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Abstract

Characterization of local minima draws much
attention in theoretical studies of deep learn-
ing. In this study, we investigate the distri-
bution of parameters in an over-parametrized
finite neural network trained by ridge reg-
ularized empirical square risk minimization
(RERM). We develop a new theory of ridgelet
transform, a wavelet-like integral transform
that provides a powerful and general frame-
work for the theoretical study of neural net-
works involving not only the ReLU but gen-
eral activation functions. We show that the
distribution of the parameters converges to
a spectrum of the ridgelet transform. This
result provides a new insight into the charac-
terization of the local minima of neural net-
works, and the theoretical background of an
inductive bias theory based on lazy regimes.
We confirm the visual resemblance between
the parameter distribution trained by SGD,
and the ridgelet spectrum calculated by nu-
merical integration through numerical exper-
iments with finite models.

1 INTRODUCTION

Characterizing local minima is important in theoret-
ical studies of neural networks. Despite the high-
dimensionality of parameters, neural networks have
become state-of-the-art in many application areas
since the emergence of AlexNet (Krizhevsky et al.,
2012). This has been a mystery of machine learn-
ing theory because several VC-based arguments have
shown that the generalization error is upper bounded
by the dimension of parameters, or the capacity of
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the hypothesis class (Neyshabur et al., 2015; Bartlett
et al., 2017), but as Arora et al. (2018) pointed out,
these bounds are not tight in practice. As Zhang et al.
(2017) suggested, many researchers now consider that
the typical solutions obtained via deep learning are
concentrated in a much smaller class than expected
from the algebraic dimension of parameters or any
other data-independent capacities.

However, characterizing local minima is a challeng-
ing problem due to the nonlinearity of parameters and
the non-convexity of learning problems. To tackle this
problem, the over-parametrization is considered to be
one of the promising assumption for theoretical analy-
sis of neural networks, which assumes that the number
of parameters in neural networks is sufficiently larger
than the sample size. This assumption has revolution-
ized our understanding of the local minima. For ex-
ample, the global convergence of deep learning is now
proved in many ways, and some researchers further
conjecture that the typical solutions are close to the
initial parameters (see Section 5 for more details).

In this study, we provide an explicit expression for
the global minimizer in the over-parametrized regime
by means of the integral representation (Barron, 1993;
Murata, 1996; Sonoda and Murata, 2017). The inte-
gral representation is an effective machinery to ana-
lyze the neural networks using harmonic analysis, a
branch of mathematics. It is realized as a linear op-
erator between function spaces (see Definition 2.1),
and provides a principled approach to study over-
parametrized neural networks with not only ReLU but
also a wide range of activation functions. Recently,
this has been recognized as an effective reparametriza-
tion in the mean-field theory (Mei et al., 2018; Rot-
skoff and Vanden-Eijnden, 2018), which employs the
integral representation to show the global convergence
for finite two-layer networks.

To be precise, we develop a new theory of the rigelet
transform on the torus, and prove for the first time
that the parameter distributions of finite two-layer
neural networks trained by regularized empirical risk
minimization (RERM) converges to a ridgelet spec-
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trum as both the parameter number and sample size
tend to in�nity. By virtue of the over-parametrization,
our theorem holds not only for strict global minima but
also other suboptimal minima such as random features
solutions. The ridgelet transform, which is a wavelet-
like integral transform, is originally developed by Mu-
rata (1996), Cand�es (1998) and Rubin (1998), and has
a remarkable application to analysis of neural networks
(see eg., Starck et al., 2010 and Appendix A.5).

Numerical simulation con�rms our main theoretical re-
sults. Namely, the scatter plot of parameter distri-
butions learned by stochastic gradient descent (SGD)
shows a similar pattern to the ridgelet spectrum.
While our theory do not assume any speci�c train-
ing algorithm (but ERM), the empirical results further
suggests that our theoretical �ndings hold for a more
realistic settings.

