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Abstract

Characterization of local minima draws much
attention in theoretical studies of deep learn-
ing. In this study, we investigate the distri-
bution of parameters in an over-parametrized
finite neural network trained by ridge reg-
ularized empirical square risk minimization
(RERM). We develop a new theory of ridgelet
transform, a wavelet-like integral transform
that provides a powerful and general frame-
work for the theoretical study of neural net-
works involving not only the ReLU but gen-
eral activation functions. We show that the
distribution of the parameters converges to
a spectrum of the ridgelet transform. This
result provides a new insight into the charac-
terization of the local minima of neural net-
works, and the theoretical background of an
inductive bias theory based on lazy regimes.
We confirm the visual resemblance between
the parameter distribution trained by SGD,
and the ridgelet spectrum calculated by nu-
merical integration through numerical exper-
iments with finite models.

1 INTRODUCTION

Characterizing local minima is important in theoret-
ical studies of neural networks. Despite the high-
dimensionality of parameters, neural networks have
become state-of-the-art in many application areas
since the emergence of AlexNet (Krizhevsky et al.,
2012). This has been a mystery of machine learn-
ing theory because several VC-based arguments have
shown that the generalization error is upper bounded
by the dimension of parameters, or the capacity of
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the hypothesis class (Neyshabur et al., 2015; Bartlett
et al., 2017), but as Arora et al. (2018) pointed out,
these bounds are not tight in practice. As Zhang et al.
(2017) suggested, many researchers now consider that
the typical solutions obtained via deep learning are
concentrated in a much smaller class than expected
from the algebraic dimension of parameters or any
other data-independent capacities.

However, characterizing local minima is a challeng-
ing problem due to the nonlinearity of parameters and
the non-convexity of learning problems. To tackle this
problem, the over-parametrization is considered to be
one of the promising assumption for theoretical analy-
sis of neural networks, which assumes that the number
of parameters in neural networks is sufficiently larger
than the sample size. This assumption has revolution-
ized our understanding of the local minima. For ex-
ample, the global convergence of deep learning is now
proved in many ways, and some researchers further
conjecture that the typical solutions are close to the
initial parameters (see Section 5 for more details).

In this study, we provide an explicit expression for
the global minimizer in the over-parametrized regime
by means of the integral representation (Barron, 1993;
Murata, 1996; Sonoda and Murata, 2017). The inte-
gral representation is an effective machinery to ana-
lyze the neural networks using harmonic analysis, a
branch of mathematics. It is realized as a linear op-
erator between function spaces (see Definition 2.1),
and provides a principled approach to study over-
parametrized neural networks with not only ReLU but
also a wide range of activation functions. Recently,
this has been recognized as an effective reparametriza-
tion in the mean-field theory (Mei et al., 2018; Rot-
skoff and Vanden-Eijnden, 2018), which employs the
integral representation to show the global convergence
for finite two-layer networks.

To be precise, we develop a new theory of the rigelet
transform on the torus, and prove for the first time
that the parameter distributions of finite two-layer
neural networks trained by regularized empirical risk
minimization (RERM) converges to a ridgelet spec-
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trum as both the parameter number and sample size
tend to infinity. By virtue of the over-parametrization,
our theorem holds not only for strict global minima but
also other suboptimal minima such as random features
solutions. The ridgelet transform, which is a wavelet-
like integral transform, is originally developed by Mu-
rata (1996), Candès (1998) and Rubin (1998), and has
a remarkable application to analysis of neural networks
(see eg., Starck et al., 2010 and Appendix A.5).

Numerical simulation confirms our main theoretical re-
sults. Namely, the scatter plot of parameter distri-
butions learned by stochastic gradient descent (SGD)
shows a similar pattern to the ridgelet spectrum.
While our theory do not assume any specific train-
ing algorithm (but ERM), the empirical results further
suggests that our theoretical findings hold for a more
realistic settings.

