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Abstract

In distributed optimization, parameter up-
dates from the gradient computing node de-
vices have to be aggregated in every itera-
tion on the orchestrating server. When these
updates are sent over an arbitrary commod-
ity network, bandwidth and latency can be
limiting factors. We propose a communica-
tion framework where nodes may skip un-
necessary uploads. Every node locally ac-
cumulates an error vector in memory and
self-triggers the upload of the memory con-
tents to the parameter server using a signif-
icance filter. The server then uses a history
of the nodes’ gradients to update the param-
eter. We characterize the convergence rate of
our algorithm in smooth settings (strongly-
convex, convex, and nonconvex) and show
that it enjoys the same convergence rate as
when sending gradients every iteration, with
substantially fewer uploads. Numerical ex-
periments on real data indicate a significant
reduction of used network resources (total
communicated bits and latency), especially in
large networks, compared to state-of-the-art
algorithms. Our results provide important
practical insights for using machine learn-
ing over resource-constrained networks, in-
cluding Internet-of-Things and geo-separated
datasets across the globe.

1 Introduction

We consider the training of central machine learning
models where the private training data sets are dis-
tributed among M nodes (e.g. data centers or mobile
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devices). This problem can be formulated as the dis-
tributed optimization problem

w? := arg min
w∈Rd

[
F (w) :=

1

M

∑
m∈[M ]

fm(w)

]
, (1)

where here fm : Rd → R denotes the loss function on
node m ∈ [M ] (note that in general fi 6= fj , for i 6= j).
Distributed stochastic gradient descent with learning
rate α > 0 addresses (1) by running iterations of the
form

wt+1 = wt − α
M

∑
m∈[M ] g

t
m , (2)

where gtm is an unbiased estimator of the local loss
function ∇fm(wt) (e.g. computed over a mini-batch
of the local data on node m ∈ [M ]). In a distributed
computation setting, each update of the form (2) en-
counters non-negligible communication cost, to gather
all the local gradients {gtm}m∈[M ] on the server and
broadcast the updated global parameter wt+1. These
costs become of paramount importance when imple-
mented on resource-constrained networks with nodes
distributed across the world (Hsieh et al., 2017) or
with nodes wirelessly connected to the parameter
server (Gündüz et al., 2019). Prior work addresses
this communication bottleneck by introducing (i) gra-
dient compression techniques, to reduce the number of
bits per communication round (Alistarh et al., 2017;
Mishchenko et al., 2019), and (ii) local updates, where
communication rounds are skipped according to a pre-
scribed schedule (McMahan et al., 2016; Stich, 2019a).

Whilst gradient compression techniques can drasti-
cally reduce the size of the uplink transmissions1 (from
O(d) to O(log d) (Alistarh et al., 2017) or even to O(1)
(Stich et al., 2018) per node), current approaches of-
ten neglect communication overheads, such as latency,

1For instance in the case of wireless networks, the up-
link channel to send the gradients to the server is often the
main bottleneck, since a limited resource should be shared
among multiple transmitter nodes. On the other hand,
the cost of broadcasting a new parameter to all nodes is
almost identical to the cost of sending it to a subset of the
nodes, due to the broadcast nature of wireless communica-
tions (El Gamal and Kim, 2011).
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packet overheads in standard communication proto-
cols, or hardware constraints such as power consump-
tion. In many real-world networks, a few silent nodes
that do not transmit any data can yield much more
drastic speedups and savings of network resources than
simply compressing every message down to a few bits
(but keeping all nodes active) (Van Dam and Lan-
gendoen, 2003). Local update algorithms defer com-
munication rounds by allowing the nodes to skip ei-
ther a fixed number of uploads (McMahan et al.,
2016; Stich, 2019a; Karimireddy et al., 2019a) or in
adaptive schemes, such as lazily aggregated gradient
(LAG) (Chen et al., 2018) and sparsified action reg-
ulated quantized SGD (SPARQ-SGD) (Singh et al.,
2020), the frequencies are not fixed and the nodes send
an upload only if their updates have a significant con-
tribution to the centralized parameter updates.

We propose a novel event-triggered communication
framework, called LENA, where nodes adaptively and
only infrequently upload their computed gradients,
without any explicit coordination with other nodes
and not relying on a prescribed communication sched-
ule. Our approach converge to a solution of (1) for
any smooth f , whilst other ‘ad-hoc’ approaches (such
as the (Kamp et al., 2019)) either only work for spe-
cific f or specific set of algorithms (the so-called f -
proportional convex update).