To the present date, mean-�eld theories have not pro-
vided the explicit expression like ridgelet transform be-
cause they consider the integral- representation with-
out ridgelet transform. If we know that the local min-
ima tends to a ridgelet spectrum, then we can fur-
ther understand the theoretical backgrounds behind
the lazy learning, a recent trend of inductive bias the-
ories, such as theneural tangent kernel (Jacot et al.,
2018; Lee et al., 2019) and thestrong lottery ticket hy-
pothesis(Frankle and Carbin, 2019), claiming that the
learned parameters are very close to the initial param-
eters. This is reasonable when the initial parameters
cover the support of the ridgelet spectrum. As a con-
sequence, this study develops a new direction of the
theoretical studies of local minima. See Related Works
(Section 5) for more discussions.

Contributions are summarized as follows: This study

ˆ develops a complete set of the ridgelet transform
on the torus including reconstruction formula, ad-
missible condition, Plancherel formula, bounded-
ness, density, and several formulas for calculus;

ˆ mathematically proves (1) that the population
risk minimizer of the ridge regression problem
with integral representation NNs is expressed by
the ridgelet transform, and (2) that the empiri-
cal risk minimizer (ERMer) of the ridge regres-
sion problem with �nite two-layer NNs converges
to the ridgelet transform in the over-parametrized
regime, namely, when the parameter number and
the sample size tend to in�nity;

ˆ empirically con�rms that the parameter distribu-
tions in �nite two-layer NNs trained by stochastic
gradient descent (SGD) visually converge to the
ridgelet spectrum obtained by numerical integra-
tion; and

ˆ develops a new direction of the theoretical stud-
ies of local minima that would reinforce a wide
range of recent global convergence theories includ-
ing mean-�eld theories and lazy learning.

The structure of this paper is as follows: In Section 2,
we develop the theory of the ridgelet transform on the
torus. In Section 3, we give our main results. In Sec-
tion 4, we conduct numerical simulation. In Sections 5,
we discuss the relation to previous studies. In Section
6, we provides conclusions and further discussions.

Notations. The m is the dimension of the Euclidean
space of the input data. We denote by dx the Lebesgue
measure onRm .

We denote by T the torus R=TZ for a �xed T > 0,
which is identi�ed with the interval [ � T=2; T=2). We
denote by db the invariant measure onT, that is iden-
tical with the Lebesgue measure on [� T=2; T=2) via
the above identi�cation.

For A > 0, we denote byIA the interval [ � A; A ]. We
denote by da the Lebesgue masure onIm

A . We de�ne
� A := d adb a measure onIm

A � T.

For a measurable spaceX equipped with a measure� ,
we denote byL p(X; � ) the space ofL p integrable func-
tions on X with respect to � . For simplicity, we write
L p(� ) if X is obvious in context, or write L p(X ) when
� is the Lebesgue measure or the invariant measure on
T.

For a topological spaceX , we denote by Cb(X ) the
Banach space of bounded continuous functions onX
equipped with the uniform norm.

For a periodic function � : T ! R and an inte-
ger n, we write the Fourier coe�cient as b� (n) :=
(1=T)

RT=2
� T=2 � (t)e2�int=T dt.

For a function � : R ! R, � a ;b denotes a function
x 7! � (a � x � b) , and � x denotes a function (a; b) 7!
� (a � x � b).

2 RIDGELET TRANSFORM ON
THE TORUS

In this section, we establish the theory of the ridgelet
transform on the torus, which is a basis of this study.
For those who are not familiar with ridgelet analysis,
we refer to theCheat Sheet(Appendix A) including the
list of handy formulas and the visualization of recon-
struction formula with admissible and non-admissible
functions.

The ridgelet transform on the torus is a complete set
of new ridgelet transform, because periodic activation
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functions cannot beself-admissiblein the non-periodic
context, and thus two theories are exclusive to each
other. We need the self-admissibility for the Plancherel
formula to hold.