To the present date, mean-field theories have not pro-
vided the explicit expression like ridgelet transform be-
cause they consider the integral- representation with-
out ridgelet transform. If we know that the local min-
ima tends to a ridgelet spectrum, then we can fur-
ther understand the theoretical backgrounds behind
the lazy learning, a recent trend of inductive bias the-
ories, such as the neural tangent kernel (Jacot et al.,
2018; Lee et al., 2019) and the strong lottery ticket hy-
pothesis (Frankle and Carbin, 2019), claiming that the
learned parameters are very close to the initial param-
eters. This is reasonable when the initial parameters
cover the support of the ridgelet spectrum. As a con-
sequence, this study develops a new direction of the
theoretical studies of local minima. See Related Works
(Section 5) for more discussions.

Contributions are summarized as follows: This study

• develops a complete set of the ridgelet transform
on the torus including reconstruction formula, ad-
missible condition, Plancherel formula, bounded-
ness, density, and several formulas for calculus;

• mathematically proves (1) that the population
risk minimizer of the ridge regression problem
with integral representation NNs is expressed by
the ridgelet transform, and (2) that the empiri-
cal risk minimizer (ERMer) of the ridge regres-
sion problem with finite two-layer NNs converges
to the ridgelet transform in the over-parametrized
regime, namely, when the parameter number and
the sample size tend to infinity;

• empirically confirms that the parameter distribu-
tions in finite two-layer NNs trained by stochastic
gradient descent (SGD) visually converge to the
ridgelet spectrum obtained by numerical integra-
tion; and

• develops a new direction of the theoretical stud-
ies of local minima that would reinforce a wide
range of recent global convergence theories includ-
ing mean-field theories and lazy learning.

The structure of this paper is as follows: In Section 2,
we develop the theory of the ridgelet transform on the
torus. In Section 3, we give our main results. In Sec-
tion 4, we conduct numerical simulation. In Sections 5,
we discuss the relation to previous studies. In Section
6, we provides conclusions and further discussions.

Notations. The m is the dimension of the Euclidean
space of the input data. We denote by dx the Lebesgue
measure on Rm.

We denote by T the torus R/TZ for a fixed T > 0,
which is identified with the interval [−T/2, T/2). We
denote by db the invariant measure on T, that is iden-
tical with the Lebesgue measure on [−T/2, T/2) via
the above identification.

For A > 0, we denote by IA the interval [−A,A]. We
denote by da the Lebesgue masure on ImA . We define
µA := dadb a measure on ImA × T.

For a measurable space X equipped with a measure µ,
we denote by Lp(X,µ) the space of Lp integrable func-
tions on X with respect to µ. For simplicity, we write
Lp(µ) if X is obvious in context, or write Lp(X) when
µ is the Lebesgue measure or the invariant measure on
T.

For a topological space X, we denote by Cb(X) the
Banach space of bounded continuous functions on X
equipped with the uniform norm.

For a periodic function σ : T → R and an inte-
ger n, we write the Fourier coefficient as σ̂(n) :=

(1/T )
∫ T/2
−T/2 σ(t)e2πint/Tdt.

For a function σ : R → R, σa,b denotes a function
x 7→ σ(a · x− b) , and σx denotes a function (a, b) 7→
σ(a · x− b).

2 RIDGELET TRANSFORM ON
THE TORUS

In this section, we establish the theory of the ridgelet
transform on the torus, which is a basis of this study.
For those who are not familiar with ridgelet analysis,
we refer to the Cheat Sheet (Appendix A) including the
list of handy formulas and the visualization of recon-
struction formula with admissible and non-admissible
functions.

The ridgelet transform on the torus is a complete set
of new ridgelet transform, because periodic activation
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functions cannot be self-admissible in the non-periodic
context, and thus two theories are exclusive to each
other. We need the self-admissibility for the Plancherel
formula to hold.

2.1 Periodic Activation Function

In this study, we consider the activation function σ to
be bounded and measurable function from T to R, or
equivalently, a bounded measurable periodic function
σ on R with period T : σ(t+ T ) = σ(t).

Originally, the ridgelet transform is defined on the
real line R (Murata, 1996; Candès, 1998). However,
the non-compactness of R gives rise to several tech-
nical difficulties in the proofs, especially, in establish-
ing a connection between the ridgelet transform and
finite neural networks. Moreover, the original defini-
tion excludes non-integrable activation functions such
as the hyperbolic tangent function and the rectified
linear unit (ReLU). Sonoda and Murata (2017) have
extended the ridgelet transform to accept such non-
integrable activation functions, by introducing an aux-
iliary dual activation function. However, their exten-
sion sacrifices the Plancherel formula, which we need
in this study.

