

Latency [s]

T
es

t
a
cc

u
ra

cy

LENA

DIANA

(a) M = 100

100 200 300 400

0.4

0.6

0.8

1

Latency [s]

T
es

t
a
cc

u
ra

cy

LENA

DIANA

(b) M = 200

100 200 300 400 500

0.4

0.6

0.8

1

Latency [s]

T
es

t
a
cc

u
ra

cy

LENA

DIANA

(c) M = 500

Figure A.4: Comparison of LENA with new upload criteria of (A.22) and DIANA on a deep learning model for
MNIST after hyper-parameter optimization on both models and applying QSGD with 4 quantization levels to
LENA uploads.



Hossein S. Ghadikolaei, Sebastian U. Stich, Martin Jaggi

C.5 Shared Wireless Channel

Define the so-called offered load `t > 0 as the average number of packets (gradients) that the nodes inject to the
wireless channel at iteration t (Bertsekas et al., 2004). The successful transmission rate model at iteration t follows
rt = r0`

t exp{−`t/r1} for some positive constants r0 and r1 describing the wireless channel and communication
protocol (Bertsekas et al., 2004). This rate model implies that having too many active transmitters may make
the channel “congested” and increasing the number of transmitted packets (offered loads) would only add to the
congestion and packet drops, leading to a lower success rate. For DIANA, ` = M for every iteration, as all the
nodes always upload their gradients. By defining νtm as the number of bits uploaded by node m at iteration t,
the communication latency is then

∑
m∈[M ]

∑
t∈[T ] ν

t
m/r

t for the first T iterations. Notice that we have ignored
the download latency as the capacity of the broadcast channel would not be affected by the number of nodes.

To simulate various network models, we consider r1 = 10 and two scenarios: small network (M = 10) and large
network (M = 100). Figure A.5 shows the results. In all scenarios, the latency reduces as the network capacity
(r0) increases. With M = 10, the network is under-utilized, and activating all transmitters sending fewer bits
over the channel is feasible at almost no extra penalty in terms of rate or latency. Consequently, DIANA achieves
the best performance. However, as the channel contention level increases, by adopting a larger M , being silent
in LENA shows a clear benefit over a mere compression. Notice that the gain of LENA can be further improved
by complementing it with compression.

Downlink Efficiency: The LAG algorithm has the option of multicasting, namely sending the parameter to a
subset of nodes in the downlink. The LENA algorithm, on the other hand, needs to braodcast it to all nodes,
which locally decide to send back their computations or remain silent. In certain communication systems, the
broadcasting may consume more network resources than multicasting. However, in some other cases, like wireless
communications, broadcasting is for free, and therefore sending the parameter to a subset of users in downlink
has almost the same cost as sending it to all users.

0 20 40 60 80 100
10−2

100

102

104

r0 [Mbps]

T
o
ta

l
u
p
li
n
k

la
te

n
cy

[s
ec

o
n
d
s]

DGD LAG

LENA DIANA

(a) M = 10.

0 20 40 60 80 100
100

102

104

106

108

r0 [Mbps]

T
o
ta

l
u
p
li
n
k

la
te

n
cy

[s
ec

o
n
d
s]

DGD LAG

LENA DIANA

(b) M = 100.

Figure A.5: Communication latency over a shared wireless network, with minibatch size of 2 at every node.

C.6 CIFAR10 Results

Figure A.6 compares the performance of LENA and DIANA on VGG13 model, trained on CIFAR10 dataset.
Again, LENA substantially outperforms DIANA. This performance gain can be further boosted buy adding
quantization step to LENA, as formalized in (A.22).



LENA: Communication-Efficient Distributed Learning with Self-Triggered Gradient Uploads

Figure A.6: Performance of LENA and DIANA on VGG13 model, trained on CIFAR10 dataset.

C.7 Comparison to FedAvg

50 100 150 200
0.7

0.8

0.9

1

Latency [s]

T
es

t
a
cc

u
ra

cy

LENA

DIANA

FedAvg-0.2

FedAvg-0.02

Figure A.7: Comparison to FedAvg with M = 100. ‘FedAvg-x’ shows x percent of nodes (randomly selected) are active
in every iteration.

Figure A.7 shows the comparison of DIANA and LENA to the vanilla FedAvg algorithm (McMahan et al., 2017).
Simulation setting and hyper-parameter optimization of FedAvg are the same as of Appendix C.4. FedAvg-0.02
has the same overall upload rate as of LENA, but achieves a much lower performance. The reason is the non-IID
data. In fact, FedAvg activates a subset of nodes but it does not take into account importance of their info in the
scheduling/activation strategy. It can be the case the we miss important updates in many iterations. However,
LENA intelligently chooses the silent nodes based on their upload significance. The performance of FedAvg can
be improved by employing a higher upload rate (higher chance of collecting important updates). Yet, it cannot
still beat LENA or DIANA due to their ability to handle severe quantization.