A key mechanism in our scheme is that silent nodes
still contribute to the parameter update on the server
by means of an individual drift term which is applied
by default when the server does not receive an update
from a particular node. Distinctive to LAG, this drift
term can be chosen arbitrarily while our framework
still guarantees convergence. LENA substantially im-
proves the performance of LAG in our experiments by
as much as 99% fewer total uploaded bits.

Our main contributions are as follows:

– We present a general framework for communica-
tion constrained distributed optimization with drift
compensated updates for silent workers. We prove
convergence of LENA (for arbitrary drift compensa-
tion) on convex and nonconvex problems and show
that it converges as fast as distributed SGD but
with the possibility to skip unnecessary uploads.

– We evaluate several choices for the drift compensa-
tion terms in numerical experiments and give con-
crete suggestions which of them reduce the com-
munication frequency by the most. We further ar-
gue that our method performs especially well in the
challenging non-IID (heterogeneous) data setting
that—conversely—is the most challenging for other
local update schemes (Karimireddy et al., 2019a).

– We run comprehensive numerical analyses on real
datasets to characterize the impact of various al-
gorithm and networking parameters on the conver-
gence and overheads of our algorithm. Our results
indicate that LENA achieves the same accuracy as
the state-of-the-art benchmarks with orders of mag-
nitude fewer communicated bits and lower latency.
All these gains improve with the network size, mak-
ing our approach suitable for efficient distributed
machine learning over a network of a massive num-
ber of workers.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the related works. Section 4 presents
the problem setting, our proposed algorithm, and its
theoretical convergence results. We present our exper-
imental results in Section 5, and conclude the paper in
Section 6. For the sake of readability, we have moved
extra definitions, lemmas, extra numerical results, and
all the proofs to the appendix.

Notation: Normal font w or W , bold font small-case
w, and bold-font capital letter W denote scalar, vec-
tor, matrix, and set, respectively. We let [N ] =
{1, 2, . . . , N} for any integer N . We denote by ‖ · ‖
the l2 norm and by wT the transpose of w.

2 Related Work

Communication-efficient distributed optimization ad-
dresses the tradeoff between computational gain due to
parallel processing and the resulting communication
overhead. In general, there are two complementary
approaches to address the communication bottleneck:
compressing messages in every communication round
and skipping some communication rounds (Tang et al.,
2020).

2.1 Compressing Messages in Every
Communication Round

A prominent approach is to use a lossy-compression
(realized through quantization with few bits) of the
parameter and gradient vectors in every iteration to
save the communication resources. This approach has
been applied to both deterministic (Jordan et al., 2018;
Magnússon et al., 2017; Magnusson et al., 2020) and
stochastic (Alistarh et al., 2017; Bernstein et al., 2018;
Wen et al., 2017; De Sa et al., 2018; Mishchenko et al.,
2019) algorithms.

Seide et al. (2014) and Bernstein et al. (2018) proposed
1bitSGD and sign-SGD, respectively, in which only the
sign of each coordinate is used for the updates. Sur-
prisingly, such extreme quantization may not hurt the
convergence in deep learning problems, as shown in
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those papers. The convergence of 1-bit quantization is
also shown in the proximal methods (Xu and Kamilov,
2019) and for distributed methods (Magnússon et al.,
2017; Mishchenko et al., 2019). Alistarh et al. (2017)
proposed multiple levels for the quantization, and Lin
et al. (2018) added momentum correction and local
gradient clipping to further reduce the communication
overhead. Sparsification is an alternative approach
for lossy-compression in which only a subset of “most
prominent” coordinates of the gradients will be com-
municated to the parameter server while the rest be-
ing dropped. An example approach includes sending
only Top-k values of the gradient vector (in absolute
value) as well as sending k randomly selected coordi-
nates, Rand-k (Alistarh et al., 2018; Stich et al., 2018).
Acharya et al. (2019) introduced a family of sparsified
mirror descent algorithms to solve a distributed learn-
ing problem with o(d) communications.

To maintain the asymptotic convergence rate with
compressed messages, error compensation (Stich et al.,
2018; Alistarh et al., 2018; Karimireddy et al., 2019b;
Stich and Karimireddy, 2019; Basu et al., 2019) and
adaptive quantizers (Pu et al., 2017; McGlohon and
Patterson, 2016; De Sa et al., 2018; Magnusson et al.,
2020; Ghadikolaei and Magnusson, 2020) have been
proposed in the literature. Tang et al. (2019) com-
bined error compensation and lossy quantization to
quantize both gradients in uplink and parameters in
downlink. Phuong et al. (2020) proposed an algorithm
where every node uploads a quantized version of its
gradient with probability 0.3 (hardcoded in the algo-
rithm). Wangni et al. (2019) introduced the concept
of trajectory normalized gradients, where all nodes
share in advance a reference gradient vector, and they
share only the changes. The reference can dynam-
ically change based on the local optimization land-
scape, which makes it similar to adaptive quantiza-
tion algorithms, but also a good measure for detecting
“significant” changes, as we use in this paper.

