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Abstract

We revisit the well-studied problem of differen-
tially private empirical risk minimization (ERM).
We show that for unconstrained convex general-
ized linear models (GLMs), one can obtain an
excess empirical risk of Õ

(√
rank/εn

)
, where

rank is the rank of the feature matrix in the
GLM problem, n is the number of data samples,
and ε is the privacy parameter. This bound is at-
tained via differentially private gradient descent
(DP-GD). Furthermore, via the first lower bound
for unconstrained private ERM, we show that our
upper bound is tight. In sharp contrast to the con-
strained ERM setting, there is no dependence on
the dimensionality of the ambient model space
(p). (Notice that rank ≤ min{n, p}.) Besides,
we obtain an analogous excess population risk
bound which depends on rank instead of p.

For the smooth non-convex GLM setting (i.e.,
where the objective function is non-convex but
preserves the GLM structure), we further show
that DP-GD attains a dimension-independent
convergence of Õ

(√
rank/εn

)
to a first-order-

stationary-point of the underlying objective.

Finally, we show that for convex GLMs, a variant
of DP-GD commonly used in practice (which in-
volves clipping the individual gradients) also ex-
hibits the same dimension-independent conver-
gence to the minimum of a well-defined objec-
tive. To that end, we provide a structural lemma
that characterizes the effect of clipping on the op-
timization profile of DP-GD.

1 Introduction

Differentially private empirical risk minimization (ERM)
is a well-studied area in the privacy literature [Chaudhuri
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et al., 2011, Kifer et al., 2012, Song et al., 2013, Bassily
et al., 2014, Jain and Thakurta, 2014, Abadi et al., 2016,
McMahan et al., 2017, Wu et al., 2017, Bassily et al.,
2019b, Iyengar et al., 2019, Pichapati et al., 2019, Thakkar
et al., 2019, Feldman et al., 2020]. In the constrained set-
ting, where the model space is bounded by C ( Rp, tight
upper and lower bounds are known for both excess em-
pirical risk [Bassily et al., 2014], and excess population
risk [Bassily et al., 2019a, Feldman et al., 2020]. Surpris-
ingly, in the arguably simpler unconstrained setting where
C = Rp, the problem space is much less explored. To our
knowledge, the only prior work that distinguishes between
the constrained and the unconstrained case is that of Jain
and Thakurta [2014]. They show dimension-independent
upper bounds for population risk (under differential pri-
vacy) in the convex generalized linear models (GLMs)
case, which alludes to a separation between constrained
and unconstrained settings. In contrast, the lower bound
of Bassily et al. [2014] shows that an explicit dependence
on the dimensionality (p) is necessary in the constrained
setting, even for GLMs.

In this work, we revisit the private unconstrained ERM
setting, and close the gap between upper and lower
bounds for the GLM case. We first show that for con-
vex GLMs, one can attain an excess empirical risk of
Õ
(√

rank/(ε · n)
)

1, where rank is the rank of the fea-
ture matrix, and ε is the privacy parameter. In compari-
son, Jain and Thakurta [2014] provide a much worse up-
per bound on the excess population risk for the uncon-
strained setting as Õ (1/ε

√
n). If interpreted in terms of

excess empirical risk, their bound matches ours only when
rank = n. Our upper bound is in sharp contrast to the
lower bound of Ω̃

(√
p/(ε · n)

)
for the constrained set-

ting [Bassily et al., 2014] (p being the dimensionality of
the model space), as rank ≤ min{n, p} always holds, and
rank may be much smaller. Our upper bound is achieved
via differentially private gradient descent (DP-GD) [Bass-
ily et al., 2014, Song et al., 2013, Talwar et al., 2014, Abadi
et al., 2016]. While our guarantees extend to the stochastic
variant of DP-GD, we focus on the full gradient version for
brevity.

We further show that our bound on the excess empirical

1Õ(·) hides polylog (1/δ), where δ is a privacy parameter.
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risk is essentially tight. It is worth mentioning that ours
is the first lower bound on excess empirical risk for any
unconstrained ERM problem (including GLMs). The lower
bound is based on fingerprinting codes [Bun et al., 2018,
Steinke and Ullman, 2017].

In subsequent works [Kairouz et al., 2020, Zhou et al.,
2020], there have been extensions of our results for con-
vex GLMs to general convex ERMs via adaptive precondi-
tioners. However, these results are more restrictive in their
guarantees, and do not imply our results. They require the
existence of public data to identify the subspace where the
gradient of the objective function lies.

Going beyond convex GLMs, we show that the dimension-
independent convergence holds even for non-convex GLMs
(i.e., the loss function has the GLM structure, but can
be non-convex). Such problems appear commonly in ro-
bust regression [Amid et al., 2019, Masnadi-Shirazi and
Vasconcelos, 2009, Masnadi-Shirazi et al., 2010]. Given

an objective function L(θ;D) = 1
n

n∑
i=1

`(θ; di), where

dataset D = {d1, . . . , dn}, we show that DP-GD reaches
a first-order stationary point (FOSP) of L(θ;D) at a rate
of Õ

(√
rank/(ε · n)

)
as long as the individual loss func-

tions ` are smooth in the model parameter.

All our upper bounds are primarily based on DP-GD, which
in general, requires a bound on the `2-norm of the sub-
gradients of individual loss functions in L(θ;D). In prac-
tice, however, such a bound is seldom known a priori for
complex models. As a result, a variant of DP-GD, called
clipped DP-GD [Abadi et al., 2016, Papernot et al., 2020],
is commonly used. It scales the subgradients down if the
`2-norm crosses a predefined threshold, a.k.a. the clipping
norm (B > 0). In this work, we show that no matter what
the clipping norm is, for convex GLMs, clipped DP-GD
still has an excess empirical risk of Õ(

√
rank/(ε·n)) with

respect to a well-defined objective function L(B)
clipped(θ;D)

(in contrast to the original objective L(θ;D)). The func-
tion L(B)

clipped still satisfies the convex GLM property. While
there are other contemporary works [Chen et al., 2020] that
study the effect of clipping on DP-GD, they are orthogo-
nal to the results in this paper. We focus on formal excess
empirical risk guarantees, whereas Chen et al. [2020] focus
on understanding the gradient profile generated by DP-GD
due to clipping.

1.1 Our Contributions

Dimension-independent excess empirical risk bounds
for convex generalized linear models (GLMs): In Sec-
tion 3.1, we consider a class of problems with loss func-
tions of the form `(〈θ,x〉; y), where x ∈ X ⊂ Rp is the
feature vector, y ∈ R is the response variable, and ` is con-
vex in the first parameter. We show that if the optimization
is over an unconstrained space (i.e., θ ∈ Rp), then for an

objective function L(θ;D) = 1
n

n∑
i=1

` (〈θ,xi〉; yi), one can

achieve an excess empirical risk of Õ
(
L
√
rank/(ε · n)

)
,

where rank ≤ min{n, p} is the rank of the feature ma-
trix X = [x1, . . . ,xn]. To the best of our knowledge,
this is the first rank-based excess empirical risk bound
for private convex GLMs. Notice that the bound does
not have any explicit dependence on the dimensionality
p. We achieve this bound by optimizing on L(θ;D) us-
ing differentially private gradient descent (DP-GD) [Bass-
ily et al., 2014, Talwar et al., 2014, Song et al., 2013].
We also obtain an excess population risk of the form
Õ(L · min{1/

√
n,
√
rank/(ε · n)}), which is equivalent

to the optimal excess population risk obtained by prior
works [Bassily et al., 2019a, 2020, 2019b], except that the
ambient dimensionality p is replaced by rank2.

Existing lower bounds for constrained private convex learn-
ing [Bassily et al., 2014] (i.e., θ ∈ C ( Rp) show that for
excess empirical risk, an explicit polynomial dependence
on the dimensionality of the model space (p) is necessary.
In contrast, our bound only depends on the rank of the
feature matrix X . Our main insight is that for DP-GD on
generalized linear problems, the gradients lie in a low-rank
subspace. The noisy gradients that DP-GD uses for state
updates do not significantly impact this low-rank structure
due to the spherical (and stable) nature of the Gaussian
distribution. Our results extend to the local differentially
private (LDP) [Warner, 1965, Evfimievski et al., 2003, Ka-
siviswanathan et al., 2008] variant of DP-GD, albeit with an
increase of a

√
n factor in the excess empirical risk [Duchi

et al., 2018].

While Jain and Thakurta [2014] proved a related
dimension-independent risk guarantee for two other dif-
ferentially private algorithms, namely output perturbation
[Chaudhuri et al., 2011] and objective perturbation [Chaud-
huri et al., 2011, Kifer et al., 2012], our result is notable
in the following aspects. First, we provide a more fine-
grained control via the rank parameter. The result in
Jain and Thakurta [2014] only provides guarantees where
rank is upper-bounded by n. Second, Jain and Thakurta
[2014] crucially relies on the existence of a centralized data
source, whereas our result extends seamlessly to the LDP
setting. Third, unlike the algorithms in Jain and Thakurta
[2014], DP-GD does not require convexity to ensure pri-
vacy. This is important because even if the overall opti-
mization function is non-convex, DP-GD still ensures dif-
ferential privacy [Bassily et al., 2014, Abadi et al., 2016].
Depending on the optimization profile, we may still ob-
serve a dimension-independent convergence. We provide
more evidence of this phenomenon in Section 4.

Additionally, we obtain a population risk guarantee that is
asymptotically the same as the optimal excess population

2In the context of population risk, rank refers to the rank of
the covariance matrix for the data generating distribution.
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risk in Bassily et al. [2019b], except that the ambient di-
mensionality (p) is replaced by rank. In Section 6, we
provide empirical evidence demonstrating the dimension-
independence of DP-GD with Gaussian noise on logistic
regression.

Tight lower bound on excess empirical risk for con-
vex GLMs: In Section 3.2, we show that our dimension-
independent upper bound on the excess empirical risk for
unconstrained convex GLM achieved via DP-GD is tight.
This lower bound is in sharp contrast to that in Bassily et al.
[2014], where they show that for GLMs in the constrained
setting, an explicit dependence on the dimensionality (p) is
necessary. It is worth mentioning that our lower bound is
the first for any unconstrained private convex ERM. Our
lower bound is proved by transforming a GLM instance
(namely, `(〈θ,x〉; y) = |〈x, θ〉 − y|) to estimating one-
way marginals, to which we can apply fingerprinting tech-
niques [Bun et al., 2018, Steinke and Ullman, 2017].

Dimension-independent convergence to a first-order
stationary point for non-convex GLMs: In Section 4,
we extend our dimension-independent result to non-convex
generalized linear problems, i.e., where the loss func-
tion ` can be non-convex but preserves the inner-product
structure. We show that for this class of problems, DP-
GD converges to a first-order stationary point (FOSP)
(i.e., where the gradient of the objective function is zero).
Again, this convergence guarantee is independent of the
model dimensionality, and only depends on rank of the
feature matrix. Specifically, we show that if the loss
function for the non-convex generalized linear problem
is smooth and L-Lipschitz in the `2 norm, then DP-GD
(paired with the exponential mechanism [McSherry and
Talwar, 2007]) outputs a model θpriv such that the gradi-
ent of the objective function L(θ;D) at θpriv has `2-norm
of Õ

(
L
√
rank/(εn)

)
.

While there has been work on understanding the conver-
gence of variants of DP-GD on non-convex losses [Wang
et al., 2019], ours is the first result to demonstrate a
dimension-independent convergence. At the heart of our
result is a simple folklore argument stated in Allen-Zhu
[2018] that shows first-order convergence of GD for non-
convex objectives. We conjecture that our result can be
extended to second-order convergence (analogous to Wang
et al. [2019]) under additional assumptions on the loss
function. A natural direction would be to modify the ar-
gument of Jin et al. [2017] to make it amenable to DP-GD.

Analysis of clipped differentially private gradient de-
scent (DP-GD) on convex GLMs: While the upper
bounds in this paper are achieved by DP-GD, one major
caveat for using the algorithm in practice is that it requires
a predefined upper bound of L on ‖∂θ`(〈θ,x〉; y)‖2 for all
x, y. (Here, ∂θ corresponds to the subgradients.) In real-
world applications, L is almost never known a priori. As

a result, a variant of DP-GD (called clipped DP-GD) is
used in practice where the individual subgradients corre-
sponding to each data sample (x, y) are scaled/clipped to
ensure that they are upper bounded by a predefined quan-
tity B > 0, a.k.a. the clipping norm [Abadi et al., 2016,
Papernot et al., 2020, Chen et al., 2020]. In Section 5, we
show that no matter what the clipping norm B is, for con-
vex GLMs, clipped DP-GD optimizes a well-defined con-
vex objective (denoted by L(B)

clipped(θ;D)) corresponding to
L(θ;D). Furthermore, the excess empirical risk with re-
spect to L(B)

clipped is Õ
(
B
√
rank/(ε · n)

)
, with rank be-

ing the rank of the feature matrix X . Notice the same
dimension-independent convergence for clipped DP-GD as
that of vanilla DP-GD. We also show that if B ≥ L,
then L(B)

clipped(θ;D) equals L(θ;D) point-wise. To prove
the above bound, we provide a structural lemma (see Sec-
tion 5.1, which characterizes the clipping operation as a
variant of Huberization [Huber and Ronchetti, 1981] for
convex GLMs. To our knowledge, this is the first conver-
gence guarantee for clipped DP-GD.

