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Multi-armed Bandits with Cost Subsidy:
Supplementary Material

Outline The supplementary material of the paper is organized as follows.

• Appendix A contains technical lemmas used in subsequent proofs.

• Appendix B contains a proof of the lower bound.

• Appendix C contains proofs related to the performance of various algorithms presented in the paper.

• Appendix D gives a detailed description of the CS-ETCalgorithm when the costs of the arms are unknown
and random.

A Technical Lemmas

Lemma 2 (Taylor’s Series Approximation). For x > 0, ln(1 + x) ≥ x− x2

1−x2 .

Proof. For x > 0,

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · ·

≥ x− x2

2
− x4

4
− · · · (because x > 0)

≥ x− x2 − x4

= x− x2(1 + x2 + x4 + · · · )

= x− x2

1− x2
.

Lemma 3 (Taylor’s Series Approximation). For x > 0, ln(1− x) ≥ −x− x2

1−x .

Proof. For x > 0,

ln(1− x) = −x− x2

2
− x3

3
− x4

4
+ · · ·

≥ −x− x2 − x3 − x4 − · · · (because x > 0)

= −x− x2(1 + x+ x2 + · · · )

= −x− x2

1− x
.

Lemma 4 (Pinsker’s inequality). Let Ber(x) denote a Bernoulli distribution with mean x where 0 ≤ x ≤ 1.

Then, KL(Ber(p);Ber(p+ ε)) ≤ 4ε2

p where 0 < p ≤ 1
2 , 0 < ε ≤ p

2 and p+ ε < 1 and the KL divergence between

two Bernoulli distributions with mean x and y is given as KL(Ber(x);Ber(y)) = x ln x
y + (1− x) ln 1−x

1−y .

Proof. KL(Ber(p);Ber(p+ ε)) = p ln p
p+ε + (1− p) ln 1−p

1−p−ε
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KL(Ber(p);Ber(p+ ε)) = p ln
p

p+ ε
+ (1− p) ln

1− p
1− p− ε

= −p ln

(
1 +

ε

p

)
− (1− p) ln

(
1− ε

1− p

)

≤ −p

(
ε

p
−

ε2

p2

1− ε2

p2

)
− (1− p)

− ε

1− p
−

ε2

(1−p)2

1− ε
1−p


(Using Lemmas 2 and 3. )

Thus,

KL(Ber(p);Ber(p+ ε)) ≤ −ε+
ε2

p
(

1− ε2

p2

) + ε+
ε2

(1− p)
(

1− ε
1−p

)
≤ ε2

p
(
1− 1

4

) +
ε2

(1− p)
(
1− 1

2

) (because
ε

1− p
≤ ε

p
≤ 1

2
)

=
4ε2

3p
+

2ε2

1− p

≤ 2ε2

p
+

2ε2

1− p

≤ 2ε2

p
+

2ε2

p
(because p ≤ 1

2
)

=
4ε2

p
.

B Proof of Lower Bound

Proof of Lemma 1. In the family of instances Φθ,p,ε, the costs of the arms are same across instances. Arm 0 is
the cheapest arm in all the instances. With this, we define a modified notion of quality regret which penalizes
the regret only when this cheap arm is pulled as

Mod Quality Regπ(T, α,µµµ,ccc) =

T∑
t=1

max{µm∗ − µπt , 0}I(cit = 0). (2)

An equivalent notation for denoting the modified regret of policy π on an instance I of the problem is
Mod Quality Regπ(T, α, I). This modified quality regret is at most equal to the quality regret. For proving the
lemma, we will show a stronger result that there exists an instance φ0,p,ε such that Mod Quality Reg(T, 0, φ0,p,ε)+

Cost Reg(T, 0, φ0,p,ε) is Ω
(
pK

1
3T

2
3

)
which will imply the required result.