All these approaches alleviate the communication be-
tween the server and the nodes at every iteration.
However, every upload is often subject to extra over-
heads (e.g., extra bits for channel encoding and packet
headers, and extra latency for queuing and network
congestion), and reducing the number of payload bits
cannot reduce those overheads (El Gamal and Kim,
2011). In fact, extreme payload quantization may not
bring any noticeable reduction in the total number of
transmitted bits or latency (Magnusson et al., 2020).
When many nodes are connected to the server via a
faulty wireless channel or public internet, like massive
edge computing scenarios, additional functionalities of
communication protocols (like adaptive transmission
modes, TCP window size, and queue policy of inter-

mediate routers) may rise to straggler and missing up-
dates, which may substantially affect the overall per-
formance of distributed learning algorithm.

2.2 Eliminating Some Communication
Rounds

The second category includes algorithms that elimi-
nate communication between some of the nodes and
the server in some iterations.

Predefined intermittent communication sched-
ule: Local update algorithms can reduce the commu-
nication frequency by allowing nodes to perform sev-
eral epochs over their local data and upload the fi-
nal parameter (Stich, 2019a; Hsieh et al., 2017; Singh
et al., 2020) or gradient (Zhu et al., 2019) with a pre-
defined upload schedule for a global update. Zhang
et al. (2016) showed that the global averaging step acts
like a variance-reducing mechanism, and its proper fre-
quency depends on the noise of local gradients. How-
ever, it is often hard to find a proper communication
schedule that still allows convergence without increas-
ing the total number of iterations. Moreover, the up-
load frequency should be substantially increased for
non-IID data to avoid a huge drift of local updates.

Adaptive intermittent communication: Hsieh
et al. (2017) proposes the notion of significance filter
in local SGD by which every node uploads its param-
eter (for the averaging step) only when there is a sig-
nificant change in the parameter vector, measured by
the Euclidean norm. This algorithm is extended in
concurrent parallel work by Singh et al. (2020); Singh
et al. (2020) by adding an error feedback framework
and momentum. Kamp et al. (2019) modified the up-
load criteria to the average divergence of the param-
eter vector over a window of k iterations. However,
these approaches are more suited for IID data where
the upload threshold does not need to consider local
geometry of the optimization landscape. In particular,
a worker with the least smooth optimization landscape
forces a small upload threshold for all workers, leading
to many unnecessary uploads of workers with smoother
landscapes.

Zhu et al. (2019) introduced a new algorithm in which
the parameters can be updated based on the de-
layed and temporally sparse global gradient aggrega-
tions. The authors introduced error feedback to cor-
rect the steps in which only local information is avail-
able. Moreover, this approach may adverse the effect
of the straggler problem, since the slowest processor
may need more time to run more local computations.
Chen et al. (2018) proposed lazily aggregated gradient
(LAG) for communication-efficient distributed learn-
ing with full gradients. In LAG, each node reports
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its gradient vector to the server only if the changes to
the gradient from the last step is large enough. That
way, some nodes may skip sending their gradients at
some iterations, which saves communication resources.
Li et al. (2019) and Chen et al. (2020) extended LAG
to stochastic gradient, Sun et al. (2019) added gradi-
ent quantization per upload, and Singh et al. (2020)
added error feedback and extended LAG to a decen-
tralized setting in SPARQ-SGD. Our algorithm intro-
duces the concept of drift function, which generalizes
iterations of SPARQ-SGD. Moreover, unlike SPARQ-
SGD, we do not rely on a pre-engineered schedule (or
decision thresholds) to trigger the uploads, which sub-
stantially improves its applicability in practice. The
concept of using a local drift to to trigger data upload
has been also investigated for linear regression (Gabel
et al., 2015). However, its extension to the noncon-
vex setting and nodes with non-IID data is not triv-
ial. Moreover, Heemels et al. (2012) introduced the
concept of locally event-triggered control in a different
context.