2.1 Periodic Activation Function

In this study, we consider the activation function � to
be bounded and measurable function fromT to R, or
equivalently, a bounded measurable periodic function
� on R with period T: � (t + T) = � (t).

Originally, the ridgelet transform is de�ned on the
real line R (Murata, 1996; Cand�es, 1998). However,
the non-compactness ofR gives rise to several tech-
nical di�culties in the proofs, especially, in establish-
ing a connection between the ridgelet transform and
�nite neural networks. Moreover, the original de�ni-
tion excludes non-integrable activation functions such
as the hyperbolic tangent function and the recti�ed
linear unit (ReLU). Sonoda and Murata (2017) have
extended the ridgelet transform to accept such non-
integrable activation functions, by introducing an aux-
iliary dual activation function. However, their exten-
sion sacri�ces the Plancherel formula, which we need
in this study.

Although it might be possible to develop a truncated
version of the ridgelet theory, such as the \ridgelet
transform on a closed interval", it disables us from us-
ing fruitful results in Fourier analysis. In contrast, if
we impose a periodicity on� , we can use a quite pow-
erful mathematical machinery, that is the theory of the
Fourier transform on the torus T ' [� T=2; T=2). Since
we may take arbitrarily large T, it is not so harmful as
we often consider a �nite dataset that is always con-
tained in a (su�ciently large) compact domain. It is
worth remarking that there exists a study (Sitzmann
et al., 2020) that utilizes a periodicity of the activa-
tions, in which the authors report neural networks with
periodic activations perform better in some machine
learning tasks using real world data.

2.2 Integral Representation of Neural
Networks

We give a de�nition of an integral representation.

De�nition 2.1 (Integral Representation). Let � :
T ! R be a bounded measurable function, and letP
be a �nite Borel measure on Rm . For any �nite Borel
measure� on Rm � T, we de�ne an integral represen-
tation of a neural network S� : L 2(� ) ! L 2(P) by

S� [
 ](x ) :=
Z

Rm � T

 (a; b)� (a � x � b)d� (a; b): (1)

In this study, we mainly consider two cases: � d =

P d
i =1 � a i ;bi , and � = � A . As for the �rst case,

S� d [
 ](x ) =
P d

i =1 
 (a i ; bi )� (a i � x � bi ). Thus S� d

represents a �nite two-layer neural network. As for
the second case, the operatorS� A can be regarded as
a continuum limit of neural networks whose hidden
parameters (a i ; bi ) are contained in Im

A � T.

Here, we provide a remark on the spaceL 2(P). As
L 2(Rm ) does not contain � a ;b and thus any �nite
neural networks, we cannot see the direct connec-
tion between �nite neural networks and integral rep-
resentations of neural networks in L 2(Rm ). To cir-
cumvent this technical issue, we considerL 2(P) since
� a ;b 2 L 2(P).

We note the boundedness of the integral representa-
tion:

Proposition 2.2. The linear operator S� is bounded,
namely, there exists a positive constantC > 0 such
that kS� [
 ]kL 2 (P ) � Ck
 kL 2 ( � ) for all 
 2 L 2(� ).

The boundedness is a su�cient condition to estab-
lish the unique existence of the global optimum in the
learning problem (7) we will consider.

2.3 Ridgelet Transform

Let us introduce an assumption on the bounded mea-
surable function � .

Assumption 2.3 (Admissible Condition) . The func-
tion � : T ! R is bounded and measurable, and sat-
is�es the following two conditions: (1) b� (0) = 0 , and
(2) Tm +1 P

n 6=0 jb� (n)j2=jnjm = 1 .