Let us first consider any deterministic policy (or algorithm) π. For a deterministic algorithm, the number of
times an arm is pulled is a function of the observed rewards. Let the number of times arm j is played be denoted
by Nj and let the total number of times any arm with cost 1 i.e. an expensive arm is played be Nexp = 1−N0.
For any a such that 1 ≤ a ≤ K, we can use the proof of Lemma A.1 in Auer et al. (2002b), with function
f(r) = Nexp to get

Ea [Nexp] ≤ E0 [Nexp] + 0.5T
√

2E0[Na]KL(Ber(p);Ber(p+ ε))

where Ej is the expectation operator with respect to the probability distribution defined by the random rewards
in instance Φj0,p,ε. Thus, using Lemma 4, we get,

Ea [Nexp] ≤ E0 [Nexp] + 0.5T
√

E0[Na]8ε2/p. (3)
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Now, let us look at the regret of the algorithm for each instance in the family Φ0,p,ε. We have

1. Cost Regπ(T, α,Φ0
0,p,ε) = E0[Nexp], Mod Quality Regπ(T, α,Φ0

0,p,ε) = 0

2. Cost Regπ(T, α,Φa0,p,ε) = 0, Mod Quality Regπ(T, α,Φa0,p,ε) = ε (T −Ea[Nexp]).

Now, define randomized instance φ0,p,ε as the instance obtained by randomly choosing from the family of instances
Φ0,p,ε such that φ0,p,ε = Φ0

0,p,ε with probability 1/2 and φ0,p,ε = Φa0,p,ε with probability 1/2K for 1 ≤ a ≤ K.
The expected regret of this randomized instance is

E [Mod Quality Regπ(T, 0, φ0,p,ε) + Cost Regπ(T, 0, φ0,p,ε)]

=
1

2

(
Mod Quality Regπ(T, α,Φ0

0,p,ε) + Cost Regπ(T, α,Φ0
0,p,ε)

)
+

1

2K

K∑
a=1

(
Mod Quality Regπ(T, α,Φa0,p,ε) + Cost Regπ(T, α,Φa0,p,ε)

)
=

1

2
E0[Nexp] +

1

2K

K∑
a=1

ε(T −Ea[Nexp])

≥ 1

2
E0[Nexp] +

1

2K

K∑
a=1

ε

(
T −E0 [Nexp]−

1

2
T

√
E0[Na]

8ε2

p

)
(using (3))

=
1

2

[
εT + (1− ε)

K∑
a=1

E0[Na]− Tε

2K

K∑
a=1

√
8ε2

p
E0[Na]

]

=
1

2

K∑
a=1

[
εT

K
+ (1− ε)(E0[Na])2 − TE0[Na]ε2

√
2

K
√
p

]

=
1

2

K∑
a=1

(√1− εE0[Na]− ε2T

2K

√
2

p(1− ε)

)2

+
εT

K
− ε4T 2

2pK2(1− ε)


≥ 1

2

K∑
a=1

εT

K
− ε4T 2

2pK2(1− ε)

=
εT

2
− ε4T 2

4pK(1− ε)

Taking ε = p
2 (KT )

1
3 , we get E [Mod Quality Regπ(T, 0, φ0,p,ε) + Cost Regπ(T, 0, φ0,p,ε)] is Ω(pK1/3T 2/3) when

K ≤ T .

Using Yao’s principle, for any randomized algorithm π, there exists an instance Φj0,p,ε with 0 ≤
j ≤ K such that Mod Quality Regπ(T, 0,Φj0,p,ε) + Cost Regπ(T, 0,Φj0,p,ε) is Ω(pK1/3T 2/3). Also,

since Mod Quality Regπ(T, 0,Φj0,p,ε) ≤ Quality Regπ(T, 0,Φj0,p,ε), we have Quality Regπ(T, 0,Φj0,p,ε) +

Cost Regπ(T, 0,Φj0,p,ε) is Ω(pK1/3T 2/3).

Proof of Theorem 2. Notation: For any instance φ, we define the arms mφ
∗ and iφ∗ as mφ

∗ = arg maxi µ
i
φ and

iφ∗ = arg mini c
i
φ s.t. qiφ ≥ (1− θ)qm∗

φ
. When the instance is clear, we will use the simplified notation i∗ and m∗

instead of iφ∗ and mφ
∗ .

Proof Sketch: Lemma 1 establishes that when α = 0, for any given policy, there exists an instance on which
the sum of quality and cost regret are Ω(K1/3T 2/3). Now, we generalize the above result for α = 0 to any
α for 0 ≤ α ≤ 1. The main idea in our reduction is to show that if there exists an algorithm πα for α > 0
that achieves o(K1/3T 2/3) regret on every instance in the family Φα,p,ε, then we can use πα as a subroutine
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to construct an algorithm π0 for problem (1) that achieves o(K1/3T 2/3) regret on every instance in the family
Φ0,p,ε, thus contradicting the lower bound of Lemma 1. This will prove the theorem by contradiction. In order
to construct the aforementioned sub-routine, we leverage techniques from Bernoulli factory to generate a sample
from a Bernoulli random variable with parameter µ/(1 − α) using samples from a Bernoulli random variable
with parameter µ, for any µ, α < 1.