3 Algorithm — LENA

The error feedback framework closely follows the tem-
plate of distributed SGD as given in (2), but instead
of using the computed gradients {gtm} directly for the
parameter update, the server uses gradient estimates
{vtm} as well as aggregated errors {etm} (Stich and
Karimireddy, 2019):

wt+1 = wt − 1

M

∑
m∈[M ]

vtm , (3a)

vtm = Estimate
(
etm + αgtm

)
, (3b)

et+1
m = etm + αgtm − vtm , (3c)

where the Estimate operator can represent a compres-
sion algorithm or delayed uploads. We extend these
iterates by removing the necessity of uploading at ev-
ery round. To this end, we redefine vtm as

vtm=

{
etm + αgtm if ‖etm + αgtm − vt−1m ‖2 ≥ β‖gt−1m ‖2

qtm otherwise ,

(4)

where for node m at iteration t, qtm is the drift param-
eter (formally defined later), and β is a non-negative
constant. When the upload is triggered according
to (4), the server applies etm + αgtm, but when no up-
load is triggered the server simply uses the previously
received qtm as this workers contribution (as we are
using error-feedback, any arbitrary choice of qtm will
yield convergence). The worker locally accumulates
the update errors in the variable etm, accumulating
the differences between the locally computed gradients

Algorithm 1 LENA: distributed Learning with sElf-
triggered grdieNt uploAds

1: Inputs: Number of iterations T , step size α > 0,
parameter 0 < β ≤ 1.

2: Initialize: Server: parameter w0; Nodes: mem-
ory {e0m}m, drift {q−1m }m, gradient estimate
{v0m}m.

3: for t = 0, 1, . . . , T − 1 do
4: Server broadcasts wt to all nodes
5: parallel for all node m ∈ [M ] do
6: Randomly sample a local minibatch
7: Compute stochastic gradient gtm
8: if ‖etm + αgtm − vt−1m ‖2 ≥ β‖gtm‖2 then .

upload trigger
9: Set vtm = etm + αgtm and computea qtm

10: Upload (vtm, q
t
m) to the server

11: else
12: Set qtm = qt−1m , vtm = qtm, . no uploads
13: end if
14: Update local error et+1

m = etm + αgtm − vtm
15: end parallel for
16: Server updates model

wt+1 = wt − 1

M

∑
m∈[M ]

vtm

17: end for
18: Return: wT

aDepending on the update scheme; for instance momen-
tum averaging (6) and uniform averaging can be efficiently
implemented by maintaining a running average locally on
each node.

and the applied updates. The memory is cleared after
each upload. Our novel significance filter on line 8 de-
pends on a parameter β ≥ 0 that impacts how often
the updates are triggered: for β = 0 in every iteration,
but potentially less often for larger β (we will use the
choice β = 40 in experiments, see also Appendix C for
more discussions). Algorithm 1 presents the pseudo-
code of LENA. Notice that to make the upload criteria
smoother, one may replace gt−1m by a running average
of the gradients over a window, like (6). This change
would not affect the theoretical results of our paper.
We have investigated this case in the proofs.

Choosing the drift parameter qtm. Our frame-
work supports arbitrary choices of qtm in the sense
that they do not affect the convergence rates (conver-
gence is ensured by our significance filter), but good
choices of qtm can minimize the upload frequency and
communication cost. We now give some intuition on
good choices. Suppose an upload has been triggered
at iteration tim and consider the memory et+1

m , at time
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t ≥ tim, supposing no uploads have happened in be-
tween. Then

et+1
m =

t∑
i=tim+1

(
αgim − qtm

)
=

t∑
i=tim+1

(
α∇fm(wi) + αξim − qtm

)
. (5)

This equation implies that qtm should approximate the
local gradient steps (i.e. the local drift). For instance
in the noise-free case, we can choose qtm = α∇f(w0)
(similar as in LAG (Chen et al., 2018)), however sim-
ply choosing qtm = αg0m = α∇f(w0) + αξ0m in the
presence of noise might not be a good choice, as the
noise will be too strong, E ‖ξ0m‖2 = tE ‖ 1t

∑t
i=0 ξ

i
m‖2.

Therefore, we should use a variance reduced estimator.
Opposed to LASG (Chen et al., 2020) that proposes a
full pass over the local data, we here propose smooth-
ing with momentum averaging for tune-able parameter
γ. Set qtm = mt

m in line 12, for local momentum on
each node:

mt+1
m := (1− γ)mt

m + γαgtm . (6)

Alternatively, the workers could also send the uni-
form average of their computed gradient between sub-
sequent uploads at iteration tim and ti+1

m . By observing

1
ti+1
m −tim

∑ti+1
m

t=tim+1 αg
t
m = v

ti+1
m
m − (ti+1

m − tim − 1)q
tim
m .

(7)

This average can be computed on the server side from
the updates vtm alone. This saves half of the band-
width per upload and gives a good performance in a
high-noise regime. An alternative half-bandwidth op-
tion is qtm = vtm, which performed quite well (but not
best) in our experiments.