We need the admissibility condition (AC) in the proof
of the reconstruction formula (3) below. It is not at all
strong. In fact, the in�nite sum in the second condition
always converge because� is square integrable, thus,
we may replace� with a function satisfying these con-
dition via only multiplying and subtracting constants.
For example, restrictions of ReLU and hyperbolic tan-
gent to T with slight modi�cations on the constants,
namely, ReLUj[� T=2;T=2] � T=8 and tanhj[� T=2;T=2] are
admissible. Note that we can further eliminate the
constant � T=8 in the ReLU by simply adding an o�-
set b0 to the model as S[
 ] + b0. It is a routine to
extend our analysis for S[
 ] + b0 to have a parallel
consequence. In this case, we do not need Item 1 of
the AC.

We introduce the ridgelet transform and its recon-
struction formula.

De�nition 2.4 (Ridgelet Transform). Impose As-
sumption 2.3 on � . Then, we de�ne the ridgelet trans-
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form R : L 2(Rm ) ! L 2(Rm � T) by

R[f ](a; b) :=
Z

Rm
f (x )� (a � x � b)dx : (2)

For a rigorous treatment of the well-de�nedness of the
ridgelet transform, see Remark 2.7 below.

Theorem 2.5 (Reconstruction Formula). Impose As-
sumption 2.3 on � . Then for f; g 2 L 2(Rm ), we have

lim
A !1

S� A [R[f ]] = f; (3)


R[f ]; R[g]

�
L 2 (Rm � T) = hf; g i L 2 (Rm ) : (4)

By discretizing the integral in (3), we have a stronger
result of a well-known universality of two-layer neural
networks as a corollary of Theorem 2.5:

Corollary 2.6. Impose Assumption 2.3 on� , and as-
sumef is a rapidly decreasing smooth function. Then,
for an arbitrary " > 0 and a compact domainK � Rm ,
there exists A > 0 and d > 0 such that the following
inequality almost surely holds:












(2A)m T
d

dX

i =1

R[f ](a i ; bi )� a i ;bi � f












L 1 (K )

< ";

where (a i ; bi )'s are i.i.d samples drawn from the uni-
form distribution over Im

A � T.

Typical universality results only concern approxima-
tion power of neural networks. Such results guarantee
the representation power of neural networks, however,
their parameters could become too large to be realized
in the real world. In contrast, Corollary 2.6 provides
us not only the approximation power but also detailed
information of the parameter distributions. Although
there might be many candidates of neural networks
that represent the target function, Corollary 2.6 shows
that one of them are given by the ridgelet transform,
a simple integral transform. Conversely, under over-
parametrized condition, we will prove that the parame-
ter distribution of an optimal neural network is closely
related to the ridgelet transform.

Remark 2.7. For mathematical and logical accuracy,
we need to de�ne R[f ] for all the f 2 L 2(Rm ) with
Theorem 2.5 via bounded extension, essentially the
same arguments in the de�nition of the L 2-Fourier
transform on the Eulidean space. More precisely, We
�rst de�ne R[f ] for f 2 L 1(Rm ), which is absolutely
convergent because� 2 L 1 (T). Then, we show the
Plancherel formula for f 2 L 1(Rm ) \ L 2(Rm ) as in
Theorem 2.5. Finally, we extendR[f ] for f 2 L 2(Rm )
as a common limit of R[f i ], where f i is any sequence
in L 1(Rm ) \ L 2(Rm ) that converges to f in L 2(Rm ).

3 MAIN RESULTS

In this section, we describe the formulation of our
problem and main results (Theorems 3.3 and 3.4). We
�x an activation function � : T ! R. We assume
that � is continuous almost everywhere, equivalently,
Riemann integrable, and satis�es Assumption 2.3. We
also �x a square integrable function f 2 L 2(Rm ) as a
data generating function, and an absolutely continuous
probability measure P on Rm with bounded density
function p 2 L 1(Rm ) as the input data distribution.
We write an empirical measure corresponding toP by
PN := 1=N

P N
i =1 � x i , where x 1; : : : ; x N 2 Rm are i.i.d

samples drawn fromP. For A; T > 0 and d 2 N, let

� d;A :=

(
C0

d

dX

i =1

� (a i ;bi ) j (a i ; bi ) 2 Im
A � T

)

; (5)

where C0 := (2 A)m T, be the collection of d-term hid-
den parameter distributions on Im

A � T.