Aside on Bernoulli Factory: The key tool we use in constructing the algorithm π0 from πα is Bernoulli
factory for the linear function. The Bernoulli factory for a specified scaling factor C > 1 i.e. BernoulliFactory(C)
uses a sequence of independent and identically distributed samples from Ber(r) and returns a sample from
Ber(Cr).The key aspect of a Bernoulli factory is the number of samples needed from Ber(r) to generate a
sample from Ber(Cr). We use the Bernoulli factory described in Huber (2013) which has a guarantee on the
expected number of samples τ from Ber(r) needed to generate a sample from Ber(Cr). In particular, for a
specified δ > 0,

sup
r∈[0, 1−δC ]

E[τ ] ≤ 9.5C

δ
. (4)

Detailed proof: For some value of p, ε (to be specified later in the proof) such that 0 ≤ p < 1 and 0 ≤ ε ≤ p/2,
consider the family of instances Φα,p,ε and Φ0,p,ε. Let πα be any algorithm for the family Φα,p,ε. Using πα, we
construct an algorithm π0 for the family Φ0,p,ε. This algorithm is described in Algorithm 4. We will use
Iαl = πα([(Iα1 , r1), (Iα2 , r2), · · · (Iαl−1, rl−1)]) to denote the arm pulled by algorithm πα at time l after having
observed rewards rl ∀1 ≤ i < l through arm pulls Il ∀1 ≤ i < l. The function BernoulliFactory(C) returns
two values - a random sample from the distribution Ber(Cr) and the number of samples of Ber(r) needed to
generate this random sample.

Algorithm 4: Derived Algorithm π0

Result: Arm I0
t to be pulled in each round t, total number of arm pulls T

input : Algorithm πα, L - Number of arm pulls for algorithm πα
l = 1, t = 1 ;
for l ∈ [L] do

Iαl = πα([(Iα1 , r1), (Iα2 , r2), · · · (Iαl−1, rl−1)]) ;

if Iαl = 0 then
Pull arm 0 to obtain outcome rl ;
I0
t = Iαl = 0 ;
Ul = {t} ;

else
Call rl, n = BernoulliFactory( 1

1−α ) on samples generated from repeated pulls of the arm Iαl ;

Ul = {t, t+ 1 · · · t+ n− 1} ;
I0
t = I0

t+1 = · · · I0
t+n−1 = Iαl ;

end
Sl = |Ul| ;
l = l + 1 ;
t = t+ Sl ;

end
T = t

Now, let us analyze the expected modified regret incurred by algorithm π0 on an instance Φa0,p,ε for any 0 ≤ a ≤ K
where the expectation is with respect to the random variable T , total number of arm pulls.

Similarly, we analyze the cost regret incurred by algorithm π0 on an instance Φa0,p,ε for any 0 ≤ a ≤ K.
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E
[
Mod Quality Regπ0

(T, 0,Φa0,p,ε)
]

+ E
[
Cost Regπ0

(T, 0,Φa0,p,ε)
]

= E

[
T∑
t=1

(
µ

Φa0,p,ε
m∗ − µΦa0,p,ε

I0t

)
I{I0

t = 0}

]
+ E

[
T∑
t=1

c
Φa0,p,ε
i∗

− cΦ
a
0,p,ε

I0t

]

= E

[
L∑
l=1

∑
t∈Ul

(
µ

Φa0,p,ε
m∗ − µΦa0,p,ε

I0t

)
I{I0

t = 0}

]
+ E

[
L∑
l=1

∑
t∈Ul

c
Φa0,p,ε
i∗

− cΦ
a
0,p,ε

I0t

]

= E

[
L∑
l=1

Sl

(
µ

Φa0,p,ε
m∗ − µΦa0,p,ε

Iαl

)
I{Iαl = 0}

]
+ E

[
L∑
l=1

Sl

(
c
Φa0,p,ε
i∗

− cΦ
a
0,p,ε

Iαl

)]

=

L∑
l=1

E
[
E [Sl|Iαl ]