As an interlude, in Section 5.3, we show that the conver-
gence guarantees of clipped DP-GD are sensitive to the
choice of the clipping normB. Setting it low (i.e., B � L)
can result in strange behaviors in the optimization profile,
ranging from introducing Ω(1) bias in the excess empiri-
cal risk, to generating vectors that do not conform to the
gradient field of any “natural” convex function.

We note that there is a line of work on the practice and the-
ory of gradient clipping [Goodfellow et al., 2016, Pascanu
et al., 2012, 2013, Zhang et al., 2019]. Despite the simi-
larity in name, these algorithms are different as they clip
the averaged gradient in each step, while in clipped DP-
GD, we need the individual gradient to be clipped to get a
reasonable privacy/utility trade-off.

2 Preliminaries

In this section, we provide the some of the concepts re-
quired in the rest of the paper.

Definition 2.1 (Seminorm). Given a vector space V over
a field F of the real numbers R, a seminorm on V is a
nonnegative-valued function ρ : V → R with the following
properties. For all a ∈ F , and u,v ∈ V :

1. Triangle inequality: ρ(u + v) ≤ ρ(u) + ρ(v).
2. Absolute scalability: ρ(a · u) = |a| · ρ(u).

Lipschitzness, Convexity, and Smoothness: We addition-
ally require the following definitions to state our results.
These properties usually govern the rate of convergence of
an algorithm for optimizing ERMs.

Definition 2.2 (`2-Lipschitz continuity). A function f :
C → R is L-Lipschitz w.r.t. the `2-norm over a set C ⊆ Rp
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if the following holds: ∀θ1, θ2 ∈ C, |f(θ1)− f(θ2)| ≤
L · ‖θ1 − θ2‖2.
Definition 2.3 ((Strong) convexity w.r.t. `2-norm). A func-
tion f : C → R is ∆-strongly convex w.r.t. the `2-norm
over a set C ⊆ Rp if ∀α ∈ (0, 1), (θ1, θ2) ∈ C × C:

f(αθ1 + (1− α)θ2)

≤ αf(θ1) + (1− α)f(θ2)−∆
α(α− 1)

2
‖θ1 − θ2‖22 .

Function f is simply convex if the above holds for ∆ = 0.

Definition 2.4 (Smoothness). A function f : C → R is β-
smooth on C ⊆ Rp if for all θ1 ∈ C and for all θ2 ∈ C, we
have f(θ2) ≤ f(θ1) + 〈∇f(θ1), θ2 − θ1〉+ β

2 ‖θ1 − θ2‖
2
2.

Differential Privacy: In this paper, we focus on approxi-
mate differential privacy (DP) [Dwork et al., 2006b,a].

Definition 2.5 (Differential privacy [Dwork et al.,
2006b,a]). A randomized algorithm A is (ε, δ)-
differentially private if, for any pair of datasets D
and D′ differing in exactly one data point (i.e., one data
point is replaced in the other), and for all events S in the
output range of A, we have

Pr[A(D) ∈ S] ≤ eε ·Pr[A(D′) ∈ S] + δ,

where the probability is taken over the random coins ofA.

For meaningful privacy guarantees, ε is assumed to be a
small constant, and δ � 1/n for n = |D|.

Empirical risk minimization (ERM): Let D =
{d1, · · · , dn} ⊆ Dn be a data set of n samples drawn from
the domain D, and for C ⊆ Rp being the model space, let
` : C × D → R be a loss function. Then the empirical risk

over the data set D is defined as L(θ;D) = 1
n

n∑
i=1

`(θ; di).

The objective of an empirical risk minimization (ERM) al-
gorithm is to output a model θ ∈ C that approximately min-
imizes the empirical risk L over the set C. For the theoreti-
cal guarantees in this paper, we will only look at ERM loss,
and the excess empirical risk R(θ) = L(θ;D)−L(θ∗;D),
where θ∗ = arg minθ∈C L(θ;D). By stability-based argu-
ments [Bassily et al., 2014, Shalev-Shwartz et al., 2009],
one can easily translate excess empirical risk for differen-
tially private algorithms to their corresponding excess pop-
ulation risk, where the population risk for θ is defined as
Ed∼T [`(θ; d)], with T being a given distribution over D.

If C ( Rp, we are in the so-called constrained ERM set-
ting, whereas C = Rp is denoted as the unconstrained set-
ting. In this paper, we focus on the unconstrained setting.

Generalized Linear Models: For most of this paper, we
focus on a special class of ERM problems called gener-
alized linear models [Shalev-Shwartz et al., 2009], where
the loss function `(θ; d) takes a special inner-product form
`(〈θ,x〉; y) for d = (x, y). Here, x ∈ Rp is usually called

Algorithm 1 ADP-GD: Diff. private gradient descent

Input: Data set D = {d1, · · · , dn}, loss function: ` :
Rp × D → R, gradient `2-norm bound: L, constraint
set: C ⊆ Rp, number of iterations: T , noise variance:
σ2, learning rate: η.

1: θ0 ← 0.
2: for t = 0, . . . , T − 1 do

3: gprivt ← 1
n

n∑
i=1

∂θ`(θt; di) +N
(
0, σ2

)
.

4: θt+1 ← ΠC

(
θt − η · gprivt

)
, where

ΠC(v) = arg min
θ∈C

‖v − θ‖2.

5: end for

6: return θpriv = 1
T

T∑
t=1

θt.

the feature vector and y ∈ R the response. Instead of being
the feature vector in the original data, x can also be thought
of as representing a mapped value φ(x) of original feature
vector. We do not make the distinction here.

Differentially Private Gradient Descent: We provide a
formal description of Differentially Private Gradient De-
scent (DP-GD) in Algorithm 1. In this version, the gra-
dient gt is computed over the whole data set, and the
output θpriv is the average of the models over all itera-
tions. In practice, we may instead use differentially private
stochastic gradient descent (DP-SGD), where gt is com-
puted over a random mini-batch, and the output θpriv is
the last model. While our analytical results are for the for-
mer setting (due to brevity), they extend to the latter with
mild modifications to the proofs.

Theorem 2.6 (From Abadi et al. [2016], Mironov [2017]).
If ‖∂θ`(θ; d)‖2 ≤ L for any θ ∈ C and d ∈ Rp, then, Algo-
rithm ADP-GD (Algorithm 1) is (ε, δ)-differentially private
if the noise variance is σ2 = 2L2T log(1/δ)

(nε)2 .

Theorem 2.7 (From Bassily et al. [2014], Talwar et al.
[2014]). If the constraint set C is convex, the loss function
`(θ; d) is convex in the first parameter, ‖∂θ`(θ; d)‖2 ≤ L
for all θ ∈ C and d ∈ D, then for objective function

L (θ;D) = 1
n

n∑
i=1

`(θ; di), under appropriate choices of

the learning rate and the number of iterations in Algorithm
ADP-GD (Algorithm 1), we have

E
[
L
(
θpriv ;D

)]
− L (θ∗;D)

≤
L‖θ0 − θ∗‖2

√
p log(1/δ)

εn
,

where θ∗ = arg min
θ∈C

L(θ;D) is the minimizer and θ0 ∈ C

is the initial model.
The corresponding high-probability version is as follows.
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With probability at least 1− β, we have

L
(
θpriv ;D

)
− L (θ∗;D)

≤
L‖θ0 − θ∗‖2

√
p log(1/δ) log(1/β)

εn
.

3 Tight Excess Empirical Risk for Convex
Generalized Liner Models (GLMs)

In Section 3.1, we show that algorithm ADP-GD (Al-
gorithm 1) converges to an excess empirical risk of
Õ(
√
rank/εn), which in particular is independent of the

ambient dimensionality (p). (Here rank is the rank of the
feature matrix for GLMs.) In comparison, prior excess em-
pirical risk of Õ(

√
p/εn) (via Theorem 2.7) has an explicit

dependence p for Algorithm ADP-GD.

In Section 3.2 we further show that this bound is tight. It
is the first lower bound on excess empirical risk for any
unconstrained Lipschitz optimization problem.

3.1 Upper-bound via Private Gradient Descent

Consider the following convex optimization problem. Let

L(θ;D) = 1
n

n∑
i=1

`(〈θ,xi〉; yi) be an objective function de-

fined over the data set D = {(x1, y1), . . . , (xn, yn)} with
xi ∈ X and yi ∈ R for all i ∈ [n], where X ⊂ Rp

is a bounded set. Assume the loss function `(〈θ,x〉; y) is
convex in its first parameter and is L-Lipschitz with re-
spect to the `2-norm over all θ ∈ Rp and for all x and
y. In other words, the `2-norm of ∂θ` is upper bounded
by L. The objective is to output θpriv that approximately
solves arg min

θ∈Rp

L(θ;D) while satisfying differential pri-

vacy. In the following, we show that the excess empiri-
cal risk for ADP-GD (Algorithm 1) scales approximately as
Õ(
√
rank/(εn)). Here rank is the rank of the feature

matrix [x1|x2| · · · |xn] formed by stacking the feature vec-
tors as columns. In Section 3.2, we show that this bound is
indeed tight.
Theorem 3.1. Let θ0 = 0p be the initial point of ADP-GD.
Let θ∗ = arg min

θ∈Rp

L(θ;D), and M be the projector to the

eigenspace of the matrix
n∑
i=1

xix
T
i . Letting L be the gra-

dient `2-norm bound. Setting the constraint set C = Rp

and running ADP-GD on L(θ;D) for T = n2ε2 steps with
appropriate learning rate η, we get

E
[
L
(
θpriv ;D

)]
− L (θ∗;D)

≤
L ‖θ∗‖M

√
1 + 2 · rank(M) · log(1/δ)

εn
.

Here, rank(M) ≤ n (but can be much smaller), and ‖·‖M
is the seminorm w.r.t. the projector M .

Though our result is for excess empirical risk, it can be
translated to excess population risk guarantees via standard
stability-based arguments [Bassily et al., 2020]. (We pro-
vide the details below.) The crux of our proof technique
is to work in the subspace generated by the feature vectors
for generalized linear problem. We proved the guarantees
for DP-GD that uses full gradient and returns the average
of the models over all iterations. Our proof would extend
seamlessly (by modifying the proofs of Theorems 1 and 2
in Shamir and Zhang [2013]) to settings where stochastic
gradients over mini-batches are used and the final model is
returned as the output.

Proof of Theorem 3.1. We prove the theorem via the stan-
dard template for analyzing SGD methods [Bubeck, 2015].

Recall θpriv = 1
T

T∑
t=1

θt, where {θ1, . . . , θT } are the mod-

els in each iterate of DP-GD. Let gt denote any subgradient
in ∂L(θt;D). By convexity and the standard linearization
trick in convex optimization [Bubeck, 2015], we have:

L
(
θpriv ;D

)
− L (θ∗;D) ≤ 1

T

T∑
t=1

〈gt, θt − θ∗〉 (1)

Let V be the eigenbasis of
n∑
i=1

xix
T
i and letM = V V T . M

is a positive semidefinite matrix and it defines a seminorm
‖·‖M (by Definition 2.1). Let bt be the Gaussian noise
vector added at time step t. To bound the error in (1), we
will use a potential argument w.r.t. the potential function

Ψt(θ) = Eb1,...,bt

[
‖θ − θ∗‖2M

]
= Eb1,...,bt−1

[
Ebt

[
‖θ − θ∗‖2M

∣∣∣ b1, . . . , bt−1]] .
Recall that the update step in DP-GD is θt+1 ← θt −
η (gt + bt). We get the following by simple algebraic ma-
nipulation:

Ψt(θt+1) = Eb1,...,bt

[
‖(θt − θ∗)− η(gt + bt)‖2M

]
= Ψt(θt)− 2ηEb1,...,bt [〈gt + bt, θt − θ∗〉M ]

+ η2Eb1,...,bt

[
‖gt + bt‖2M

]
(2)

= Ψt(θt)− 2ηEb1,...,bt [〈gt + bt, θt − θ∗〉]

+ η2Eb1,...,bt

[
‖gt + bt‖2M

]
(3)

≤ Ψt(θt)− 2ηEb1,...,bt−1 [〈gt, θt − θ∗〉]

+ η2
(
L2 + Ebt

[
‖bt‖2M

])
= Ψt−1(θt)− 2ηEb1,...,bt−1

[〈gt, θt − θ∗〉]

+ η2
(
L2 + Ebt

[
‖bt‖2M

])
= Ψt−1(θt)− 2ηEb1,...,bt−1

[〈gt, θt − θ∗〉]
+ η2

(
L2 + rank(M) · σ2

)
. (4)
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where (3) follows because gt lies in the subspace M ,
and (4) follows because bt ∼ N (0, σ2Ip) and thus

Ebt

[
‖bt‖2M

]
= rank(M) · σ2. Rearranging the terms

in (4), we have the following.