Adding Quantization and Further Extensions.
If communication was triggered in iteration t, the
memory will be cleared, et+1

m = 0. For our proof this
is not a requirement, and any update that ensures con-
traction ‖et+1

m ‖2 ≤ (1 − β)‖etm + αgtm‖2 is supported
by our proof. This enables extensions, such as incor-
porating the complementary technique of quantization
on top of our scheme to further save in bandwidth.

4 Main Assumptions and Results

In this section, we prove the convergence of Algo-
rithm 1 for any, arbitrary, choice of drift parameter
qtm. We use the following assumptions:

Assumption 1 (Smoothness). The loss functions
fm : Rd → R are Lm-smooth for all m ∈ [M ]. Namely,

there exists constants Lm > 0 such that ∀m ∈ [M ]:

‖∇fm(w)−∇fm(v)‖ ≤ Lm‖w − v‖ ,∀w,v ∈ Rd .

It follows that F : Rd → R is L-smooth with L =∑
m∈[M ] Lm/M .

For some results, we need the following assumption,
sometimes called single point strong convexity. It is
weaker than the standard convexity (µ = 0) or strong-
convexity (µ > 0) notions, but stronger than the
Polyak- Lojasiewicz (PL) condition (2µ(F (w)−F ?) ≤
‖∇F (w)‖2, ∀w ∈ Rd).
Assumption 2 (Quasi-Strong convexity). F : Rd →
R is differentiable and µ-quasi convex with constant
µ ≥ 0 with respect to a w?, i.e.,

F (w)−F ? ≤ 〈∇F (w),w−w?〉−µ
2
‖w−w?‖2,∀w ∈ Rd.

We assume uniformly bounded stochastic noise (Ne-
mirovski and Yudin, 1983). Recent works proposed
various relaxations of this assumption, e.g., allow-
ing the noise to grow with the distance to the op-
timum (Bottou et al., 2018) or measuring the noise
only locally, combined with stronger smoothness as-
sumptions (Nguyen et al., 2019). Our results can be
extended to these settings as well.

Assumption 3 (Bounded gradient noise). For gra-
dient oracle of the form gtm = ∇fm(wt) + ξtm and
conditionally independent noise ξtm, we have for some
constant σ2 ≥ 0 and all t ≥ 0,m ∈ [M ]:

E
[
ξtm | wt

]
= 0, E

[∥∥ξtm∥∥2 | wt
]

= σ2 . (8)

We now state our main convergence theorem. We give
a proof in Appendix B.

Proposition 1. Let sequence (wt)t≥0 follow the iter-
ates of Algorithm 1, assume inequality ‖∇fm(w)‖2 ≤
G2 hold for every m and w and some positive G,
and set R2

0 := ‖w0 − w?‖2, F0 := f(w0) − f?, and
C := βL2

(
G2 + σ2

)
/2. Let Assumptions 1 and 3

hold.

C1: If F satisfies Assumption 2 for µ > 0, then there
exists a step-size α ≤ 1/4L such that

1

WT

T∑
t=0

wtEF (wt)− F ? = Õ
(

σ2

µM(T + 1)
+

C2

µ2(T + 1)2
+ LR2

0 exp

[
−µ(T + 1)

4L

])
for wt = (1 − µα/2)−(t+1) and WT =

∑T
t=0 wt.

Here Õ(·) hides logarithmic factors.
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C2: If F satisfies Assumption 2 for µ = 0, then there
exists a step-size α ≤ 1/4L such that

1

T + 1

T∑
t=0

EF (wt)− F ? ≤ 4σR0√
M(T + 1)

+
4(CR2

0)2/3

(T + 1)2/3

+
8LR2

0

T + 1
,

C3: If F is an arbitrary smooth function, then there
exists a step-size α ≤ 1/2L such that

1

T + 1

T∑
t=0

E
∥∥∇F (wt)

∥∥2 ≤ 8σ
√
LF0√

M(T + 1)
+

8(CF0)2/3

(T + 1)2/3

+
8LF0

T + 1
,

Our proof is based on the error-feedback frame-
work (Mania et al., 2017; Stich and Karimireddy,
2019). We improve and extend over prior work which
considered only the strongly convex setting (Cordon-
nier, 2018; Beznosikov et al., 2020). For instance,
in the rates given in (Beznosikov et al., 2020) the
noise is often divided by 1 − β, its Theorem 15 im-

plies O
(

σ2

(1−β)µMT

)
for some β ∈ [0, 1], showing linear

speedup in M but a slowdown in β. In contrast, we can
here separate the impact of these parameters and have
β only impacting higher order terms. 2 This means
that β does not affect the asymptotic convergence rates
and we are in practice allowed to choose β relatively
small (to reduce the triggering rate for the uploads).
Moreover, notice that our approach reduces the num-
ber of computations similar to mini-batch SGD. More-
over, as we require less communication rounds, our
speedup is indeed better than the synchronized mini-
batch SGD one, as shown in Section 5.