(
µ

Φa0,p,ε
m∗ − µΦa0,p,ε

Iαl

)
I{Iαl = 0}

]
+ E

[
L∑
l=1

E[Sl|Iαl ]
(
c
Φa0,p,ε
i∗

− cΦ
a
0,p,ε

Iαl

)]

≤
L∑
l=1

E

[
9.5

δ(1− α)

(
µ

Φa0,p,ε
m∗ − µΦa0,p,ε

Iαl

)
I{Iαl = 0}

]
+ E

[
L∑
l=1

9.5

δ(1− α)

(
c
Φa0,p,ε
i∗

− cΦ
a
0,p,ε

Iαl

)]
(Using (4))

=
9.5

δ(1− α)

L∑
l=1

E
[(

(1− α)µ
Φaα,p,ε
m∗ − µΦa0,p,ε

Iαl

)
I{Iαl = 0}

]
+

9.5

δ(1− α)

L∑
l=1

E
[
c
Φaα,p,ε
i∗

− cΦ
a
α,p,ε

Iαl

]
(Because costs of arms are same in all instances, i

Φaα,p,ε
∗ = i

Φa0,p,ε
∗ = a and µ

Φa0,p,ε
m∗ = (1− α)µ

Φaα,p,ε
m∗ )

=
9.5

δ(1− α)
Quality Regπα(L,α,Φaα,p,ε) +

9.5

δ(1− α)
Cost Regπα(L,α,Φaα,p,ε).

Thus,

Quality Regπα(L,α,Φaα,p,ε) + Cost Regπα(L,α,Φaα,p,ε)

≥ δ(1− α)

9.5
E
[
Mod Quality Regπ0

(T, 0,Φa0,p,ε) + Cost Regπ0
(T, 0,Φa0,p,ε)

]
(5)

≥ δ(1− α)

9.5
E
[
Mod Quality Regπ0

(L, 0,Φa0,p,ε) + Cost Regπ0
(L, 0,Φa0,p,ε)

]
(because L ≤ T )

≥ δ(1− α)

9.5

(
Mod Quality Regπ0

(L, 0,Φa0,p,ε) + Cost Regπ0
(L, 0,Φa0,p,ε)

)
(6)

Using Lemma 1 and choosing p = 1−α
3 , δ = 1

2 , ε = p
2 (KT )1/3, we get for any randomized algorithm πα, there

exists instance Φbα,p,ε (for some 0 ≤ b ≤ K) such that Quality Regπ(T, α,Φbα,p,ε) + Cost Regπ(T, α,Φbα,p,ε) is

Ω
(
(1− α)2K1/3T 2/3

)
.

C Performance of Algorithms

We use the following fact in the proof of Theorem 1.

Fact 1. (Abramowitz and Stegun, 1948) For a Normal random variable Z with mean m and variance σ2, for
any z,

Pr (|Z −m| > zσ) >
1

4
√
π

exp(−7z2

2
).

Proof of Theorem 1. This proof is inspired by the lower bound proof in Agrawal and Goyal (2017b). For any
given α,K and T , we construct an instance on which the CS-TS algorithm (Algorithm 1) gives linear regret in
cost.

Consider an instance φ with K arms where the costs and mean reward of the j-th arm are

cj =

{
0 j = 0

1 j 6= 0
, µj =

{
(1− α)q + d√

T
j = 0

q j 6= 0
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where q = d
(1−α)

√
T

for some 0 < d < min{
√
T/2, (1−α)

√
T}. Moreover, the reward of each arm is deterministic

though this fact is not known to the agent. As in the SMS application, we assume that the cost rewards of all
arms are known a priori to the agent.

Let the prior distribution that the agent assumes over the mean reward of each arm be N (0, σ2
0) for some prior

variance σ2
0 . Further, the agent assumes that the observed qualities to be normally distributed with noise

variance σ2
n. As such at the start of period t, the agent will consider a normal posterior distribution for each

arm i with mean

µ̂i(t) =
Ti(t)

σ2
n

σ2
0

+ Ti(t)
µi (7)

and variance

σi(t)
2 =

(
1

σ2
0

+
Ti(t)

σ2
n

)−1

. (8)

As d < qα
√
T , the highest quality across all arms is q. Thus, note that all arms are feasible in terms of quality i.e.

have their quality within (1−α) factor of the best quality arm. Hence, quality regret Quality RegCS−TS(t, α, φ) =
0 ∀t > 0 (for any algorithm) on this instance.