Eb1,...,bt−1 [〈gt, θt − θ∗〉] ≤
1

2η
(Ψt−1(θt)−Ψt(θt+1))

+
η

2

(
L2 + rank(M) · σ2

)
.

(5)

Let Ψ(θ) = ‖θ − θ∗‖2M . Summing up (5) for all t ∈ [T ],
averaging over the T iterations, and combining with (1), we
get:

E
[
L
(
θpriv ;D

)]
− L (θ∗;D)

≤ 1

2Tη
Ψ(0) +

η

2

(
L2 + rank(M) · σ2

)
(6)

Setting η to minimize the RHS, we have

E
[
L
(
θpriv ;D

)]
− L (θ∗;D)

≤ ‖θ∗‖M

√
L2 + rank(M) · σ2

T

= ‖θ∗‖M

√
L2

T
+

2L2 log(1/δ) · rank(M)

n2ε2
,

where the equality follows by plugging in σ =
L
√

2T log(1/δ)

nε . Now, setting T = n2ε2, we have

E
[
L
(
θpriv ;D

)]
− L (θ∗;D)

≤
L ‖θ∗‖M

√
1 + 2 · rank(M) · log(1/δ)

ε · n
.

This completes the proof.

The lower-bound in Bassily et al. [2014] shows that if one
performs constrained optimization with DP, then the excess
empirical risk is Ω̃(

√
p/(εn)). This lower bound holds true

for generalized linear problems as well. However, since we
consider unconstrained optimization here, the lower bound
does not apply to our result. In fact, the lower bound does
not hold even for general convex functions, as long as the
underlying optimization problem is unconstrained. Subse-
quent to our work, Kairouz et al. [2020] showed that via
adaptive preconditioning methods, one can get dimension
independent empirical risk bounds for general convex prob-
lems as long as the gradients lie in a low-rank subspace.
However, for the specific case of GLMs, their bounds are
weaker than ours, and depend on max

t∈T
‖θt − θ∗‖2, rather

than ‖θ∗‖M (as defined in Theorem 3.1).

The guarantee in Theorem 3.1 is of the same flavor as in
Jain and Thakurta [2014], wherein such a result was shown
for two different DP algorithms, namely, output perturba-
tion, and objective perturbation [Chaudhuri et al., 2011,

Kifer et al., 2012]. Our result via ADP-GD improves the
state-of-the-art in the following ways. First, the result in
Jain and Thakurta [2014] was only for the worst-case set-
ting where rank(M) = n, whereas our results extend
to any rank setting. Second, unlike output perturbation
and objective perturbation, ADP-GD does not require con-
vexity to ensure DP. As a result, ADP-GD can be applied
to non-convex losses and may enjoy the same dimension-
independent behavior as in the convex case. (We show ev-
idence of this in Section 4.) Third, our results for DP-GD
almost seamlessly transfer to the local differential privacy
(LDP) setting3 [Warner, 1965, Evfimievski et al., 2003, Ka-
siviswanathan et al., 2008]. This is the first dimension-
independent excess risk guarantee in the LDP setting. Out-
put perturbation and objective perturbation are incompati-
ble with LDP, as they require a centralized dataset to oper-
ate.

Obtaining optimal excess population risk guarantee:
We translate the excess empirical risk guarantee in Theo-
rem 3.1 to population risk guarantee via the standard ap-
proach of uniform stability [Bassily et al., 2019b, 2020].
The argument in Theorem 3.2 is identical to that in [Bass-
ily et al., 2020], except that we operate with ‖·‖M (defined
in Theorem 3.2) instead of the `2-norm. Note the bound is
asymptotically the same as the optimal excess population
risk in Bassily et al. [2019b], except that the ambient di-
mensionality (p) is replaced with min{rank(M), n}. We
provide the proof of Theorem 3.2 in Appendix A.

Theorem 3.2. Let θ0 = 0p be the initial point of ADP-GD.
Let D = {(x1, y1), . . . , (xn, yn)} be drawn i.i.d. from a
distribution τ . Let θ∗pop = arg min

θ∈Rp

E(x,y)∼τ [`(〈x, θ〉; y)],

and M be the projector to the eigenspace of the matrix
Ex∼τ

[
xxT

]
. Let L be the gradient `2-norm bound, and

k = min{rank(M), n}. Setting the constraint set C =
Rp and runningADP-GD on L(θ;D) for T = n2 steps with
appropriate learning rate η, we obtain

EADP-GD,D,(x,y)∼τ
[
`(〈θpriv ,x〉; y)− `(〈θ∗pop,x〉; y)

]
=
∥∥θ∗pop∥∥M ·O

(
max

{
1√
n
,
L
√
k · log(1/δ)

εn

})
.

3.2 Lower-bound via Fingerprinting Codes

Next, we prove the optimality of the upper bound in Theo-
rem 3.1 up to a O(

√
log(1/δ)) factor4 by proving a match-

ing lower bound. The lower bound is attained by a simple
convex GLM given by `(〈θ,x〉; y) = |〈θ,x〉 − y|; this loss
is L-Lipschitz for L = ‖x‖2 and is always non-negative.

3Obtaining LDP guarantee results in scaling up the Gaussian
noise in Algorithm ADP-GD by

√
n factor.

4This dependence on the δ parameter can be introduced into
the lower bound by a generic group privacy reduction [Steinke
and Ullman, 2015].
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We emphasize that our lower bound holds in the uncon-
strained setting where C = Rp. Prior lower bounds
[Bassily et al., 2014] heavily relied on θ being con-
strained; indeed, if we remove the constraint on θ in
prior lower bounds, either there is no minimum value
(i.e., infθ∈Rp L(θ;D) = −∞) or, if we avoid this with
a regularizer, the loss is no longer Lipschitz.

Theorem 3.3. Let A : (Rp ×R)n → Rp be an arbitrary
(ε, δ)-differentially private algorithm with ε ≤ c and δ ≤
cε/n for some universal constant c > 0. Let 1 ≤ d ≤ p
be an integer. Let ` : Rp × (Rp ×R) → R be defined by
`(〈θ,x〉; y) = |〈θ,x〉−y|. Then there exists a data setD =
((x1, y1), · · · , (xn, yn)) ∈ (Rp × R)n such that the fol-
lowing holds. For all i ∈ [n], yi ∈ {0, 1} and ‖xi‖2 ≤ 1,
‖∂θ`(θ; (xi, yi))‖2 ≤ 1 for all θ ∈ Rp. Let θpriv = A(D)
and θ∗ = arg min

θ∈Rp

L(θ;D) (breaking ties towards lower

‖θ‖2), where L(θ;D) = 1
n

∑n
i=1 `(〈θ,xi〉; yi). Then we

have rank(
∑n
i=1 xix

>
i ) ≤ d and ‖θ∗‖2 ≤

√
d and

E
[
L
(
θpriv ;D

)]
− L (θ∗;D) ≥ Ω

(
min

{
1,

d

εn

})

≥ Ω

min

1,
‖θ∗‖2 ·

√
rank

(∑n
i=1 xix

>
i

)
εn


 .

The parameter d determines the complexity of the lower
bound instance and controls the rank of the feature matrix.

We now sketch the proof of Theorem 3.3. The full de-
tails are in Appendix B. The proof is based on the pow-
erful fingerprinting technique for proving differential pri-
vacy lower bounds [Bun et al., 2018, Steinke and Ullman,
2017, Dwork et al., 2015], which was originally developed
in the cryptography literature [Boneh and Shaw, 1998, Tar-
dos, 2008]. A fingerprinting code provides a sequence of
vectors z1, · · · , zn ∈ {0, 1}d, which we use to construct
the hard dataset with each zi corresponding to the data
of individual i. The guarantee of the fingerprinting code
is that it is not possible to privately estimate the average
1
n

∑n
i=1 zi ∈ [0, 1]d to within a certain level of accuracy

(depending on the privacy parameters ε and δ, the dimen-
sionality d, and the number of individuals n).

We construct the hard dataset by setting yi = 〈zi,xi〉 for
all i ∈ [n]. Intuitively, to obtain low loss L(θpriv ;D) =
1
n

∑n
i=1 |〈θpriv ,xi〉 − yi| = 1

n

∑n
i=1 |〈θpriv − zi,xi〉|

the algorithm must ensure θpriv ≈ 1
n

∑n
i=1 zi, but this

is impossible to do privately due to the properties of the
fingerprinting code. This is the basis of our lower bound.

The only remaining part the construction is the feature vec-
tors x1, · · · ,xn ∈ {0, 1}d. These are either standard basis
vectors (i.e., one 1) or all zeros. These are chosen so that
1
n

∑n
i=1 |〈θpriv − zi,xi〉| = Θ(‖θpriv − 1

n

∑n
i=1 zi‖1),

which suffices for the above argument.

Independently and subsequent to our work, Cai et al. [2020]
prove lower bounds for estimating the parameters of a
GLM. In contrast, our lower bound is stated in terms of the
loss. They also give dimension-dependent upper bounds.

4 Dimension Independent First-order
Convergence for Non-convex GLMs

In this section, we provide an extension to Theorem 3.1
that captures the setting when the loss function `(z; ·) may
be non-convex in z. Such loss functions appear commonly
in robust regression, such as Savage loss [Masnadi-Shirazi
and Vasconcelos, 2009], Tangent loss [Masnadi-Shirazi
et al., 2010], and tempered loss [Amid et al., 2019]. We
show that as long as `(z; ·) is β-smooth (see Definition 2.4),
ADP-GD (Algorithm 1) approximately reaches a stationary
point on the objective function L(θ;D), where θ is called a
stationary point if ∇L(θ;D) = 0. Similar to Theorem 3.1,
the convergence guarantee in this section will have no ex-
plicit dependence on the number of dimensions. We use a
folklore argument stated in Allen-Zhu [2018] to prove our
result. The proof of Theorem 4.1 is in Appendix C.
Theorem 4.1. Recall the notation in Theorem 3.1. Let Θ =
[θ0, . . . , θT ] be the list of models output by ADP-GD. Let
tpriv ← arg min

t∈{0,...,T−1}
‖∇L(θt;D)‖M + Lap

(
4L
n

)
. Then,

the algorithm that outputs the set Θ in conjunction with
tpriv is (2ε, δ)-differentially private. Furthermore, as long

as T ≥ βn2ε2·L(0p;D)

2L2 log( 1
δ )

, we have with probability at least

1− γ,∥∥∇L(θtpriv ;D)
∥∥
2

=
∥∥∇L(θtpriv ;D)

∥∥
M

= O

(
L

εn
·

√
rank(M) · log

(
1

δ

)
log

(
T

γ

))
.

Here, L is the Lipschitz constant, β is the smoothness con-
stant of L(θ;D). We set a constant learning rate in Algo-
rithm 1 as η = 1

β , and θ0 = 0p. Notice that rank(M) ≤ n
always holds but rank(M) can be much smaller than n.

The algorithm in Theorem 4.1 is a modification of ADP-GD
(Algorithm 1), where from the list of models output by
ADP-GD θ0, . . . , θT , we select the one with approximately
minimum gradient norm for the loss L(θ;D) via report-
noisy-max (a.k.a. the exponential mechanism) [McSherry
and Talwar, 2007, Dwork and Roth, 2014].

Theorem 4.1 does not immediately imply convergence to
a local minima or a bound on the population risk. How-
ever, it demonstrates that convergence of DP-GD can be
dimension-independent even in the case of non-convex
losses. It is perceivable that this line of argument be ex-
tended for convergence to a local minimum using tech-
niques similar to those in Jin et al. [2017]. However, that
would require an additional assumption beyond smooth-
ness, i.e., Lipschitz continuity of the Hessian.
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5 Dimension-Independent Convergence of
Clipped Private Gradient Descent

In Sections 3 and 4, we have seen that ADP-GD (Algo-
rithm 1) has dimension-independent convergence for un-
constrained GLMs (convex or non-convex). Moreover, the
bound is tight in the convex case. An issue with ADP-GD is
that it requires an apriori bound on the `2-norm of the gradi-
ents for all values of θ and d. In practice [Abadi et al., 2016,
Papernot et al., 2020], when such a bound is unknown or
non-existent, a modified version of ADP-GD, called clipped
DP-GD, is used. In this algorithm, the gradients on indi-
vidual data points are projected to ensure that they conform
to a pre-defined `2-norm bound (denoted by clipping norm
B). This is done by replacing Line 3 in Algorithm 1 by

gprivt ← 1

n

n∑
i=1

clip (∂θ`(θt; di)) +N
(
0, σ2

)
(7)

where clip(v) = v · min
{

1, B
‖v‖2

}
. We denote this al-

gorithm as Aclipped
DP-GD.