Upload Intervals. Whilst the convergence result in
Proposition 1 applies to general choices of qtm, we need
to focus on specific choices in order to estimate the
communication savings. In Appendix B.6 we argue
that for quasi-strongly convex functions and averag-
ing based drift estimators the number of iterations be-
tween two consecutive uploads scales as

β · O

(
min

{
‖∇fm(w?)‖
Lm‖wt −w?‖

,
β ‖∇fm(w?)‖2

σ2

})
.

(9)

That is, the frequency depends on function heterogene-
ity (magnitude of ‖∇fm(w?)‖), linearly on β, on the

2The assumptions in (Beznosikov et al., 2020) are
slightly weaker, but our restriction to G2 bounded gradi-
ents here is not limiting, especially for weakly-convex and
nonconvex setting and could be revoked with techniques
used in (Stich and Karimireddy, 2019).

distance to the optimal solution and the local smooth-
ness. We see that the frequency decreases when ap-
proaching the optimum, but in the presence of noise
it can never vanish. Whilst we do not give a formal
proof, we conjecture that these arguments could be
made precise, and we verify these observations in ex-
periments.

Moreover, with non-IID datasets, the gradients of indi-
vidual nodes would not vanish at w?, but converges to
a constant value, i.e., ‖∇fm(w?)‖ = cm for some pos-
itive constant cm. However, the denominator of the
first term would decrease, leading to a higher upload
interval and lower upload frequency. Once the first
term dominates (which ultimately happens if σ 6= 0),
we converge to a constant upload frequency that de-
pends on β and σ2.

5 Experimental Results

In this section, we numerically characterize the conver-
gence and communication complexity of LENA. We
use the MNIST dataset, which has 60 000 training
samples of dimension d = 784 and 10 classes corre-
sponding to hand-written digits (LeCun et al., 2010).
We split the dataset into M disjoint subsets and as-
sume each node m has access to its private dataset.
M is reported for every figure. To make the data dis-
tributions non-IID, we allocate only one label to one
node. On an Nvidia 970GTX GPU, we have trained
using the one-versus-all technique and logistic ridge
regression objective.

In our experiments, we track the convergence of loss
function and communication overhead for the train-
ing phase as well as the test accuracy. For bench-
marks, we have implemented distributed gradient de-
scent (DGD), LAG (Chen et al., 2018), and DI-
ANA (Mishchenko et al., 2019) with QSGD compres-
sor (Alistarh et al., 2017). Unless mentioned other-
wise, we have used LENA with momentum, (6), for
the drift parameter, β = 40, and run a grid search to
optimize hyper-parameters of the algorithm (includ-
ing step-sizes, momentum values, and quantizer level
of QSGD). We list these parameters in the appendix.

5.1 Convergence with Intermittent Uploads

Figure 1 compares the convergence and number of up-
loaded bits of benchmark algorithms for full batch (la-
beled by ‘-B’) and minibatch of size 2 and 15 (labeled
by ‘-M-2’ and ‘-M-15’) at every node. With full batch,
the loss curves in terms of iterations of all the algo-
rithms coincide. With stochastic noise, LENA closely
follows the loss of LAG and DIANA with noticeably
fewer uploads. To illustrate, we have depicted the up-
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Figure 1: Convergence of benchmark algorithms. ‘-B’
and ‘-M-x’ correspond to full batch and minibatch of
size x. DIANA and DGD, omitted from right figure,
have an upload frequency of 1.

load frequency of LENA and LAG, averaged over all
nodes for every 1000 iterations. The upload frequency
of LENA-B decreases over time and becomes the small-
est, while it reaches constant levels for LENA-M-2/15,
with a frequency proportional to the noise (which is
lower for ‘M-15’), in agreement with (9). The upload
frequency of LAG is decreasing over time, though it
is significantly higher than that of LENA (around 2
orders of magnitude). Compared to DIANA, every
node in LENA sends more bits per upload, however,
it enjoys very sparse communication when the iterates
evolve.