The first arm is the optimal arm (i∗). Thus, the cost regret equals the number of times any arm but the first
arm is pulled. In particular, let

Rc(T ) =

T∑
t=1

max{cIt − ci∗ , 0} =

T∑
t=1

1{It 6= 1},

so that Cost RegCS−TS(T, α, I) = E [RC(T )] .

Define the event At−1 = {
∑
i 6=1 Ti(t) ≤ sT

√
K} for a fixed constant s > 0. For any t, if the event At−1 is not

true, then Rc(T ) ≥ Rc(t) ≥ sT
√
K. We can assume that Pr(At−1) ≥ 0.5 ∀t ≤ T. Otherwise

Cost RegCS−TS(T, α, φ) = E [RC(T )]

≥ 0.5E[RC(T )|Act−1]

= Ω(T
√
K).

Now, we will show that whenever At−1 is true, probability of playing a sub-optimal arm is at least a constant.
For this, we show that the probability that µscore1 (t) ≤ µ1 and µscorei (t) ≥ µ1

1−α , for some 1 < i ≤ K is lower
bounded by a constant.

Now, given any history of arm pulls Ft−1 before time t, µscore1 (t) is a Gaussian random variable with mean

µ̂1(t) = Ti(t)
σ2n
σ20

+Ti(t)
µ1. By symmetry of Gaussian random variables, we have

Pr

(
µscore1 (t) ≤ µ1

∣∣∣∣Ft−1

)
≥ Pr

µscore1 (t) ≤ Ti(t)
σ2
n

σ2
0

+ Ti(t)
µ1

∣∣∣∣Ft−1


= Pr

(
µscore1 (t) ≤ µ̂1(t)

∣∣∣∣Ft−1

)
= 0.5.

Based on (7) and (8), given any realization Ft−1 of Ft−1, µscorei (t) for i 6= 1 are independent Gaussian random
variables with mean µ̂i(t) and variance σi(t)

2. Thus, we have
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Pr

(
∃i 6= 1, µscorei (t) ≥ µ1

1− α

∣∣∣∣Ft−1 = Ft−1

)
= Pr

(
∃i 6= 1, µscorei (t)− µ̂i(t) ≥

1

1− α

(
q(1− α) +

d√
T

)
− µ̂i(t)

∣∣∣∣Ft−1 = Ft−1

)

= Pr

∃i 6= 1, µscorei (t)− µ̂i(t) ≥
d

(1− α)
√
T

+
1

1 + Ti(t)
σ2
0

σ2
n

q

∣∣∣∣∣∣Ft−1 = Ft−1


≥ Pr

(
∃i 6= 1, µscorei (t)− µ̂i(t) ≥

d

(1− α)
√
T

+ q

∣∣∣∣Ft−1 = Ft−1

)
= Pr

(
∃i 6= 1, µscorei (t)− µ̂i(t) ≥

2d

(1− α)
√
T

∣∣∣∣Ft−1 = Ft−1

)
= Pr

(
∃i 6= 1, (µscorei (t)− µ̂i(t))

1

σi(t)
≥
(

2d

(1− α)
√
T

)
1

σi(t)

∣∣∣∣Ft−1 = Ft−1

)
= Pr

(
∃i 6= 1, Zi(t) ≥

(
2d

(1− α)
√
T

)
1

σi(t)

∣∣∣∣Ft−1 = Ft−1

)

where Zi(t) are independent standard normal variables for all i, t. Thus,

Pr

(
∃i 6= 1, µscorei (t) ≥ µ1

1− α

∣∣∣∣Ft−1 = Ft−1

)
= 1− Pr

(
∀i 6= 1, Zi(t) ≤

(
2d

(1− α)
√
T

)
1

σi(t)

∣∣∣∣Ft−1 = Ft−1

)
= 1−Πi 6=1

(
1− Pr

(
Zi(t) ≥

(
2d

(1− α)
√
T

)
1

σi(t)

∣∣∣∣Ft−1 = Ft−1

))
≥ 1−Πi 6=1

(
1− 1

8
√
π

exp

(
−7

2

1

σi(t)2

(
2d

(1− α)
√
T

)2
))

(Using Fact 1)

= 1−Πi 6=1

(
1− 1

8
√
π

exp

(
−7

2

(
1

σ2
0

+
Ti(t)

σ2
n

)(
2d

(1− α)
√
T

)2
))

≥ 1−Πi 6=1

(
1− 1

8
√
π

exp

(
−7

2

(
1

σ2
0

+
1

σ2
n

)
Ti(t)

(
2d

(1− α)
√
T

)2
))

,

The last inequality follows from the fact that Ti(t) ≥ 1.