Now, we show that Aclipped
DP-GD enjoys the same dimension-

independent convergence as ADP-GD as long as the under-
lying problem is convex GLM. For all values of clipping
norm B > 0, the convergence is always to the minimum
of a well-defined convex objective function. Based on the
value of B (i.e., whether B ≤ L), the convergence may
be to the minimum of a different (well-specified) objective
function, rather than the original objective L(θ;D).

5.1 Characterizing Clipping in Convex GLMs

First, we provide an analytical tool in Lemma 5.1 to pre-
cisely quantify the objective function that Aclipped

DP-GD opti-
mizes when the underlying loss function is a convex GLM.

Lemma 5.1. Let f : R → R be any convex func-
tion and B ∈ R+ be any positive value. For any
x 6= 0, let Y1 =

{
y : u < − B

‖x‖2
∀u ∈ ∂f(y)

}
and

Y2 =
{
y : u > B

‖x‖2
∀u ∈ ∂f(y)

}
. If Y1 is non-empty, let

y1 = supY1; otherwise y1 = −∞. If Y2 is non-empty, let
y2 = inf Y2; otherwise y2 =∞. Let gx : R→ R be

gx(y) =


− B
‖x‖2 (y − y1) + f(y1) for y ∈ (−∞, y1)

f(y) for y ∈ [y1, y2] ∩R
B
‖x‖2 (y − y2) + f(y2) for y ∈ (y2,∞)

.

Then the following holds.

1. gx is convex.

2. Let `f : Rp×Rp → R be `f (θ;x) = f (〈θ,x〉) for any
θ,x. Let `g : Rp ×Rp → R be `g(θ;x) = gx(〈θ,x〉)

for any θ,x. Then, for any θ, x, we have

∂θ`g(θ;x) =

{
min

{
1,

B

‖u‖2

}
· u : u ∈ ∂θ`f (θ;x)

}
.

Note: Lemma 5.1 is a generic tool for understanding the
effect of clipping. In fact, it can be used to justify the use
of standard private convex optimization analysis in [Bass-
ily et al., 2014, Feldman et al., 2018, 2020, Bassily et al.,
2019a] to Aclipped

DP-GD on convex GLMs.

The proof (see Appendix D.1) is based on the fact that
clipping does not affect the monotonicity property of the
derivative of one-dimensional convex function. A pictorial
representation of Lemma 5.1 is given in Figure 1.

Figure 1: Representing the clipping operation in (7) for Al-
gorithm Aclipped

DP-GD via Lemma 5.1.

5.2 Rank-based Convergence of Algorithm Aclipped
DP-GD

Now, we provide the rank-based convergence of Algorithm
Aclipped

DP-GD. Recall that the original loss function is given

by L(θ;D) = 1
n

n∑
i=1

`(〈θ,xi〉; yi). Since, by Lemma 5.1

we know that for any clipping level B > 0, one can re-
place each loss function `(〈θ,xi〉; yi) with that obtained
from Lemma 5.1. We denote these clipped losses as
`
(B)
clipped(〈θ,xi〉; yi), and the corresponding objective func-

tion as L(B)
clipped(θ;D) = 1

n

n∑
i=1

`
(B)
clipped(〈θ,xi〉; yi). We im-

mediately have the following corollary from Theorem 3.1.
Corollary 5.2. Let θ0 = 0p be the initial point forAclipped

DP-GD,
and let B > 0 be the corresponding clipping norm. Let
θ∗clipped = arg min

θ∈Rp

L(B)
clipped(θ;D), and M be the projector

to the eigenspace of matrix
n∑
i=1

xix
T
i . For constraint set

C = Rp, clipping normL, and runningAclipped
DP-GD onL(θ;D)

for T = n2ε2 steps with appropriate learning rate η, we get

E
[
L(B)
clipped

(
θpriv ;D

)]
− L(B)

clipped

(
θ∗clipped ;D

)
≤
L
∥∥∥θ∗clipped ∥∥∥

M

√
1 + 2 · rank(M) · log(1/δ)

εn
.

Here, rank(M) ≤ n (but can be much smaller), and ‖·‖M
is the seminorm w.r.t. the projector M .
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From Corollary 5.2, it is immediate that as long as the clip-
ping norm B ≥ L (where L is the `2-Lipschitz constant of
the loss functions `), Aclipped

DP-GD optimizes the original loss L.

5.3 Interlude: Adverse Effects of Aggressive Clipping

Corollary 5.2 eludes two natural questions: i) Is the output
of AlgorithmAclipped

DP-GD guaranteed to be good in terms of the
empirical loss on the original loss L(θ;D) when B < L,
and ii) When the underlying loss does not satisfy the con-
vex GLM property, is the objective function that gets opti-
mized by Aclipped

DP-GD still well-defined as for convex GLMs?
Our answers to both questions are negative.

To answer the first question, we construct an instance of lo-
gistic regression L(θ;D) with L, the `2-Lipschitz constant
of the individual loss functions, being 1. We show that if
the clipping norm B < 1/4, then the excess empirical risk
of Algorithm Aclipped

DP-GD on L(θ;D) is Ω(1). Whereas Algo-
rithm ADP-GD with L = 1 has an excess empirical risk of
O(1/n), where n is the number of training examples. A
formal description of this bound is in Appendix D.2.

To answer the second question, we show that even for
simple convex problems like multi-class logistic regression
(that does not belong to the traditional GLM class), clip-
ping in Aclipped

DP-GD can generate a sequence of “clipped gradi-
ent vectors” that do not conform to a gradient field of any
“natural” convex function, though the output of Aclipped

DP-GD
might still minimize the excess empirical risk on L(θ;D)
practically. We leave this exploration for future work.

Formally, consider a K-class classification problem for
K ≥ 3. Given a sample (x, y) with x ∈ Rp and y ∈ [K],
the cross-entropy loss ` : Rp×K ×Rp × [K] → R is, for
θ = [θ(1), . . . , θ(K)],

` (θ; (x, y)) =

K∑
k=1

1 (y = k) log
exp

(
θ(k) · x

)∑K
k′=1 exp

(
θ(k′) · x

) .
Theorem 5.3. Consider any sample (x, y) with x ∈
Rp\{0}, y ∈ [K] (for K ≥ 3) and any B > 0 such that
Θ = {θ : ‖∇θ`(θ; (x, y))‖2 > B} is non-empty. Let G(θ)
be the clipped gradient of `(θ; (x, y)) as defined above.
Consider any function f : C → R, C ⊆ Rp×K such that
Co ∩ Θ 6= ∅, where Co is the interior of set C. If f is dif-
ferentiable everywhere except for a set CN ⊆ C s.t. CN is
a closed set on C and has zero Lebesgue measure, then it is
not possible for∇θf(θ) = G(θ) to hold for all θ ∈ Co\CN .

As convexity implies differentiability almost every-
where [Rockafellar, 1970, Theorem 25.5], if f is convex,
we only need CN to be a closed set. The `1 regularizer
‖θ‖1 is non-differentiable on a closed set, and so is the
hinge loss `hinge(θ; (x, y)) = max (0, 1− y〈θ, x〉). Theo-
rem 5.3 essentially rules out the possibility that the field of

clipped gradients corresponds to any single objective func-
tion in convex models like softmax regression and SVMs
with `1/`2 regularization, and in non-convex models like
neural networks with popular activation functions like lo-
gistic sigmoid, tanh, ReLu. We defer the proof of The-
orem 5.3 to Appendix D.3. One might further ask if the
problem above could be resolved by “per-class” clipping,
i.e., clipping∇θ(k)` individually for each k? The answer is
still negative. We provide more details in Appendix D.3.1.

6 Experiments

We conduct experiments to demonstrate the dimension-
independence of DP-GD with Gaussian noise. The setup
mainly follows that from Jain and Thakurta [2014, Fig-
ure 1(c)]. We use a normalized version of the Cod-RNA
dataset [Uzilov et al., 2006], and use logistic regression to
solve for binary classification. Following Jain and Thakurta
[2014], we append zero-valued features to the data sam-
ples, such that the accuracy of a non-private classifier does
not change. To solve the problem privately, we consider
DP-SGD with mini-batch gradient and Gaussian noise. For
comparison, we consider DP-SGD with noise drawn from
a Gamma distribution. We fix ε ≈ 5.0 and δ = 10−5. Ad-
ditional details on the setup can be found in Appendix E.

In Figure 2, we report the final test accuracy under differ-
ent data dimensionality after tuning the learning rate. It
is clear that DP-SGD with Gaussian noise is dimension-
independent, as is predicted by Theorem 3.1. On the other
hand, the accuracy of DP-SGD with Gamma noise de-
creases as data dimensionality increases.
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Figure 2: Test accuracy vs. data dimensionality for DP-
SGD with i) Gaussian noise, and ii) Gamma noise.
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A Proof of Excess Population Risk in Theorem 3.2

The proof will closely follow the arguments in Theorem 6.2 in [Bassily et al., 2020]. We first provide Definition A.1 and
Lemma A.2 which are crucial to the proof.
Definition A.1 (Uniform argument stability (UAS) [Bassily et al., 2020]). Given a (randomized) algorithm A, and two
data sets D and D′ differing in exactly one row, we define uniform argument stability (w.r.t. a semi-norm ‖·‖∗) as
γA (D,D′, ‖·‖∗) = ‖A(D)−A(D′)‖∗. Here the random variables A(D) and A(D′) have the same choice of random
coins.
Lemma A.2. Consider any data set D = {(x1, y1), . . . , (xn, yn)} and its neighbor D′, where for some j ∈ [n], the
j-th sample is replaced by some (x′j , y

′
j) from the domain. Consider any GLM loss on the data set defined as L(θ;D) =

1
n

n∑
i=1

`(〈θ,xi〉; yi), such that the `2-norm of the gradient of `(·; ·) (w.r.t. θ) is upper bounded by L. Let M be any projector

that spans all the feature vectors {xi}ni=1 ∪ {x′j}. Then, Algotithm 1 (Algorithm ADP-GD) has UAS of

γADP-GD (D,D′, ‖·‖M ) ≤ 4Lη

(
T

n
+
√
T

)
.

Proof. Let {θ1, . . . , θT } be the outputs at each step of Algorithm ADP-GD on data set D, and {θ′1, . . . , θ′T } be that on data
set D′. We first show that for all t ∈ [T ],

‖θt − θ′t‖M ≤ 4Lη
√
t+

4ηLt

n
. (8)

Let µt = ‖θt − θ′t‖M . By definition of the update step in Algorithm ADP-GD, we have

µ2
t+1 = ‖(θt − η∇L(θt;D))− (θ′t − η∇L(θ′t;D

′))‖2M
= ‖(θt − θ′t)− η (∇L(θt;D)−∇L(θ′t;D

′))‖2M
= ‖θt − θ′t‖

2
M + η2 ‖∇L(θt;D)−∇L(θ′t;D

′)‖2M − 2η〈θt − θ′t,∇L(θt;D)−∇L(θ′t;D
′)〉

= ‖θt − θ′t‖
2
M + η2 ‖∇L(θt;D)−∇L(θ′t;D

′)‖2M
− 2η〈θt − θ′t,∇L(θt;D)−∇L(θt;D

′)〉 − 2η〈θt − θ′t,∇L(θt;D
′)−∇L(θ′t;D

′)〉

≤ µ2
t + 4η2L2 +

4ηLµt
n

= 4η2L2(t+ 1) +
4ηL

n

t∑
i=1

µi. (9)

Here, we used the fact that both ∇L(θ;D) and ∇L(θ;D′) lie in the subspace spanned by M . In the last inequality, we
used the monotonicity property of subgradient, i.e., 〈θt − θ′t,∇L(θt;D

′) −∇L(θ′t;D
′)〉 ≥ 0. Now, (8) follows from the

same inductive argument in Lemma 3.1 in [Bassily et al., 2020].

By triangle inequality, we have
∥∥∥∥ 1
T

T∑
t=1

(θt − θ′t)
∥∥∥∥
M

≤ 1
T

T∑
t=1
‖θt − θ′t‖M . Plugging in the bound from (8) completes the

proof.