To better analyze the communication overhead, at ev-
ery iteration we monitor the classification accuracy of
the test data as well as the upload bits so far, depicted
in Figure 2. We have dropped LAG and DGD from
this figure as they require orders of magnitude more
uploads for the same decision accuracy. From these
figures, LENA has a higher upload overhead at early
iterations, compared to DIANA. However, as the itera-
tion evolves and the test accuracy improves, the infre-
quent uploads of LENA lead to more bandwidth saving
than the gradient compression of DIANA. This gap is
more prominent with a small minibatch size where we
need more iterations to achieve a high test accuracy.
In particular, LENA requires 51.3 Mb to reach an ac-
curacy of 0.86, whereas DIANA needs 879 Mb. Now,
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Figure 2: Test accuracy vs. bits. DGD and LAG are
not depicted due to significantly different scales. In
the setting of (a), LAG and DGD upload 11.5 Gb and
46.7 Gb to reach 0.95 test accuracy. In (b), LAG re-
quires 39.75 Gb to reach 0.86 accuracy.

if we change the upload rule to ‘upload once condi-
tion in line 8 of LENA is satisfied for 3 times’, we can
further eliminate some unnecessary uploads that hap-
pen due to gradient noise and obtain the black curve.
In that case, only 37 Mb is enough to reach 0.86 test
accuracy. It corresponds to 95% saving compared to
DIANA, and 99.9% saving compared to LAG. These
gains, in general, depend on minibatch size (compare
Figure 2(a) and Figure 2(b)) and the choice of the drift
function (see Figure 4).

5.2 Latency Performance

Here, we analyze the latency (due to communication)
to achieve a certain accuracy. Again, we only focus on
the uplink as all our benchmarks behave similarly for
the downlink.

Local area networks: When the nodes can form a
local area network, realized by either wired or wire-
less communication links, the server can determine an
upload schedule to resolve the so-called channel con-
tention (Bertsekas et al., 2004). Round-robin time
division multiple access (TDMA) is the most com-
monly used scheduling protocol in which the server
sequentially ping the nodes to get their vectors (Bert-
sekas et al., 2004). Let νtm be the number of bits up-
loaded by node m at iteration t, and r be the chan-
nel transmission rate, assumed to be constant for the
sake of simplicity. The communication latency is then
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Figure 3: Comparison of LENA and DIANA on a deep
learning model. It shows relative latency gain (LENA
w.r.t. DIANA) to reach a certain test accuracy.

∑
m∈[M ]

∑
t∈[T ] ν

t
m/r for the first T iterations. It is a

linear function of the total uploaded bits, visualized in
Figure 2, and we can expect similar gains as in Fig-
ure 2.

Wide area networks: When the nodes are scattered
across the globe (like different AWS regions), upload-
ing data could be very time-consuming due to the huge
geographical distance and limited bandwidth (Hsieh
et al., 2017). To give a perspective, this latency can be
as high as 270 ms for a few bytes of data, compared to
only 2 µs of uploads inside a cluster (Zhu et al., 2019).
When we use public internet as the main communi-
cation infrastructure of edge computing, the uplink
latency will be further affected by the temporal net-
work congestion. To experiment with the performance
of our benchmarks on geo-separated datasets, we as-
sume that the link bandwidth between edge devices
and the server is a value in {1, 5, 10, 100, 1000} Mbps
to consider heterogeneous types of connections. To ev-
ery node, we assign a randomly drawn number from
this set with probability distribution denoted in Fig-
ure 4. The total upload latency of node m is linear
in its packet size (uploaded vector), {νtm}t≥0, and in-
versely proportional to the link bandwidth (Prasad
et al., 2003). We repeat the experiment over 100 re-
alizations of the link bandwidths and depict the dif-
ference between latency of benchmarks and that of
LENA, in Figure 4. For a small network (M = 10),
compression using DIANA seems better than gradient
skipping with LENA. However, as the network gets
bigger toward realistic sized edge computing scenarios,
LENA outperforms other benchmarks. Compared to
LENA, the benchmarks exhibit a higher extra latency
as M grows larger. LENA enjoys a similar perfor-
mance gain when most of the nodes have low commu-
nication bandwidth, shown in Figure 4(b). Moreover,
LENA is more robust to channel failure and stragglers
than the benchmarks since it requires much fewer up-
loads compared to the benchmarks. Next, we have ap-
plied LENA to a deep neural network. The networks

includes two convolutional layers, followed by two fully
connected layers. We have used ReLU activation func-
tion, dropout on the hidden layers, and cross-entropy
loss to learn the classes of the MNIST dataset. Fig-
ure 3 shows the relative latency gain of LENA over
DIANA using the rate and probability models of Fig-
ure 4. Further, we have tested LENA on CIFAR10
dataset to train VGG13 model and observed similar
performance gain and insights as of 3. These results
are reported in Appendix.

Finally, Figures 4(c) and 4(d) show the impact of drift
functions on the achievable latency. A properly tuned
momentum function can reduce the accumulated error
in updating with old uploads and achieve a better la-
tency. However, when the gradient noise becomes so
small (large minibatch), LENA-v may be a better op-
tion due to sending only one vector, vtm, per upload
instead of two vectors, vtm and qtm, of the momentum
function. We have provided more numerical results
and discussions in Appendix C.