Although it might be possible to develop a truncated
version of the ridgelet theory, such as the “ridgelet
transform on a closed interval”, it disables us from us-
ing fruitful results in Fourier analysis. In contrast, if
we impose a periodicity on σ, we can use a quite pow-
erful mathematical machinery, that is the theory of the
Fourier transform on the torus T ' [−T/2, T/2). Since
we may take arbitrarily large T , it is not so harmful as
we often consider a finite dataset that is always con-
tained in a (sufficiently large) compact domain. It is
worth remarking that there exists a study (Sitzmann
et al., 2020) that utilizes a periodicity of the activa-
tions, in which the authors report neural networks with
periodic activations perform better in some machine
learning tasks using real world data.

2.2 Integral Representation of Neural
Networks

We give a definition of an integral representation.

Definition 2.1 (Integral Representation). Let σ :
T → R be a bounded measurable function, and let P
be a finite Borel measure on Rm. For any finite Borel
measure λ on Rm ×T, we define an integral represen-
tation of a neural network Sλ : L2(λ)→ L2(P ) by

Sλ[γ](x) :=

∫
Rm×T

γ(a, b)σ(a · x− b)dλ(a, b). (1)

In this study, we mainly consider two cases: λd =

∑d
i=1 δai,bi , and λ = µA. As for the first case,

Sλd
[γ](x) =

∑d
i=1 γ(ai, bi)σ(ai · x − bi). Thus Sλd

represents a finite two-layer neural network. As for
the second case, the operator SµA

can be regarded as
a continuum limit of neural networks whose hidden
parameters (ai, bi) are contained in ImA × T.

Here, we provide a remark on the space L2(P ). As
L2(Rm) does not contain σa,b and thus any finite
neural networks, we cannot see the direct connec-
tion between finite neural networks and integral rep-
resentations of neural networks in L2(Rm). To cir-
cumvent this technical issue, we consider L2(P ) since
σa,b ∈ L2(P ).

We note the boundedness of the integral representa-
tion:

Proposition 2.2. The linear operator Sλ is bounded,
namely, there exists a positive constant C > 0 such
that ‖Sλ[γ]‖L2(P ) ≤ C‖γ‖L2(λ) for all γ ∈ L2(λ).

The boundedness is a sufficient condition to estab-
lish the unique existence of the global optimum in the
learning problem (7) we will consider.

2.3 Ridgelet Transform

Let us introduce an assumption on the bounded mea-
surable function σ.

Assumption 2.3 (Admissible Condition). The func-
tion σ : T → R is bounded and measurable, and sat-
isfies the following two conditions: (1) σ̂(0) = 0, and
(2) Tm+1

∑
n 6=0 |σ̂(n)|2/|n|m = 1.

We need the admissibility condition (AC) in the proof
of the reconstruction formula (3) below. It is not at all
strong. In fact, the infinite sum in the second condition
always converge because σ is square integrable, thus,
we may replace σ with a function satisfying these con-
dition via only multiplying and subtracting constants.
For example, restrictions of ReLU and hyperbolic tan-
gent to T with slight modifications on the constants,
namely, ReLU|[−T/2,T/2]−T/8 and tanh |[−T/2,T/2] are
admissible. Note that we can further eliminate the
constant −T/8 in the ReLU by simply adding an off-
set b0 to the model as S[γ] + b0. It is a routine to
extend our analysis for S[γ] + b0 to have a parallel
consequence. In this case, we do not need Item 1 of
the AC.

We introduce the ridgelet transform and its recon-
struction formula.

Definition 2.4 (Ridgelet Transform). Impose As-
sumption 2.3 on σ. Then, we define the ridgelet trans-
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form R : L2(Rm)→ L2(Rm × T) by

R[f ](a, b) :=

∫
Rm

f(x)σ(a · x− b)dx. (2)

For a rigorous treatment of the well-definedness of the
ridgelet transform, see Remark 2.7 below.