With Lemma A.2 in hand we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Consider the learning rate η =
‖θ∗pop‖M

Ln·max

{√
n,

√
k log(1/δ)

ε

} . Let MD be the projector to the eigenspace

of the matrix
n∑
i=1

xix
T
i . From (6) in the proof of Theorem 3.1 and σ = L

√
2 log(1/δ)/ε, we have

αopt = EADP-GD

[
L
(
θpriv ;D

)]
− L

(
θ∗pop;D

)
=

∥∥θ∗pop∥∥2MD

2n2η
+
ηL2

2
+
ηL2rank(MD) ln(1/δ)

ε2

≤
∥∥θ∗pop∥∥2M

2n2η
+
ηL2

2
+
ηL2k ln(1/δ)

ε2
, (10)
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where the inequality follows from the fact that MD spans a strict subspace of that spanned by M , and rank(MD) ≤

min{n,rank(M)} = k. Plugging in the learning rate as above, we have αopt = L
∥∥θ∗pop∥∥M ·O( 1√

n
,

√
k log(1/δ)

εn

)
.

We now have the following from Theorem 2.2. in [Hardt et al., 2016] and Lemma A.2 above. Since M spans the complete
domain of data elements, one can use ‖·‖M in Lemma A.2. Setting T = n2, we have

αgen = EADP-GD,D

[
E(x,y)∼τ

[
`(〈x, θpriv 〉; y)

]
− L(θpriv ;D)

]
≤ 8Lnη =

∥∥θ∗pop∥∥M ·O( 1√
n

)
. (11)

Notice that ED
[
L(θ∗pop;D)

]
− E(x,y)∼τ

[
`(〈x, θ∗pop〉; y)

]
= 0. Therefore, combining (10) and (11), we have

EADP-GD,D,(x,y)∼τ
[
`(〈θpriv ,x〉; y)− `(〈θ∗pop,x〉; y)

]
≤ αgen + ED [αopt] =

∥∥θ∗pop∥∥M ·O
(

max

{
1√
n
,
L
√
k log(1/δ)

ε

})
.

This completes the proof.

B Proof of Lower Bound from Section 3.2

We prove our lower bound in Theorem 3.3. We start with a distributional form of the result.

Theorem B.1. For p ∈ [0, 1]d and α ∈ [0, 1], define a distribution Dp,α on {0, 1}d × {0, 1} as fol-
lows. First, with probability 1 − α we set X = 0 ∈ {0, 1}d. Otherwise (i.e., with probability α) X ∈
{(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, · · · , 0, 1)} ⊂ {0, 1}d is a uniformly random standard basis vector. Independently
Z ∈ {0, 1}d is drawn from a product distribution with E [Z] = p. Then Y = 〈Z,X〉 ∈ {0, 1}. The pair (X,Y ) constitutes
the sample from Dp,α. Let M :

(
Rd ×R

)n → Rd be an (ε, δ)-differentially private algorithm and let α ∈ (0, 1]. Then
there exists some p ∈ [0, 1]d such that the following holds. Let (X0, Y0), (X1, Y1), · · · , (Xn, Yn) be independent draws
from Dp,α and set D = ((X1, Y1), · · · , (Xn, Yn)). If n ≤ d

10(eε−1)α and δ ≤ eε−1
1000 , then

E [|〈M(D), X0〉 − Y0|]− E [|〈p,X0〉 − Y0|] ≥
α

10
.

Note that infθ∈Rd E [|〈θ,X0〉 − Y0|] ≤ E [|〈p,X0〉 − Y0|] and we can always set α = min
{

1, d
10(eε−1)n

}
to obtain the

bound

E [|〈M(D), X0〉 − Y0|]− inf
θ∈Rd

E [|〈θ,X0〉 − Y0|] ≥ min

{
1

10
,

d

100(eε − 1)n

}
.

Note that the lower bound does not grow as δ → 0. Such a dependence can be introduced via a group privacy reduction
[Steinke and Ullman, 2015].

Proof. This proof heavily builds on the lower bounds of Steinke and Ullman [Steinke and Ullman, 2017].

Let Dp,α be as in the theorem statement. To show that there exists some p ∈ [0, 1]d satisfying the theorem, we show that
for a random p the theorem holds. It follows that some specific p must satisfy the theorem, but that specific p will depend
on M (even though the distribution does not).

We now specify the distribution. Let β > 0 be a parameter to be determined later. Let P1, · · · , Pd be independent draws
from Beta(β, β). We will show that, with this random P , the distribution DP,α satisfies the criteria of the theorem.

Specifically, we first sample P as above. Then we sample (X0, Y0), (X1, Y1), · · · , (Xn, Yn) independently (conditioned
on P ) from DP,α. We set D = ((X1, Y1), · · · , (Xn, Yn)) and θ = Proj[0,1]d(M(D)). That is, θ is the output of the
algorithm M on the dataset D truncated to [0, 1]d. We let Z0, Z1, · · · , Zn ∈ {0, 1}d be the corresponding variables hidden
in DP,α, so that Yi = 〈Zi, Xi〉 for all i ∈ {0, 1, · · · , n}. Note that (X0, Y0) is not included in D.
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We have

E [‖θ − P‖1] ≤ E [‖M(D)− Z0‖1] + E [‖Z0 − P‖1]

=

d∑
j

E [|M(D)j − Z0,j |] + E [|Z0,j − Pj |]

=

d∑
j

E [|〈M(D)− Z0, X0〉| | X0,j = 1] + E [Pj |1− Pj |+ (1− Pj)|0− Pj |]

=
d

α
· E [|〈M(D)− Z0, X0〉|] +

d∑
j

2E [Pj(1− Pj)]

=
d

α
· E [|〈M(D), X0〉 − Y0|] + d · β

1 + 2β

and

inf
θ∈Rd

E [|〈θ,X0〉 − Y0|] ≤ E [|〈P,X0〉 − Y0|]

= E [|〈P − Z0, X0〉|]

=
α

d
E [‖P − Z0‖1]

=
α

d

d∑
j

E [2Pj(1− Pj)]

=
αβ

1 + 2β
.

Hence

E [|〈M(D), X0〉 − Y0|]− inf
θ∈Rd

E [|〈θ,X0〉 − Y0|] ≥ E [|〈M(D), X0〉 − Y0|]−E [|〈P,X0〉 − Y0|] ≥
α

d
E [‖θ − P‖1]− 2αβ

1 + 2β
.

Since θ, P ∈ [0, 1]d, we also have ‖θ − P‖22 ≤ ‖θ − P‖1. Now that we have established these inequalities the proof more
closely resembles a standard one-way marginals lower bound.

We invoke a form of the fingerprinting lemma:

Lemma B.2 ([Steinke and Ullman, 2017, Lem. 10]). Let f : {0, 1}n → R. Let P ← Beta(β, β) and, conditioned on P ,
let Z1, · · · , Zn ∈ {0, 1} be independent with expectation P . Then

E

[
f(Z) ·

n∑
i

(Zi − P )

]
= 2β · E

[
f(Z) ·

(
P − 1

2

)]

= β · E

[(
f(Z)− 1

2

)2

+

(
P − 1

2

)2

− (f(Z)− P )
2

]
.

We apply this lemma to each coordinate j with θj 7→ f(Z) and Zj 7→ Z and Pj 7→ P . Summing over the d coordinates
gives

n∑
i

E [〈θ, Zi − P 〉] = β · E

[∥∥∥∥θ − (1

2
, · · · , 1

2

)∥∥∥∥2
2

+

∥∥∥∥P − (1

2
, · · · , 1

2

)∥∥∥∥2
2

− ‖θ − P‖22

]

≥ β ·

0 +

d∑
j

Var [Pj ]− ‖θ − P‖22


= β ·

(
d

4(1 + 2β)
− ‖θ − P‖22

)
.
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For the next part of the proof we think of P has fixed, so that (X0, Y0, Z0), (X1, Y1, Z2), · · · , (Xn, Yn, Zn) are indepen-
dent. We will also fix an arbitrary i ∈ [n].

Since the algorithm M only “sees” Zi via Yi = 〈Zi, Xi〉 (and Zi and Xi are independent), θ is independent from Zi,j
whenever Xi,j = 0. For i ∈ {0} ∪ [n], let Ji ∈ [d] ∪ {⊥} denote the index of the coordinate such that Xi,Ji = 1
and Xi,j = 0 for all j 6= Ji and Ji = ⊥ if Xi = 0. Thus E [〈θ, Zi − P 〉] = E [θJi · (Zi,Ji − PJi)], where we define
θ⊥ = P⊥ = Zi,⊥ = 0. Note that Ji is independent from Zi and P .

Now it’s time to use differential privacy. Since θ is an (ε, δ)-differentially private function of D =
((X1, Y1), · · · , (Xn, Yn)), we have

θJi · (Zi,Ji − PJi) ≈ε,δ θJ0 · (Z0,J0 − PJ0).

That is, the distributions must be similar, since it is equivalent to changing only one sample. Namely, this is equivalent
to replacing (Xi, Yi) with (X0, Y0) in D. The latter distribution is easy for us to reason about because θ and (Z0, J0) are
independent (conditioned on P ).

We will use the following lemma relating similarity of distributions to expectations.

Lemma B.3 ([Feldman and Steinke, 2017, Lem. A.1]). Let U and V be random variables supported on [µ −∆, µ + ∆].
Suppose U ≈ε,δ V – that is, P [U ∈ E] ≤ eεP [V ∈ E] + δ and P [V ∈ E] ≤ eεP [U ∈ E] + δ for all events E. Then

|E [U ]− E [V ]| ≤ (eε − 1) E [|U − µ|] + 2δ∆.

Thus, we have

E [θJi · (Zi,Ji − PJi)] ≤ E [θJ0 · (Z0,J0 − PJ0)] + (eε − 1)E [|θJ0 · (Z0,J0 − PJ0)|] + 2δ

= 0 + (eε − 1)E [θJ0 · |Z0,J0 − PJ0 |] + 2δ

≤ (eε − 1)E [|Z0,J0 − PJ0 |] + 2δ

= (eε − 1)E [2PJ0(1− PJ0)] + 2δ

= (eε − 1)
αβ

1 + 2β
+ 2δ.

Combining inequalities and summing over i ∈ [n] yields

n ·
(

(eε − 1)
αβ

1 + 2β
+ 2δ

)
≥

n∑
i

E [〈θ, Zi − P 〉] ≥ β ·
(

d

4(1 + 2β)
− E

[
‖θ − P‖22

])
,

which rearranges to

E
[
‖θ − P‖22

]
≥ d− 4n(eε − 1)α

4 + 8β
− 2δn

β
.

Now

E [|〈M(D), X0〉 − Y0|]− E [|〈P,X0〉 − Y0|] ≥
α

d
E [‖θ − P‖1]− 2αβ

1 + 2β

≥ α

d
E
[
‖θ − P‖22

]
− 2αβ

1 + 2β

≥ α1− 4n(eε − 1)α/d

4 + 8β
− 2αδn

βd
− 2αβ

1 + 2β

= α
1− 8β − 4n(eε − 1)α/d

4 + 8β
− 2δαn

βd
.

We set β = 1/80 to obtain

E [|〈M(D), X0〉 − Y0|]− E [|〈P,X0〉 − Y0|] ≥ α
0.9− 4n(eε − 1)/d

4.1
− 160δαn

d
.

Finally, we make use of the assumptions n ≤ d
10(eε−1)α and δ ≤ eε−1

1000 to conclude

E [|〈M(D), X0〉 − Y0|]− E [|〈P,X0〉 − Y0|] ≥ α
0.9− 0.4

4.1
− 16δα

eε − 1
≥ α

10
.
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Theorem B.1 contains all the technical ingredients of our lower bound. The only thing that is missing is that it is in terms
of population risk, rather than empirical risk. We address this next.

Corollary B.4. Let M : (Rd ×R)n → Rd be a (ε, δ)-differentially private algorithm with ε ≤ 1
21 and δ ≤ ε

1000 . Then
there exists D = ((x1, y1), · · · , (xn, yn)) ∈ (Rd ×R)n with ‖xi‖2 ≤ 1 and yi ∈ {0, 1} for all i ∈ [n] such that

E

[
1

n

n∑
i=1

|〈M(D),xi〉 − yi| − |〈θ∗,xi〉 − yi|

]
≥ min

{
1

20
,

d

210εn

}
− 2δ,

where θ∗ := arg minθ∈Rd

∑n
i=1 |〈θ∗,xi〉 − yi| satisfies θ∗ ∈ [0, 1]d (assuming we break ties in the argmin towards

lower-norm vectors).

To obtain Theorem 3.3 from this corollary we simply need to pad the features in the dataset D with zeros to attain dimen-
sionality p ≥ d. Note that rank(

∑
i xix

T
i ) ≤ d and ‖θ∗‖2 ≤

√
d and ‖xi‖2 ≤ 1 even after this padding.