Main Claim (Theorems 3.3 and 3.4) Our main
results are summarized in the following formula, which
is a converse of Corollary 2.6:

lim
N !1

lim
d!1


 �
N;d = R

�
pf

� + p

�
+ � A ;

where 
 �
N;d represents the parameter distribution ofd-

term two-layer neural networks trained by regularized
empirical risk minimization with N training examples,
� is a regularization parameter, and � A is a small
residual term that tends to 0 as A ! 1 .

We call this inner limit lim d!1 
 �
N;d along the param-

eter number d the over-parametrization. In this sense,
we show \over-parametrized networks converge to the
ridgelet transform."

3.1 Square Loss Minimization

For an arbitrary � > 0, any �nite Borel measures� and
P on Rm � T and Rm , respectively, and any square in-
tegrable function f 2 L 2(P), we consider the following
form of L 2-regularized square risk:

J (
 ; f; P; �; � ) := kf � S� [
 ]k2
L 2 (P ) + � k
 k2

L 2 ( � ) :
(6)

We denote by 
 � [f ; P; �; � ], the unique element that
attains the minimum

min

 2 L 2 ( � )

J (
 ; f; P; �; � ); (7)

which always exists as long asS� is a densely de�ned
closed operator (see Appendix B for the proof). As we
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have already seen in Proposition 2.2,S� is bounded,
and thus the minimizer always exists.

The minimizer of (7) behaves well under limit manip-
ulations, namely, we have the following lemma:

Lemma 3.1. For any �nite Borel measure � on Rm �
T, as N ! 1 , we have

k
 � [f ; PN ; �; � ] � 
 � [f ; P; �; � ]kL 2 ( � ) ! 0 P-a.s.

Now we consider two types of minimization problems.
Our goal is to describe the relationship between the
minimizers as well as investigate the properties of
them.

Continuous Population Risk Minimizer 
 � . We
denote by 
 � the population risk minimizer of

min

 2 L 2 ( � A )

J (
 ; f; P; � A ; � ): (8)

The minimizer 
 � is equal to 
 � [f ; P; � A ; � ], and refer-
enced as a theoretically ideal object, which shows up
as the global minimizer with over-parametrized neural
networks.

Finite Empirical Risk Minimizer 
 �
N;d . We de-

note by 
 �
N;d an empirical risk minimizer of

min
� 2 � d;A

min

 2 L 2 ( � )

J (
 ; f; P N ; �; � d): (9)

By de�nition, the minimization problem (9) is equiva-
lent to an ordinary learning problem of two-layer neu-
ral networks in term of the following empirical risk
with respect to the parameters (a j ; bj ; cj ) 2 Im

A � T� R:

1
N

NX

i =1

�
�
�
�
�
�
f (x i ) �

C0

d

dX

j =1

cj � a j ;bj (x i )

�
�
�
�
�
�

2

+ � d
C0

d

dX

j =1

jcj j2;

(10)

where we write C0 := (2 A)m T. By de�nition, 
 N;d at-
tains the minumum of (7) for some� �

d 2 � d;A , namely,
we have
 �

N;d = 
 � [f ; PN ; � �
d; � d]. We call � the hidden

parameter distribution of the ERMer 
 �
N;d .

As we see soon later, our main theorem holds not only
for the strict global minimizer but also for more general
solutions that satisfy a very mild assumption:

Assumption 3.2. A sequence of hidden parameter
distributions f � dg1

d=1 (� d 2 � d;A ) weakly converges
to the uniform distribution � A over the parameter do-
main Im

A � T, namely, for any bounded continuous func-
tion h 2 Cb(Im

A � T),
R

hd� d !
R

hdadb as d ! 1 .