Theorem 2.5 (Reconstruction Formula). Impose As-
sumption 2.3 on σ. Then for f, g ∈ L2(Rm), we have

lim
A→∞

SµA
[R[f ]] = f, (3)〈

R[f ], R[g]
〉
L2(Rm×T)

= 〈f, g〉L2(Rm). (4)

By discretizing the integral in (3), we have a stronger
result of a well-known universality of two-layer neural
networks as a corollary of Theorem 2.5:

Corollary 2.6. Impose Assumption 2.3 on σ, and as-
sume f is a rapidly decreasing smooth function. Then,
for an arbitrary ε > 0 and a compact domain K ⊂ Rm,
there exists A > 0 and d > 0 such that the following
inequality almost surely holds:∥∥∥∥∥ (2A)mT

d

d∑
i=1

R[f ](ai, bi)σai,bi − f

∥∥∥∥∥
L∞(K)

< ε,

where (ai, bi)’s are i.i.d samples drawn from the uni-
form distribution over ImA × T.

Typical universality results only concern approxima-
tion power of neural networks. Such results guarantee
the representation power of neural networks, however,
their parameters could become too large to be realized
in the real world. In contrast, Corollary 2.6 provides
us not only the approximation power but also detailed
information of the parameter distributions. Although
there might be many candidates of neural networks
that represent the target function, Corollary 2.6 shows
that one of them are given by the ridgelet transform,
a simple integral transform. Conversely, under over-
parametrized condition, we will prove that the parame-
ter distribution of an optimal neural network is closely
related to the ridgelet transform.

Remark 2.7. For mathematical and logical accuracy,
we need to define R[f ] for all the f ∈ L2(Rm) with
Theorem 2.5 via bounded extension, essentially the
same arguments in the definition of the L2-Fourier
transform on the Eulidean space. More precisely, We
first define R[f ] for f ∈ L1(Rm), which is absolutely
convergent because σ ∈ L∞(T). Then, we show the
Plancherel formula for f ∈ L1(Rm) ∩ L2(Rm) as in
Theorem 2.5. Finally, we extend R[f ] for f ∈ L2(Rm)
as a common limit of R[fi], where fi is any sequence
in L1(Rm) ∩ L2(Rm) that converges to f in L2(Rm).

3 MAIN RESULTS

In this section, we describe the formulation of our
problem and main results (Theorems 3.3 and 3.4). We
fix an activation function σ : T → R. We assume
that σ is continuous almost everywhere, equivalently,
Riemann integrable, and satisfies Assumption 2.3. We
also fix a square integrable function f ∈ L2(Rm) as a
data generating function, and an absolutely continuous
probability measure P on Rm with bounded density
function p ∈ L1(Rm) as the input data distribution.
We write an empirical measure corresponding to P by
PN := 1/N

∑N
i=1 δxi

, where x1, . . . ,xN ∈ Rm are i.i.d
samples drawn from P . For A, T > 0 and d ∈ N, let

Λd,A :=

{
C0

d

d∑
i=1

δ(ai,bi) | (ai, bi) ∈ ImA × T

}
, (5)

where C0 := (2A)mT , be the collection of d-term hid-
den parameter distributions on ImA × T.

Main Claim (Theorems 3.3 and 3.4) Our main
results are summarized in the following formula, which
is a converse of Corollary 2.6:

lim
N→∞

lim
d→∞

γ∗N,d = R

[
pf

β + p

]
+ ∆A,

where γ∗N,d represents the parameter distribution of d-
term two-layer neural networks trained by regularized
empirical risk minimization with N training examples,
β is a regularization parameter, and ∆A is a small
residual term that tends to 0 as A→∞.

We call this inner limit limd→∞ γ∗N,d along the param-
eter number d the over-parametrization. In this sense,
we show “over-parametrized networks converge to the
ridgelet transform.”

3.1 Square Loss Minimization

For an arbitrary β > 0, any finite Borel measures λ and
P on Rm×T and Rm, respectively, and any square in-
tegrable function f ∈ L2(P ), we consider the following
form of L2-regularized square risk:

J(γ; f, P, λ, β) := ‖f − Sλ[γ]‖2L2(P ) + β ‖γ‖2L2(λ) .

(6)

We denote by γ∗[f ;P, λ, β], the unique element that
attains the minimum

min
γ∈L2(λ)

J(γ; f, P, λ, β), (7)

which always exists as long as Sλ is a densely defined
closed operator (see Appendix B for the proof). As we
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have already seen in Proposition 2.2, Sλ is bounded,
and thus the minimizer always exists.