Now, when the event At−1 holds, we have
∑
i 6=1 Ti(t) ≤ sT

√
K. Thus, the right hand side would be min-

imized when Ti(t) = sT√
K
, ∀i 6= 1. Substituting this value of Ti(t), the right hand side reduces to g(K) =

1 − Πi 6=1

(
1− 1

8
√
π

exp
(
−14

(
1
σ2
0

+ 1
σ2
n

)
s
√
Kd2

(1−α)2

))
. Thus, Pr

(
∃i 6= 1, µscorei (t) ≥ µ1

1−α

∣∣∣Ft−1 = Ft−1

)
≥ g(K)

whenever Ft−1 is such that At−1 holds.
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Probability of playing any sub-optimal arm at time t is,

Pr (∃i 6= 1, It = i) ≥ Pr

(
µscore1 (t) ≤ µ1, ∃i 6= 1 s.t. µscorei (t) ≥ µ1

1− α

)
= E

[
Pr

(
µscore1 (t) ≤ µ1, ∃i 6= 1 s.t. µscorei (t) ≥ µ1

1− α

)∣∣∣∣Ft−1

]
≥ E

[
Pr

(
µscore1 (t) ≤ µ1, ∃i 6= 1 s.t. µscorei (t) ≥ µ1

1− α

)∣∣∣∣Ft−1, At−1

]
Pr(At−1)

≥ 1

2
· g(K) · 1

2

Thus, at every time instant t, the probability of playing a sub-optimal is lower bounded by g(K)
4 . This implies

that the cost regret Cost RegCS−TS(T, α, φ) ≥ 0.25Tg(K).

Proof of Theorem 3. This algorithm has two phases - pure exploration and UCB. In the first phase, the algorithm
pulls each arm a specified number of times (τ). In the second phase, the algorithms maintains upper and lower
confidence bounds on the mean reward of each arm. Then, it estimates a feasible set of arms and pulls the
cheapest arm in this set.

We will define the clean event E in this proof as the event that for every time t ∈ [T ] and arm i ∈ [K], the
difference between the mean reward and the empirical mean reward does not exceed the size of the confidence
interval (βi(t)) i.e. E = {|µ̂i(t)− µi| ≤ βi(t), ∀i ∈ [K], t ∈ [T ]}.

Define t̂ = Kτ + 1 as the first round in the UCB phase of the algorithm. Further, define instantaneous cost and
quality regret as the regret incurred in the t-th arm pull:

Quality Reginstπ (t, T, α,µµµ, c) = E [max{(1− α)µm∗ − µπt , 0}] ,
Cost Reginstπ (t, T, α,µµµ, c) = E [max{cπt − ci∗ , 0}] ,

(9)

where the expectation is over the randomness in the policy π.

Let us first assume that the clean event holds. As both the instantaneous regrets are upper bounded by 1,∑Kτ
t=1 Quality Reginstπ (t, T, α,µµµ, c) ≤ Kτ and

∑Kτ
t=1 Cost Reg

inst
π (t, T, α,µµµ, c) ≤ Kτ .

Now, let us look at the UCB phase of the algorithm. Here, ∀ t̂ ≤ t ≤ T , we have

µUCB
i∗ (t) ≥ µi∗ ≥ (1− α)µm∗ ≥ (1− α)µmt ≥ (1− α)µLCB

mt (t).

Here, the first and fourth inequality are because of the clean event. The second and third inequality are from
the definition of i∗ and m∗ respectively.

Thus from the inequality above, the optimal arm i∗ is in the set Feas(t),∀t̂ ≤ t ≤ T . This implies that the
arm pulled in each time step in the UCB phase, is either the optimal arm or an arm cheaper than it. Thus,
instantaneous cost regret is zero for all time steps in the UCB phase of the algorithm.