Here, we remark for potential confusions: The ob-
jective function (7) may remind some readers of the

kernel ridge regression (KRR) with either k(x ; y ) :=
Ea ;b� � [� (a � x � b)� (a0 � x � b0)] on the data space, or
K ((a; b); (a0; b0)) := Ex � P [� (a � x � b)� (a0 � x � b0)]
on the parameter space. However, both KRRs cannot
deal with our problem (7). Recall that our �nal goals
are to specify the parameter distribution 
 � 2 L 2(� A )
and to show the convergence of the �nite minimizers

 d =

P d
i =1 ci � (a i ;bi ) to 
 � . In general, 
 � involves null

component when� > 0, but HK does not involve null
components and thus the minimizer
 � in L 2(� A ) can-
not always included in HK .

3.2 Explicit Representation of Continuous
Minimizer

The �rst main result is the explicit representation of
the continuous minimizer 
 � , the solution of (8), in
terms of the ridgelet transform.

Theorem 3.3. Let f 2 L 2(Rm ) be a bounded square
integrable function, and let P be an absolutely contin-
uous probability measure onRm with bounded density
function p 2 L 1(Rm ). For A > 0 and � > 0, we have


 � = R
�

pf
� + p

�
+ � A ; (11)

where � A is an element ofL 2(� A ) such that

lim
A !1

k� A kL 2 ( � A ) = 0 : (12)

By Corollary 2.6, it is reasonable to expect the min-
imizer 
 � and the ridgelet transform are intimately
related to each other. However, since there exists a
nonzero element
 0 2 L 2(� A ) satifying S� A [
 0] = 0,
R[f ] + 
 0 also provides a parameter distribution that
approximates the target f well. Theorem 3.3 shows
that the regularization term removes the e�ect of 
 0,
and the minimizer 
 � coincodes with the ridgelet trans-
form except a small oscillation � A .

The principal term 
 �
pri := R[fp=(� + p)] of the ob-

tained minimizer is understood as ashrinkage estima-
tor, or a biased estimator, of 
 � := R[f ]. Namely,
while 
 � exactly attains S[
 � ] = f , the obtained esti-
mate S[
 �

pri ] = fp=(� + p) is intentionally biased from
f , and the norm k
 �

pri k is intentionally p=(� + p)-times
smaller than k
 � k. Recall that a regularized estima-
tor is generally a biased estimator, and shrinkage is
a natural consequence of ridge regression because the
regularizer � k
 k2 penalizes the norm of
 .

As described in Proposition B.2 for general settings, if
� ! +0, then 
 � converges to theminimum norm so-
lution. In our setting, by the continuity in � , it is sim-
ply given by lim � ! +0 
 �

pri = lim � ! 0 R[fp=(� + p)] =
R[f ] = 
 � . However, we remark that this does not
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mean that \If we minimize (6) without any regular-
ization (by letting exactly � = 0), then 
 � = R[f ]".
In this case, the correct answer is
 � = R[f ] + ker S.
Namely, the minimizer will have a redundancy in null
space kerS.

3.3 Convergence of Finite Minimizers in the
Over-parametrization Regime

The second main result is a convergence of parame-
ter distributions of �nite neural networks with over-
parametrization.

Theorem 3.4. Let f 
 �
N;d g1

d=1 be a sequence of ERM-
ers. Impose Assumption 3.2 on the hidden parameter
distributions � d of 
 �

N;d , namely, � d weakly converges
to � A . Assume � d ! � as d ! 1 . Then, for any
bounded continuous functionh on Im

A � T, we have

lim
N !1

lim
d!1

Z
h
 �

N;� d
d� d =

Z
h
 � d� A : (13)

Here the limit with respect to N is in the sense ofP-
a.s. convergence.