The minimizer of (7) behaves well under limit manip-
ulations, namely, we have the following lemma:

Lemma 3.1. For any finite Borel measure λ on Rm×
T, as N →∞, we have

‖γ∗[f ;PN , λ, β]− γ∗[f ;P, λ, β]‖L2(λ) → 0 P -a.s.

Now we consider two types of minimization problems.
Our goal is to describe the relationship between the
minimizers as well as investigate the properties of
them.

Continuous Population Risk Minimizer γ∗. We
denote by γ∗ the population risk minimizer of

min
γ∈L2(µA)

J(γ; f, P, µA, β). (8)

The minimizer γ∗ is equal to γ∗[f ;P, µA, β], and refer-
enced as a theoretically ideal object, which shows up
as the global minimizer with over-parametrized neural
networks.

Finite Empirical Risk Minimizer γ∗N,d. We de-
note by γ∗N,d an empirical risk minimizer of

min
λ∈Λd,A

min
γ∈L2(λ)

J(γ; f, PN , λ, βd). (9)

By definition, the minimization problem (9) is equiva-
lent to an ordinary learning problem of two-layer neu-
ral networks in term of the following empirical risk
with respect to the parameters (aj , bj , cj) ∈ ImA×T×R:

1

N

N∑
i=1

∣∣∣∣∣∣f(xi)−
C0

d

d∑
j=1

cjσaj ,bj (xi)

∣∣∣∣∣∣
2

+ βd
C0

d

d∑
j=1

|cj |2,

(10)

where we write C0 := (2A)mT . By definition, γN,d at-
tains the minumum of (7) for some λ∗d ∈ Λd,A, namely,
we have γ∗N,d = γ∗[f ;PN , λ

∗
d, βd]. We call λ the hidden

parameter distribution of the ERMer γ∗N,d.

As we see soon later, our main theorem holds not only
for the strict global minimizer but also for more general
solutions that satisfy a very mild assumption:

Assumption 3.2. A sequence of hidden parameter
distributions {λd}∞d=1 (λd ∈ Λd,A) weakly converges
to the uniform distribution µA over the parameter do-
main ImA×T, namely, for any bounded continuous func-
tion h ∈ Cb(ImA × T),

∫
hdλd →

∫
hdadb as d→∞.

Here, we remark for potential confusions: The ob-
jective function (7) may remind some readers of the

kernel ridge regression (KRR) with either k(x,y) :=
Ea,b∼λ[σ(a · x− b)σ(a′ · x− b′)] on the data space, or
K((a, b), (a′, b′)) := Ex∼P [σ(a · x − b)σ(a′ · x − b′)]
on the parameter space. However, both KRRs cannot
deal with our problem (7). Recall that our final goals
are to specify the parameter distribution γ∗ ∈ L2(µA)
and to show the convergence of the finite minimizers
γd =

∑d
i=1 ciδ(ai,bi) to γ∗. In general, γ∗ involves null

component when β > 0, but HK does not involve null
components and thus the minimizer γ∗ in L2(µA) can-
not always included in HK .

3.2 Explicit Representation of Continuous
Minimizer

The first main result is the explicit representation of
the continuous minimizer γ∗, the solution of (8), in
terms of the ridgelet transform.

Theorem 3.3. Let f ∈ L2(Rm) be a bounded square
integrable function, and let P be an absolutely contin-
uous probability measure on Rm with bounded density
function p ∈ L1(Rm). For A > 0 and β > 0, we have

γ∗ = R

[
pf

β + p

]
+ ∆A, (11)

where ∆A is an element of L2(µA) such that

lim
A→∞

‖∆A‖L2(µA) = 0. (12)

By Corollary 2.6, it is reasonable to expect the min-
imizer γ∗ and the ridgelet transform are intimately
related to each other. However, since there exists a
nonzero element γ0 ∈ L2(µA) satifying SµA

[γ0] = 0,
R[f ] + γ0 also provides a parameter distribution that
approximates the target f well. Theorem 3.3 shows
that the regularization term removes the effect of γ0,
and the minimizer γ∗ coincodes with the ridgelet trans-
form except a small oscillation ∆A.