Now, let us look at the quality regret in the UCB phase i.e. for any t̂ ≤ t ≤ T . We have

µIt + 2βIt(t) ≥ µUCB
It (t) ≥ (1− α)µLCB

mt (t) ≥ (1− α)µLCB
m∗

(t) ≥ (1− α) (µm∗ − 2βm∗(t)) ≥ (1− α)µm∗ − 2βm∗(t)

The first and fourth inequality hold because the clean event holds. The second and third inequalities follow from
the definition of It and mt respectively. Thus,

Quality Reginstπ (t, T, α,µµµ, c|E) = (1− α)µm∗ − µIt ≤ 2 (βIt(t) + βm∗(t)) ≤ 2

(√
2 log T
τ +

√
2 log T
τ

)
= 4
√

2 log T
τ .

The total regret incurred by the algorithm is the sum of the instantaneous regrets across all time steps in the
exploration and the UCB phase. Thus,
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Quality Regπ(T, α,µµµ, c|E) ≤ Kτ + 4(T − Kτ)
√

2 log T
τ ≤ Kτ + 4T

√
2 log T
τ and Cost Regπ(T, α,µµµ, c|E) ≤ Kτ .

Substituting τ = (T/K)2/3, we conclude that both cost and quality regret are O(K1/3T 2/3
√

log T ).

Now, when the clean event does not hold, the cost and quality regret are at most T each. The probability that
the clean event does not hold is at most 2/T 2 (Lemma 1.6 in Slivkins (2019)). Thus, the expected cost and
quality regret obtained by averaging over the clean event holding and not holding is O(K1/3T 2/3

√
log T ).

Proof of Theorem 4. As in the previous proof, we will define the clean event E as the event that for every time
t ∈ [T ] and arm i ∈ [K], the difference between the mean reward and the empirical mean reward does not exceed
the size of the confidence interval (βi(t)) i.e. E = {|µ̂i(t) − µi| ≤ βi(t), ∀i ∈ [K], t ∈ [T ]}. Also, define the
quality and cost gap of each arm as ∆µ,i = max{(1− α)µm∗ − µi, 0} and ∆c,i = max{ci∗ − ci, 0}.

When the clean event does not hold, both cost and quality regrets are upper bounded by T . Let us look at the
case when the clean event holds and analyze the cost and quality regret.

Quality Regret: Let ti be the last time t when i ∈ Feas(t) i.e. ti = max{K, max{t : i ∈ Feas(t)}}. Thus,
Ti(T ) = Ti(ti).

Consider any arm i which would incur a quality regret on being pulled i.e. arm i such that µi < (1 − α)µm∗ .
We have

µi + 2βi(ti) ≥ µUCB
i (ti) ≥ (1− α)µUCB

mti
(ti) ≥ (1− α)µUCB

m∗
(ti) ≥ (1− α)µm∗ .

The first and fourth inequality hold because of the clean event. The third inequality is from the definition of
mti .

Thus, (1− α)µm∗ − µi ≤ 2βi(ti). Using the definition of βi(ti), we get Ti(T ) = Ti(ti) ≤ 8 log T
∆2
µ,i

.

Using Jensen’s inequality, (∑K
i=1 Ti(T )∆µ,i

T

)2

≤
∑K
i=1 Ti(T )∆2

µ,i

T

=

∑K
i=1: ∆µ,i>0 Ti(T )∆2

µ,i

T

≤
K∑

i=1:∆µ,i>0

8 log T

∆2
µ,i

∆2
µ,i

T

=
8K log T

T

Thus, Quality Regπ(T, α,µµµ, c|E) ≤
√

8KT log T .

Cost Regret: Let i be an arm such that ci > ci∗ . Let t̃i be the last time when arm i is pulled. Thus,

i∗ /∈ Feas(t̃i). We have, µi∗ ≤ µUCB
i∗

(t̃i) < µUCB
i (t̃i) ≤ µi(t̃i) + 2

√
(2 log T )/Ti(t̃i). Thus,

Ti(T ) = Ti(t̃i) <
8 log T

(µi∗ − µi)2
≤ 8δ2 log T

(ci∗ − ci)2
=

8δ2 log T

∆2
c,i

.

Using Jensen’s inequality as for the case of quality regret, we get, Cost Regπ(T, α,µµµ, c|E) ≤
√

8δ2KT log T .

Note that the probability of the clean event is at least 1 − 2/T 2 (Lemma 1.6 in Slivkins (2019)). Thus, the
sum of the expected cost and quality regret by averaging over the clean event holding and not holding is
O((1 + δ)

√
KT log T ).