Proof. We set α = min
{

1, d
10(eε−1)n

}
and invoke Theorem B.1 to pick some p ∈ [0, 1]d such that the following holds.

Let the distribution Dp,α on {0, 1}d × {0, 1} be as in Theorem B.1. Let (X0, Y0), (X1, Y1), · · · , (Xn, Yn) be independent
draws from Dp,α and set D = ((X1, Y1), · · · , (Xn, Yn)). Then

E [|〈M(D), X0〉 − Y0| − |〈p,X0〉 − Y0|] ≥
α

10
= min

{
1

10
,

d

100(eε − 1)n

}
.

We use Lemma B.3 and the differential privacy guarantee to relate the population value above with the emprical value: For
all i ∈ [n], we have

|E [|〈M(D), Xi〉 − Yi| − |〈p,Xi〉 − Yi|]− E [|〈M(D), X0〉 − Y0| − |〈p,X0〉 − Y0|]|
≤ (eε − 1)E [||〈M(D), X0〉 − Y0| − |〈p,X0〉 − Y0||] + 2δ

≤ (eε − 1)P [X0 6= 0] · 1 + 2δ

= (eε − 1) · α+ 2δ.

Averaging over i ∈ [n] gives

1

n

n∑
i=1

E [|〈M(D), Xi〉 − Yi| − |〈p,Xi〉 − Yi|] ≥
α

10
− (eε − 1) · α− 2δ.

Since ε ≤ 1
21 , we have eε − 1 ≤ 21

20ε ≤
1
20 and

E

[
1

n

n∑
i=1

|〈M(D), Xi〉 − Yi| − inf
θ∈Rd

|〈θ,Xi〉 − Yi|

]
≥ 1

n

n∑
i=1

E [|〈M(D), Xi〉 − Yi| − |〈p,Xi〉 − Yi|] ≥
α

20
− 2δ.

HereD is still a random dataset. Depending onM , we can pick some fixed dataset from the support such that the inequality
holds. The only remaining randomness is that of the algorithm M .

Finally, we have

θ∗ = arg min
θ∈Rd

n∑
i=1

|〈θ∗, Xi〉 − Yi| = arg min
θ∈Rd

n∑
i=1

|〈θ∗ − Zi, Xi〉|.

Since Zi ∈ {0, 1}d for all i ∈ [n], we conclude by convexity that θ∗ ∈ [0, 1]d. In fact, it can be shown that θ∗ ∈ {0, 1}d is
the coordinate-wise majority of the Zis.

C Proofs for Section 4

Proof of Theorem 4.1. Recall that M is the projector to the eigenspace of the matrix
n∑
i=1

xix
T
i , and ‖·‖M being the corre-

sponding seminorm. Let θ1, . . . , θT be the sequence of models generated in Line 4 of Algorithm 1, and let the constraint
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set C = Rp. Also, let bt be the Gaussian noise added in the t-th iteration. By the smoothness property of `(z; ·), we have
the following:

L(θt+1;D) ≤ L(θt;D) + 〈∇L(θt;D), θt+1 − θt〉M +
β

2
‖θt+1 − θt‖2M

= L(θt;D)− 1

β
〈∇L(θt;D),∇L(θt;D) + bt〉M +

1

2β
‖∇L(θt;D) + bt‖2M

= L(θt;D)− 1

2β
‖∇L(θt;D)‖2M +

‖bt‖2M
2β

⇔ ‖∇L(θt;D)‖2M ≤ 2β (L(θt;D)− L(θt+1;D)) + ‖bt‖2M . (12)

Therefore, averaging over all the t ∈ {0, . . . , T − 1}, we have the following:

1

T

T−1∑
t=0

‖∇L(θt;D)‖2M ≤
2β

T
(L(0;D)− L(θT ;D)) +

1

T

T∑
t=0

‖bt‖2M

≤ 2β

T
(L(0;D)− L(θ∗;D)) +

1

T

T∑
t=1

‖bt‖2M . (13)

Using standard Gaussian concentration, w.p. at least 1 − γ over the randomness of {b1, . . . , bT } in (13), we have the
following.

1

T

T−1∑
t=0

‖∇L(θt;D)‖2M ≤
2β

T
(L(0;D)− L(θ∗;D)) +

8L2rank(M) · log(1/δ) log(T/γ)

n2ε2
(14)

By an averaging argument, we know there exists t̂ ∈ {0, . . . , T − 1} s.t.

‖∇L(θt̂;D)‖2M ≤
2β

T
(L(0;D)− L(θ∗;D)) +

8L2rank(M) · log(1/δ) log(T/γ)

n2ε2
.

As long as T ≥ βn2ε2·L(0;D)
2L2 log(1/δ) , we have ‖∇L(θt̂;D)‖M ≤

4L
√
rank(M)·log(1/δ) log(T/γ)

εn . Now, notice that the `2-sensitivity
[Dwork and Roth, 2014] of ‖∇L(θt̂;D)‖M is at most 2L

n . Therefore, releasing tpriv ← arg min
t∈{0,...,T−1}

‖∇L(θt;D)‖M +

Lap
(
4L
n

)
conditioned on θ0, . . . , θT satisfies ε-differential privacy (by the analysis of the report-noisy-max algorithm

[Dwork and Roth, 2014]). Therefore, the whole algorithm is (2ε, δ)-differentially private.

As for utility, we have w.p. at least 1− γ,

∥∥∇L(θtpriv ;D)
∥∥
2

=
∥∥∇L(θtpriv ;D)

∥∥
M

= O

(
L
√
rank(M) · log(1/δ) log(T/γ)

εn

)
.

Here, we have used the standard concentration property of Laplace random variable. This completes the proof.

D Proofs and More Details for Section 5

D.1 Generic Tool for Understanding Clipping

We first define some notations.

• For any vector v and positive scalar I , let [v]I denote min
{

I
‖v‖2 , 1

}
· x, i.e., x projected onto the `2-ball of radius I .

If v is a scalar, then [v]I = max{min{v, I},−I}. Also, for scalar, we use [v]I+ to denote min{v, I}, and [v]I− to
denote max{v,−I}.

• For a set S of scalar or vector, let [S]I denote {[v]I : v ∈ S}. For a set S of scalar, let [S]I+ = {[v]I+ : v ∈ S} and
[S]I− = {[v]I− : v ∈ S}.
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• For a set S of scalar, we write S > I if ∀u ∈ S, u > I; similar for <, ≥ and ≤.

Proof of Lemma 5.1. We consider any fixed x, and for simplicity we use g to denote gx. Let B′ = B/‖x‖2. We first show
g is convex and ∂g(y) = [∂f(y)]B′ for y ∈ R using the following claims. And then apply that to `f and `g to prove the
theorem.

Claim D.1. The following holds.

1. If y1 ∈ R, then −B′ ∈ ∂f(y1), and thus ∂f(y) ≥ −B′ for all y > y1, ∂f(y) ≤ −B′ for all y < y1. If y2 ∈ R, then
B′ ∈ ∂f(y2), and thus ∂f(y) ≤ B′ for all y < y2, ∂f(y) ≥ B′ for all y > y2.

2. If y1 = −∞, then ∂f(y) ≥ −B′ for all y ∈ R. If y2 =∞, then ∂f(y) ≤ B′ for all y ∈ R.

3. If y1 = ∞, then ∂f(y) < −B′ for all y ∈ R, and thus y2 = ∞. If y2 = −∞, then ∂f(y) > B′ for all y ∈ R, and
thus y1 = −∞.

Proof. We consider the three cases separately.

1. By definition of y2 and monotonicity of subdifferential, for y > y2, we have ∂f(y) > B′, and for y < y2,
min ∂f(y) ≤ B′ (as subdifferential is closed).

We can find a sequence y(k) → y+0 , and a sequence g(k) with g(k) ∈ ∂f(y(k)). As subdifferential is monotone, we
know g(k) is decreasing. Since g(k) is lower bounded by I , the sequence g(k) converges to a value ≥ B′. Similarly,
we can find a sequence y(k

′) → y−2 , and a sequence g(k
′) with g(k

′) = min ∂f(y(k
′)). Since g(k

′) is increasing and
upper bounded by B′, the sequence g(k

′) converges to a value ≤ B′.
Recall that subdifferential is continuous. So both limk→∞ g(k) ≥ B′ and limk′→∞ g(k

′) ≤ B′ are contained in
∂f(y0), and we have B′ ∈ ∂f(y2) by convexity of subdifferential. Then by monotonicity, for any y > y2, we have
∂f(y) ≥ B′; for any y < y2, we have ∂f(y) ≤ B′. Similar argument can be applied to y1.

2. If Y1 is non-empty and y1 =∞, by monotonicity of subdifferential, we have ∂f(y) < −B′ for all y ∈ R. Therefore,
Y2 = ∅ and we have y2 =∞. Similar holds for y2.

3. If Y1 is empty and y1 = −∞, then for any y, max ∂f(y) ≥ −B′ (as subdifferential is closed). By monotonicity of
subdifferential, ∂f(y) ≥ −B′ for all y ∈ R.

By monotonicity of subdifferential and the definition of y1 and y2, we know that y1 ≤ y2 always holds and thus g is
well-defined. Let C = [y1, y2] ∩R.

Claim D.2. We have that g is a convex function when y1 6=∞ and y2 6= −∞.

Proof. By Claim D.1, for any y ∈ (y1, y2), −B′ ≤ ∂f(y) ≤ B′. Therefore, f is B′-Lipschitz on [y1, y2] ∩ R. It is
obviously also convex on this set. Consider f restricted to C. According to [Bassily et al., 2014, Lemma 6.3], the Lipschitz
extension of this function, ĝ : R→ R with ĝ(y) = miny′∈C {f(y′) +B′|y − y′|}, is also convex and B′-Lipschitz.

Then we show g = ĝ. For any y ∈ C, we have f(y) ≤ f(y′) + B′|y − y′| by Lipschizness; so ĝ(y) = f(y) = g(y) on C.
If y1 6= −∞, for any y < y1 and any y′ ∈ C, we have f(y1) − f(y′) ≤ B′(y′ − y1) by Lipschitzness and y′ ≥ y1. This
translates to f(y1)−B′(y − y1) ≤ f(y′)−B′(y − y′), and thus ĝ(y) = f(y1)−B′(y − y1) = g(y) for y < y1. Similar
holds for y > y2 when y2 6=∞.

Claim D.3. We have ∂g(y) = [∂f(y)]B′ for y ∈ R.

Proof. If y1 = ∞, then g is a linear function with coefficient −B′, and is obviously convex. By Claim D.1, we have
∂f(y) < −B′ on R, and thus [∂f(y)]B′ = {−B′} = ∂g(y) for all y ∈ R. Similar holds for y2 = −∞.

Now we consider the case where y1 6=∞ and y2 6= −∞.
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• On (−∞, y1), g is linear and thus differentiable, so ∂g(y) = {−B′}. Also, we know from Claim D.1 that ∂f(y) ≤
−B′ for y ∈ (−∞, y1); so [∂f(y)]B′ = {−B′} = ∂g(y). Similar holds for (y2,∞).

• On (y1, y2), we have g = f and both are convex. Any convex function f on an open subset of R is semi-differentiable
and the subdifferential at point y is of the form [∂f−(y), ∂f+(y)] where ∂f−(y) is the left derivative and ∂f+(y) is the
right derivative. Therefore, as the left and right derivative of f and g are the same in (y1, y2), we have ∂g(y) = ∂f(y).
By Claim D.1, −B′ ≤ ∂f(y) ≤ B′ on this range, we have ∂g(y) = [∂f(y)]B′ .

• At y1 (if finite), the left derivative is ∂g−(y) = −B′, and the right derivative ∂g+(y) is ∂f+(y) if y2 > y1 and is B′

if y2 = y1. For y2 > y1, as −B′ ∈ ∂f(y1), we have ∂g(y) = [∂f(y)]B′ . For y2 = y1, we have [−B′, B′] ⊆ ∂f(y1)
and thus ∂g(y) = [∂f(y)]B′ . Similar holds for y2.

Then we consider `g . For a set U of scalar, we use U · x to denote {ux : u ∈ U}. We have [U · x]B = {[ux]B : u ∈ U}
=
{

min
{

B
‖x‖2u

, 1
}
ux : u ∈ U

}
= [U ]B/‖x‖2

· x. Recall B′ = B/ ‖x‖2. Therefore, ∂θ`g(θ;x) = ∂g(〈θ,x〉) · x =

[∂f(〈θ,x〉)]B/‖x‖2 · x = [∂f(〈θ,x〉) · x]B = [∂θ`f (〈θ,x〉)]B , which completes the proof.