Theorem 3.4 claims that the over-parametrized two-
layer neural networks weakly converges to the popu-
lation risk minimizers 
 � as the sample size gets in-
creased. Combined with Theorem 3.3, we obtain the
statement \an over-parametrized neural network con-
verges to the ridgelet spectrum". The \weak conver-
gence" is not much weak because if we take an ar-
bitrary region of interest K � Rm , and let the in-
dicator function 1K to be the test function h, then
the parameter distribution eventually converges toR

K R[f ](a; b)dadb. In Section 4 below, we will see
that the parameters of �nite neural networks trained
by SGD accumulate the ridgelet spectrum.

We provide a remark on the assumption that � d con-
verges to a measure� . Since we consider the ridge
regression, the support of ERMers cannot concentrate
in a null set, for example, a lower dimensional subman-
ifold, as the parameter number gets increased. More
precisely, we have the following simple lemma:

Lemma 3.5. Let � be a �nite Borel measure onRm �
T. Let 
 2 L 2(� ). Assume k
 kL 1 ( � ) > C for some
C > 0. Then we havek
 kL 2 ( � ) > C=� (supp(
 )) .

This lemma implies if the the support of coe�cient
functions is collapsed to a null set, then itsL 2-norm
explodes. Therefore, the ridge regularization exclude
such a coe�cient function as a solution of the mini-
mization problem in question.

Proof of Theorem 3.4. We provide a sketch of the
proof. In fact, we prove a stronger convergence result
as follows:

Lemma 3.6. Let f � dg1
d=1 (� d 2 � d;A ) be a sequence

of a �nite Borel measure. Impose Assumption 3.2 on
f � dg1

d=1 . Assume that � d ! � as d ! 1 . Then, as
d ! 1 , we have




 
 � [f ; PN ; � d; � d] � 
 � [f ; PN ; � A ; � ]






L 2 ( 
 d ) �! 0:

As a consequence, in the over-parametrized regime, the
convergence occurs even when the hidden parameters
are not optimized but at least they converge to � A .
Combined with Lemma 3.1, the minimizer 
 � [PN ; � A ]
almost surely converges to
 � as N ! 1 .

4 NUMERICAL SIMULATION

In order to verify the main results, we conducted nu-
merical simulation with arti�cial datasets. Here, we
only display the results of Experiment 1. The readers
are also encouraged to refer Appendix D for further
experimental results.

4.1 Data Generation

For the sake of visualization, all the datasets are 1-
in-1-out, so that the scatter plot will be displayed in
a three-dimensional manner: (a; b) 2 R2 in position
and c 2 R in color. However, we remark that our
theoretical results are valid for any dimension. We al-
ways consider the uniform distribution x i � U(� 1; 1)
for the input vectors, and generaten = 1 ; 000 samples
for training, except for the case of Topologist's Sine
Curve (TSC) yi = sin 2�

x i
. For the TSC, we generate

n = 10; 000 because the frequency tends to in�nity as
x tends to 0.

4.2 Scatter Plot of SGD Trained Parameters

Given a dataset Dn = f (x i ; yi )gn
i =1 , we repeat-

edly train s = 1 ; 000 neural networks g(x; � ( t ) ) =
P d

i =1 c( t )
i � (a( t )

i x � b( t )
i ); (t 2 [s]) with activation func-

tion � = periodic Gaussian, periodic Tanh and pe-
riodic ReLU. The training is conducted by minimiz-
ing the square loss:L (� ) = 1

n

P n
i =1 jyi � g(x i ; � )j2 us-

ing stochastic gradient descent (SGD) with learning
rate � > 0 and weight decay rate� > 0. Note that
the weight decay has an equivalent e�ect to the L 2-
regularization. In the main theory, only c is imposed
L 2-regularization, and (a; b) are strictly restricted in a
compact domainIm

A � T. However, in the experiments,
all the parameters are imposedL 2-regularization for
the sake of simplicity. The initial parameters are
drawn from the uniform distribution U(� 1; 1). All
the parameters are updated by SGD, so that this is
not a random features method (Rahimi and Recht,
2008) in which hidden parameters (a; b) are frozen af-
ter initialization. After the training, we obtain sd sets
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