6 Conclusions

We addressed the problem of communication-efficient
distributed optimization over a network. We pro-
posed LENA in which every node locally decides to
skip some insignificant uploads. The server then uses
the so-called drift term to update the parameter with
some silent nodes. We studied the convergence rate
of LENA and showed that it obtains the same ac-
curacy as state-of-the-art algorithms with order(s) of
magnitude fewer uploads and a significantly smaller la-
tency. These gains are more prominent in larger net-
works, highlighting the suitability of our approaches
on massive edge computing scenarios with constrained
resources.

References

Jayadev Acharya, Chris De Sa, Dylan Foster, and
Karthik Sridharan. Distributed learning with sub-
linear communication. In Proceedings of the 36th In-
ternational Conference on Machine Learning, pages
40–50, 2019.

Dan Alistarh, Demjan Grubic, Jerry Li, Ry-
ota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient sgd via gradient quantiza-
tion and encoding. In Advances in Neural Informa-
tion Processing Systems, pages 1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson,
Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient
methods. In Advances in Neural Information Pro-
cessing Systems, pages 5973–5983, 2018.



Hossein S. Ghadikolaei, Sebastian U. Stich, Martin Jaggi

103

104

105

E
x
tr

a
la

te
n
cy

[s
]

10 100 500 1000
−10

127

M

DGD LAG DIANA

(a) Probability vector: [0.2, 0.2, 0.2, 0.2, 0.2].

103

104

105

E
x
tr

a
la

te
n
cy

[s
]

10 100 500 1000
−30

370

M

DGD LAG DIANA

(b) Probability vector: [0.7, 0.2, 0.06, 0.03, 0.01].

1 10 20 30 40 50 60
101

102

103

104

Minibatch size

T
o
ta

l
u
p
li
n
k

la
te

n
cy

[s
]

DGD LAG LENA-0

DIANA LENA-g LENA-v

LENA-m

(c) M = 200, p = [0.2, 0.2, 0.2, 0.2, 0.2].

1 6 12 18 24

102

103

104

Minibatch size

T
o
ta

l
u
p
li
n
k

la
te

n
cy

[s
]

DGD LAG LENA-0

DIANA LENA-g LENA-v

LENA-m

(d) M = 500, p = [0.2, 0.2, 0.2, 0.2, 0.2].

Figure 4: Latency performance. In (a) and (b), every
node uses 10% of its local dataset as the minibatch
size, and the curves show extra latency in comparison
to LENA. In (c) and (d), labels ‘LENA-0’, ‘LENA-
g’, ‘LENA-v’, and ‘LENA-m’ correspond to qtm = 0,
qtm = αgtm, qtm = vtm, and qtm = mt

m upon every
upload at iteration t.

Debraj Basu, Deepesh Data, Can Karakus, and
Suhas N. Diggavi. Qsparse-local-SGD: Distributed
SGD with quantization, sparsification and local
computations. In Advances in Neural Information
Processing Systems, page 14668–14679, 2019.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Aziz-
zadenesheli, and Anima Anandkumar. signSGD:
compressed optimisation for non-convex problems.
arXiv preprint arXiv:1802.04434, 2018.

Dimitri P Bertsekas, Robert G Gallager, and Pierre
Humblet. Data networks, second edition, volume 2.
Prentice-Hall International New Jersey, 2004.

Aleksandr Beznosikov, Samuel Horváth, Peter
Richtárik, and Mher Safaryan. On biased com-
pression for distributed learning. arXiv preprint
arXiv:2002.12410, 2020.

L. Bottou, F. Curtis, and J. Nocedal. Optimization
methods for large-scale machine learning. SIAM Re-
view, 60(2):223–311, 2018.

Tianyi Chen, Georgios Giannakis, Tao Sun, and
Wotao Yin. LAG: Lazily aggregated gradient for
communication-efficient distributed learning. In Ad-
vances in Neural Information Processing Systems,
pages 5050–5060, 2018.

Tianyi Chen, Yuejiao Sun, and Wotao Yin.
LASG: Lazily aggregated stochastic gradients for
communication-efficient distributed learning. arXiv
preprint arXiv:2002.11360, 2020.

Jean-Baptiste Cordonnier. Convex optimization using
sparsified stochastic gradient descent with memory.
Master’s thesis, EPFL, 2018.

Christopher De Sa, Megan Leszczynski, Jian Zhang,
Alana Marzoev, Christopher R Aberger, Kunle
Olukotun, and Christopher Ré. High-accuracy low-
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