D.2 Lower Bound on Bias for Binary Logistic Regression

Using Lemma 5.1, in Theorem D.4, we show that running DP-GDclipped with aggressive clipping can result in a constant
excess empirical risk for logistic regression, in contrast to the best achievable excess empirical risk of O (1/n).

For a dataset D = {(x1, y1), . . . , (xn, yn)} where xi ∈ Rp is the feature and yi ∈ {+1,−1} is the label, and for a convex
set C, logistic regression is defined as solving for θ∗ := arg minθ∈C L(θ;D) where L(θ;D) = 1

n

∑n
i=1 `(θ; (xi, yi)) with

`(θ; (x, y)) = log
(
1 + e−y〈θ,x〉

)
.

Theorem D.4. Consider the objective function L(θ,D) for logistic regression as defined above. Let θpriv be the output
of DP-GDclipped on L(θ,D) with clipping norm B. For any B < 1/4, there exists a positive integer n0(B) such that for
any n ≥ n0(B), there exists a dataset D = {(xi, yi)}ni=1 with xi ∈ {x ∈ Rp : ‖x‖2 ≤ 1} and yi ∈ {+1,−1}, such that

E
[
L(θpriv ;D)

]
− min
θ∈Rp

L(θ;D) = Ω (log(1/B)) .

Note: The lower bound construction does not require constraining C. With C being the whole space Rp, the optimization
problem considered here is unconstrained. Also, notice that B < 1/4 is not a strong requirement, as for any (xi, yi), the
gradient of logistic loss is upper bounded by ‖xi‖2 ≤ 1. So, B = 1 is already equivalent to no clipping.

It is obvious that if we set the clipping normB to be higher than the upper bound of the gradient norm, which exists in both
cases, then we can still get Õ(1/n) excess empirical risk. Therefore, we can conclude that picking a proper B is critical in
convex optimization problems.

Proof of Theorem D.4. Since `(θ; (x, y)) is convex in 〈θ, yx〉, as have been shown Lemma 5.1 (with x there being yx),
for any (x, y), there exists another function `g(θ; (x, y)) that is convex in 〈θ, yx〉 and ∇θ`g(θ; (x, y)) = [∇θ`(θ; (x, y))]B
for any θ. Let L(B)

clipped(θ;D) = 1
n

∑n
i=1 `g(θ; (xi, yi)), which is also convex. For some convex set C, let θ∗clipped :=

arg minθ∈C L
(B)
clipped(θ;D) and θ∗ := arg minθ∈C L(θ;D). Let θpriv be the output of DP-GD on objective function L.

To show a lower bound on E
[
L(θpriv ;D)

]
− L(θ∗;D), we would first show a lower bound on ‖θ∗ − θ∗clipped ‖2 and an

upper bound on ‖θpriv − θ∗clipped ‖2, which together will give a lower bound on ‖θ∗ − θ∗clipped ‖2. Then, using strong
convexity property of L, we translate that to lower bound on L(θpriv ;D)− L(θ∗;D).

It is enough to prove the result for dimension p = 1, as we can always set the other p − 1 dimensions to be 0. Let D be
{(1/2,+1)}2n ∪ {(1,−1)}n and C = R.
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We have

`(θ; (1/2,+1)) = log
(

1 + e−θ/2
)
, and `(θ; (1,−1)) = log

(
1 + eθ

)
⇒∇θ`(θ; (1/2,+1)) = − 1/2

1 + eθ/2
, and ∇θ`(θ; (1,−1)) =

1

1 + e−θ

⇒∇2
θ`(θ; (1/2,+1)) =

1

4

1

(1 + eθ/2)(1 + e−θ/2)
, and ∇2

θ`(θ; (1,−1)) =
1

(1 + eθ)(1 + e−θ)

Given B, we have

`g(θ; (1/2,+1)) =

{
−Bθ + 2B log

(
1
2B − 1

)
+ log 1

1−2B for θ < 2 log
(

1
2B − 1

)
log
(
1 + e−θ/2

)
for θ ≥ 2 log

(
1
2B − 1

)
and

`g(θ; (1,−1)) =

{
log
(
1 + eθ

)
for θ ≤ − log

(
1
B − 1

)
Bθ +B log

(
1
B − 1

)
+ log 1

1−B for θ > − log
(
1
B − 1

)
as the loss function with gradient being [∇θ`(θ; (1/2,+1))]B and [∇θ`(θ; (1,−1))]B .

We have θ∗ = 0 as

∇θL(θ;D) = 0⇔ 2∇θ`(θ; (1/2,+1)) +∇θ`(θ; (1,−1)) = 0

⇔ − 1

1 + eθ/2
+

1

1 + e−θ
= 0⇔ θ = 0.

As for θ∗clipped , we have

∇θL(B)
clipped(θ;D) =


2
3
−1/2
1+eθ/2

+ B
3 for θ ≥ 2 log

(
1
2B − 1

)
− 2B

3 + B
3 for θ ∈

(
− log

(
1
B − 1

)
, 2 log

(
1
2B − 1

))
− 2B

3 + 1
3

1
1+e−θ

for θ ≤ − log
(
1
B − 1

) ,

which is equal to 0 at 2 log
(
1
B − 1

)
. So we have θ∗clipped = 2 log

(
1
B − 1

)
.

So we have ‖θ∗ − θ∗clipped ‖2 = 2 log
(
1
B − 1

)
.

Now we bound ‖θ∗clipped − θpriv ‖2. As for each xi in D, it is given that ‖xi‖2 ≤ 1, we have B = 1. As
the initial guess θ0 is 0, we have ‖θ0 − θ∗‖2 = 2 log

(
1
B − 1

)
. From Theorem 2.7, with probability ≥ 1 − δ,

L(B)
clipped(θ

priv ;D) − L(B)
clipped(θ

∗
clipped ;D) ≤ C · 2 log(1/B−1)

√
p log(1/δ) log(1/β)

nε for some positive constant C. We

set n0

3 =
96C log(1/B−1)

√
p log(1/δ) log(1/β)

Bε > max
(
20 log

(
1
B − 1

)
, 96
)
· C
√
p log(1/δ) log(1/β)

Bε . As n ≥ n0

3 >
20C log(1/B−1)

√
p log(1/δ) log(1/β)

Bε , we have L(B)
clipped(θ

priv ;D) − L(B)
clipped(θ

∗
clipped ;D) < 0.1B. We now translate this to

an upper bound on ‖θpriv − θ∗clipped ‖2 (with high probability).

Let θ1 = 2 log
(

1
2B − 1

)
and θ2 = 2 log

(
2
B − 1

)
. We now show θpriv ∈ (θ1, θ2) with probability ≥ 1− δ. We know that

for θ ≥ θ1, for Const = 1
3

(
B log

(
1
B − 1

)
+ log 1

1−B

)
,

L(B)
clipped(θ;D) =

1

3

(
2 log(1 + e−θ/2) +Bθ

)
+ Const,

and we thus have

L(B)
clipped(θ

∗
clipped ;D) =

1

3

(
2 log

1

1−B
+ 2B log

(
1

B
− 1

))
+ Const

L(B)
clipped(θ1;D) =

1

3

(
2 log

1

1− 2B
+ 2B log

(
1

2B
− 1

))
+ Const

L(B)
clipped(θ2;D) =

1

3

(
2 log

2

2−B
+ 2B log

(
2

B
− 1

))
+ Const.
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So for B < 1/4,

L(B)
clipped(θ1;D)− L(B)

clipped(θ
∗
clipped ;D) =

2

3

(
log

1

1− 2B
+B log

(
1

2B
− 1

)
− log

1

1−B
−B log

(
1

B
− 1

))

=
2

3

(
(1−B) log

1−B
1− 2B

−B log 2

)
≥ 2

3
(1− log 2)B > 0.2B > 0.1B.

L(B)
clipped(θ2;D)− L(B)

clipped(θ
∗
clipped ;D) =

2

3

(
log

2

2−B
+B log

(
2

B
− 1

)
− log

1

1−B
−B log

(
1

B
− 1

))

=
2

3

(
log

2

2−B
+B log

(
2

B
− 1

)
− log

1

1−B
−B log

(
1

B
− 1

))

≥ 2

3

(
log(2)− 1

2

)
B > 0.1B.

Notice that L(B)
clipped is convex, which means the derivative is monotone and the function is decreasing for θ < θ∗clipped

and increasing for θ > θ∗clipped . As θ1 < θpriv < θ2, if θpriv ≤ θ1 or θpriv ≥ θ2, then L(B)
clipped(θ

priv ;D) −
L(B)
clipped(θ

∗
clipped ;D) ≥ 0.1B, which contradicts to the fact that L(B)

clipped(θ
priv ;D) − L(B)

clipped(θ
∗
clipped ;D) < 0.1B. There-

fore, we can conclude that θpriv ∈ (θ1, θ2) with probability ≥ 1− δ.

For θ ∈ (θ1, θ2), the 2nd order derivative of L(B)
clipped is 1

6
1

(1+eθ/2)(1+e−θ/2)
≥ 1

12
1

1+eθ/2
, which is decreasing and therefore

≥ B
24 . This means L(B)

clipped is B
24 -strongly convex for θ in this range. Therefore, the bound on the difference of the loss

translates to a bound on the `2 distance and we have ‖θpriv − θ∗clipped ‖22 ≤ C · 48 log(2/B−1)
√
p log(1/δ) log(1/β)

Bnε . We then
have

‖θpriv − θ∗‖2 ≥ ‖θ∗ − θ∗clipped ‖2 − ‖θpriv − θ∗clipped ‖2

≥ 2 log

(
1

B
− 1

)
−

√
48C log(2/B − 1)

√
p log(1/δ) log(1/β)

Bnε

≥ log

(
1

B
− 1

)

where the last inequality follows as for n > 96C
B

√
p log(1/δ) log(1/β)

ε , we have

√
48C log(2/B − 1)

√
p log(1/δ) log(1/β)

Bnε
≤ log

(
1

B
− 1

)
for any B < 1/4.

Let θ3 = − log
(
1
B − 1

)
and θ4 = log

(
1
B − 1

)
. As θ∗ = 0, the above inequality implies θpriv ∈ (−∞, θ3] ∪ [θ4,∞).

Similarly, as L is convex with minimizer θ∗, we know L(θpriv ;D) ≥ min (L(θ3;D),L(θ4;D)).

Since

L(θ;D) =
1

3

(
2 log

(
1 + e−θ/2

)
+ log

(
1 + eθ

))
=

1

3
log

((
1 + eθ/2

)2
+
(

1 + e−θ/2
)2)

is an even function, we have

L(θ3;D) = L(θ4;D) =
1

3
log

(1 +

√
1−B
B

)2

+

(
1 +

√
B

1−B

)2
 =

2

3
log

(
1√
B

+
1√

1−B

)
.
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As L(θ∗;D) = log 2, we have, for B < 1/4,

L(θpriv ;D)− L(θ∗;D) ≥ 2

3
log

(
1√
B

+
1√

1−B

)
− log(2) ≥ 2

3
log

(
1 +

1√
B

)
− log(2)

≥ 2

3
log

(
1 +

1√
B

)
− log(2)

log(3)
log

(
1 +

1√
B

)
≥ 1

30
log

(
1 +

1√
B

)
≥ 1

60
log

1

B

This holds with probability ≥ 1− β, and we can convert it back to an expectation bound and have

L(θpriv ;D)− L(θ∗;D) = Ω

(
log

1

B

)
.

D.3 Clipped Softmax Regression Does Not Correspond to a “Natural” Function

Consider a K-class classification problem for K ≥ 3. Given a sample (x, y) with x ∈ Rp and y ∈ [K], the cross-entropy
loss ` : Rp×K ×Rp × [K]→ R is, for θ = [θ(1), . . . , θ(K)],

` (θ; (x, y)) =

K∑
k=1

1 (y = k) log
exp

(
θ(k) · x

)∑K
k′=1 exp

(
θ(k′) · x

) .
We then have the gradient of ` as

∇θ(k) (θ; (x, y)) =

(
exp

(
θ(k) · x

)∑K
k′=1 exp

(
θ(k′) · x

) − 1 (y = k)

)
· x,

and the clipped gradient as G(θ) := min
(

1, B
‖∇θ(θ;(x,y))‖2

)
· ∇θ (θ; (x, y)) for any θ ∈ Rp×K where ∇θ (θ; (x, y)) =

[∇θ(1) (θ; (x, y)) , . . . ,∇θ(K) (θ; (x, y))].

Proof of Theorem 5.3. Without loss of generality, let y = 1. Let x be any non-zero vector in Rp.

In the beginning, we state the formulas for the gradient, its norm and the clipped gradient. Let E(k)(θ) = exp
(
θ(k
′) · x

)
.

(We omit (θ) when it is clear from the context.) Recall the gradient of the cross-entropy loss is ∇θ(k) (θ; (x, y)) =(
exp(θ(k)·x)∑K

k′=1
exp(θ(k′)·x)

− 1 (y = k)

)
· x =

(
E(k)∑K

k′=1
E(k′) − 1 (y = k)

)
· x, so we have

∇θ(1)` (θ; (x, y)) = −
∑K
k=2E

(k)∑K
k′=1E

(k′)
· x. (15)

For k ≥ 2, ∇θ(k)` (θ; (x, y)) =
E(k)∑K

k′=1E
(k′)
· x. (16)

The norm of the gradient∇θ`(θ; (x, y)) is thus

‖∇θ (θ; (x, y))‖2 =

√√√√ K∑
k=1

‖∇θ(k) (θ; (x, y))‖22 = ‖x‖2 ·

√(∑K
k=2E

(k)
)2

+
∑K
k=2

(
E(k)

)2
∑K
k′=1E

(k′)
, (17)

which takes value in
(

0,
√

K
K−1‖x‖2

)
. Recall that Θ = {θ : ‖∇θ (θ; (x, y)) ‖2 > B}.

Recall G(θ) is the clipped gradient. We also define, for k ∈ [K], for θ ∈ Rp×K ,

G(k)(θ) := min

(
1,

B

‖∇θ (θ; (x, y)) ‖2

)
· ∇θ(k) (θ; (x, y)) ,
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so G(θ) =
[
G(1)(θ), . . . , G(K)(θ)

]
.

When θ ∈ Θ, we have G(k)(θ) = B · ∇θ(k)`(θ;(x,y))‖∇θ(θ;(x,y))‖2
, and thus

G(1)(θ) = − B

‖x‖2

∑K
k=2E

(k)√(∑K
k=2E

(k)
)2

+
∑K
k=2

(
E(k)

)2 · x,
For k ≥ 2, G(k)(θ) =

B

‖x‖2
E(k)√(∑K

k=2E
(k)
)2

+
∑K
k=2

(
E(k)

)2 · x. (18)

Notice that for any k ≥ 2, ∇θ(1)G(k) is zero as G(k) does not depend on θ(1); however, ∇θ(k′)G(1) may not be zero
everywhere as G(1) does not depend on θ(k

′) (we will prove this formally).

We will prove the theorem by contradiction. Suppose there exists a function f : C → R such that 1). Θ∩Co is a non-empty
set, 2). f is differentiable except for a set CN which is closed on C and has zero measure, and 3) G(θ) is a subgradient of f .
We will show that on an open subset of Θ∩C, f is differentiable but the 2nd derivative is not symmetric, which contradicts
the fact that any function with continuous second order partial derivative should have symmetry of 2nd derivative in the
interior of its domain.

We use Euclidean topology throughout the proof. When not specified, we talk about Euclidean topology in the space
Rp×K . We consider Lebesgue measure on Rp×K throughout the proof.

1. First, we show Θ is a non-empty open set in Rp×K .

Recall the formula for ‖∇θ (θ; (x, y))‖2 in (17), which is obviously a continuous function in Rp×K . Therefore, the
preimage of open set (B,∞) through ‖∇θ (θ; (x, y))‖2, which is exactly Θ, is an open set in Rp×K . By assumption,
Θ is non-empty.

2. Second, let ΘG = Θ ∩
{
θ : ∀k, k′, ∇θ(k′)G(k)(θ) = ∇θ(k)G(k′)(θ)

}
be the “good” subset of Θ where the 2nd

derivative of f is symmetric if G is the derivative of f . We will show that ΘG is a closed set in Θ and has Lebesgue
measure 0.

Recall G(k)(θ) for θ ∈ Θ in (18). For any k ≥ 2, notice that G(k)(θ) does not depend on θ(1), so ∇θ(1)G(k)(θ) = 0
for k ≥ 2.

Now we look at the derivatives of G(1). Let D(θ) =
(∑K

k=2E
(k)
)2

+
∑K
k=2

(
E(k)

)2
. For any k′ ≥ 2,

∇θ(k′)G
(1)(θ) =− BE(k′)

‖x‖2 (D(θ))
3/2

K∑
k=2

E(k)
(
E(k) − E(k′)

)
xx>.

As E(k) > 0 and x 6= 0, we have

∀k′ ≥ 2, ∇θ(k′)G
(1)(θ) = 0⇔ E(2) = · · · = E(K)

⇔ 〈θ(2), x〉 = · · · = 〈θ(K), x〉.

It is also not hard to check that E(2) = · · · = E(K) is sufficient to guarantee ∇θ(k′)G(k)(θ) = ∇θ(k)G(k′)(θ) for any
k, k′ ≥ 2.

Therefore, we have ΘG =
{
θ ∈ Θ : 〈θ(2), x〉 = · · · = 〈θ(K), x〉

}
. We can define a function a on Θ with a(θ) =∑K

k=3|〈θ(2), x〉 − 〈θ(k), x〉|. Since a is continuous on domain Θ, the preimage of the closed set {0} through a, which
is exactly ΘG, is a closed set in Θ. Also, ΘG is obviously a lower dimensional subspace of Rp×K and thus has
measure 0.

3. Third, let the “bad” set be ΘB = Θ\ΘG. We will show ΘB ∩ Co is a non-empty set and is open on Co.

As ΘG is closed in Θ, ΘB , its complement, is an open set in Θ. As Θ is open in Rp×K , ΘB is also open in Rp×K

(since ΘB is the intersection of two open subsets in Rp×K). So ΘB ∩ Co is open on Co.



Shuang Song, Thomas Steinke, Om Thakkar, Abhradeep Thakurta

On the other hand, as Θ and Co are open, Θ ∩ Co is open. Additionally, by assumption, Θ ∩ Co is non-empty. So
Θ ∩ Co has positive measure. Since ΘG has measure 0, ΘB ∩ Co = Θ ∩ Co\ΘG has positive measure and is thus
non-empty.

4. Finally, recall that f is differentiable everywhere except for a closed set on CN with measure zero. Obviously, CN is
also closed on Co. Then f is differentiable on Θ′B := ΘB ∩ Co\CN , which implies that G is the gradient of f on Θ′B .
Also, since ∀k, all partial derivatives of G(k) exists and is continuous, we know that f has continuous 2nd derivatives
on Θ′B .

As ΘB ∩ Co is open and CN is closed on Co, Θ′B is open on Co. Also, as CN has zero measure, Θ′B is non-empty.

By Schwarz’s theorem, for any function that has continuous second order partial derivatives, it has symmetry of 2nd
derivative in the interior of its domain. So we are supposed to see ∇θ(k)G(k′) = ∇θ(k′)G(k) for any pairs of k and k′

on Θ′B (since Θ′B itself is non-empty and open in Co). However, this does not hold by definition of ΘB . We therefore
have a contradiction and such f cannot exist.

D.3.1 “Per-class” Clipping Does Not Resolve the Problem

Theorem D.5. Consider any sample (x, y) with x ∈ Rp\{0}, y ∈ [K] (for K ≥ 3) and any B > 0 such that
Θ = {θ : ‖∇θ(k)`(θ; (x, y))‖2 > B for some k ∈ [K]} is non-empty. Let G(θ) be the “per-class” clipped gradient of
`(θ; (x, y)). Consider any function f : C → R, C ⊆ Rp×K such that Θ ⊆ C. If f is differentiable everywhere except for a
set CN ⊆ C such that CN is a closed set on C and has zero Lebesgue measure, then it is not possible for ∇θf(θ) = G(θ)
to hold for all θ ∈ Co\CN .

Proof. Recall the formula for the gradient in (15) and the definition of E(k), and we have

‖∇θ(1)`(θ; (x, y))‖2 =

∑K
k=2E

(k)∑K
k′=1E

(k′)
‖x‖2 ,

For k ≥ 2, ‖∇θ(k)`(θ; (x, y))‖2 =
E(k)∑K

k′=1E
(k′)
‖x‖2 .

Obviously, ‖∇θ(1)`(θ; (x, y))‖2 =
∑K
k=2 ‖∇θ(k)`(θ; (x, y))‖2. So ∇θ(k)`(θ; (x, y)) for k ≥ 2 is clipped only when

∇θ(1)`(θ; (x, y)) is clipped. We consider when some of them are clipped, i.e. the set Θ. There are two cases.

1. If all of them are clipped, then G(1) = − B
‖x‖2

x and G(k) = B
‖x‖2

x for k ≥ 2. G is basically a constant and we have a
valid gradient field.

2. If ∇θ(1)` is clipped and some of ∇θ(k)` for k ≥ 2 is not clipped, then G(1) = − B
‖x‖2

x and G(k) = E(k)∑K
k′=1

E(k′)x. So

we have∇θ(k)G(1) = 0 for any k ≥ 2 and∇θ(1)G(k) = − E(k)E(1)

(
∑K
k′=1

E(k′))
2x>x which is always nonzero. So we do not

have a valid gradient field when this happens.
This is the set

ΘB = ∪K
k0=2Θk0

where Θk0 =

{
θ :

∑K
k=2E

(k)∑K
k′=1E

(k′)
‖x‖2 > B and

E(k0)∑K
k′=1E

(k′)
‖x‖2 ≤ B

}

⊇

{
θ :

∑K
k=2E

(k)∑K
k′=1E

(k′)
‖x‖2 > B

}
∩

{
θ :

E(k0)∑K
k′=1E

(k′)
‖x‖2 < B

}

It is easy to see that Θk0 is non-empty for any k0 ≥ 2. Also, Θk0 is an open set as
∑K
k=2 E

(k)∑K
k′=1

E(k′) and E(k0)∑K
k′=1

E(k′) are
continuous. So ΘB is an non-empty open set.

As Θ ⊆ C, we know f is differentiable on Θ\CN which is an non-empty open set. Then f cannot exists following the
similar argument as in the proof of Theorem 5.3.
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E Omitted Details for Experiments in Section 6

Now, we provide details for our experimental setup that were omitted from the main body due to space constraints.

Dataset: Following [Jain and Thakurta, 2014], we use the Cod-RNA dataset [Uzilov et al., 2006] which contains 59, 535
training and 271, 617 validation (used as test set) samples, each with 8 features and a binary label. To preprocess the data,
we normalize each feature to range from [−0.5, 0.5] using f(x) = (x − min)/(max − min) − 0.5, where min and max
is the minimum and maximum value, respectively, of the feature in the training set. We then project each sample to the
`2-ball of radius

√
8/9, and append a constant feature of value 1/3, such that each sample has 9 dimensions and the `2

norm is upper bounded by 1.

To illustrate the effect of data dimensionality on accuracy, following [Jain and Thakurta, 2014] we append zero-valued
features to the data samples, such that the accuracy of a non-private classifier does not change. We consider data dimen-
sionality as 9 (the original data) and ∪4i=1{1, 2, 5} × 10i \ {10}.

Model: We use logistic regression to solve the binary classification problem, i.e., for d-dimensional feature x and label y ∈
{−1, 1}, the loss function is ` = log(1+e−yθ

>x) for model θ. The gradient of the loss function is∇` = −yx/(1+eyθ
>x),

which has bounded `2 norm: ‖∇`‖2 ≤ ‖x‖2 ≤ 1.

Algorithm: To solve this problem privately, we consider DP-SGD with mini-batch gradient and Gaussian noise. Specifi-
cally, we use batch size 250, and iterate over the training data for 10 epochs.

As a comparison, we consider another algorithm with random noise drawn from Pr(Z = z) ∝ e−ε0‖z‖2 , i.e., the direction
of the noise is uniform, and the magnitude of the noise follows from Gamma distribution with shape d and scale 1/ε0.
Adding this random noise to the stochastic gradient (averaged over one batch) guarantees ε0-differential privacy. Thus,
by privacy amplification, if one batch is formed by selecting each sample with probability q < 0.5, it guarantees ε =
log(1 + q(eε0 − 1))-differential privacy [Ullman, 2017]. By properties of Rényi differential privacy (RDP) [Mironov,
2017], this converts to (α, αε2/2)-RDP, and we can then use RDP composition to account privacy for multiple iterations.

Privacy parameters and hyperparameter: We consider ε ≈ 5.0 and δ = 10−5, which, under batch size 250 and number
of epochs 10, can be achieved by setting the standard deviation of the Gaussian noise to be σ = 0.63, and the scale
parameter of the Gamma noise to be 0.57.

The only hyperparameter in the experiment is the learning rate of DP-SGD. We search in the grid ∪1i=−1{1, 2, 5} × 10i.
We run with every learning rate once, and pick the one with the highest averaged test accuracy over the last 5 epochs. None
of the chosen learning rate lies on the boundary of the grid. Finally, we repeat each experiment for 5 times with the chosen
learning rate.
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