The principal term γ∗pri := R[fp/(β + p)] of the ob-
tained minimizer is understood as a shrinkage estima-
tor, or a biased estimator, of γ◦ := R[f ]. Namely,
while γ◦ exactly attains S[γ◦] = f , the obtained esti-
mate S[γ∗pri] = fp/(β + p) is intentionally biased from
f , and the norm ‖γ∗pri‖ is intentionally p/(β+p)-times
smaller than ‖γ◦‖. Recall that a regularized estima-
tor is generally a biased estimator, and shrinkage is
a natural consequence of ridge regression because the
regularizer β‖γ‖2 penalizes the norm of γ.

As described in Proposition B.2 for general settings, if
β → +0, then γ∗ converges to the minimum norm so-
lution. In our setting, by the continuity in β, it is sim-
ply given by limβ→+0 γ

∗
pri = limβ→0R[fp/(β + p)] =

R[f ] = γ◦. However, we remark that this does not
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mean that “If we minimize (6) without any regular-
ization (by letting exactly β = 0), then γ∗ = R[f ]”.
In this case, the correct answer is γ∗ = R[f ] + kerS.
Namely, the minimizer will have a redundancy in null
space kerS.

3.3 Convergence of Finite Minimizers in the
Over-parametrization Regime

The second main result is a convergence of parame-
ter distributions of finite neural networks with over-
parametrization.

Theorem 3.4. Let {γ∗N,d}∞d=1 be a sequence of ERM-
ers. Impose Assumption 3.2 on the hidden parameter
distributions λd of γ∗N,d, namely, λd weakly converges
to µA. Assume βd → β as d → ∞. Then, for any
bounded continuous function h on ImA × T, we have

lim
N→∞

lim
d→∞

∫
hγ∗N,λd

dλd =

∫
hγ∗dµA. (13)

Here the limit with respect to N is in the sense of P -
a.s. convergence.

Theorem 3.4 claims that the over-parametrized two-
layer neural networks weakly converges to the popu-
lation risk minimizers γ∗ as the sample size gets in-
creased. Combined with Theorem 3.3, we obtain the
statement “an over-parametrized neural network con-
verges to the ridgelet spectrum”. The “weak conver-
gence” is not much weak because if we take an ar-
bitrary region of interest K ⊂ Rm, and let the in-
dicator function 1K to be the test function h, then
the parameter distribution eventually converges to∫
K
R[f ](a, b)dadb. In Section 4 below, we will see

that the parameters of finite neural networks trained
by SGD accumulate the ridgelet spectrum.

We provide a remark on the assumption that λd con-
verges to a measure λ. Since we consider the ridge
regression, the support of ERMers cannot concentrate
in a null set, for example, a lower dimensional subman-
ifold, as the parameter number gets increased. More
precisely, we have the following simple lemma:

Lemma 3.5. Let λ be a finite Borel measure on Rm×
T. Let γ ∈ L2(λ). Assume ‖γ‖L1(λ) > C for some
C > 0. Then we have ‖γ‖L2(λ) > C/λ(supp(γ)).

This lemma implies if the the support of coefficient
functions is collapsed to a null set, then its L2-norm
explodes. Therefore, the ridge regularization exclude
such a coefficient function as a solution of the mini-
mization problem in question.

Proof of Theorem 3.4. We provide a sketch of the
proof. In fact, we prove a stronger convergence result
as follows:

Lemma 3.6. Let {λd}∞d=1 (λd ∈ Λd,A) be a sequence
of a finite Borel measure. Impose Assumption 3.2 on
{λd}∞d=1. Assume that βd → β as d → ∞. Then, as
d→∞, we have∥∥γ∗[f ;PN , λd, βd]− γ∗[f ;PN , µA, β]

∥∥
L2(γd)

−→ 0.

As a consequence, in the over-parametrized regime, the
convergence occurs even when the hidden parameters
are not optimized but at least they converge to µA.
Combined with Lemma 3.1, the minimizer γ∗[PN , µA]
almost surely converges to γ∗ as N →∞.

4 NUMERICAL SIMULATION

In order to verify the main results, we conducted nu-
merical simulation with artificial datasets. Here, we
only display the results of Experiment 1. The readers
are also encouraged to refer Appendix D for further
experimental results.

4.1 Data Generation

For the sake of visualization, all the datasets are 1-
in-1-out, so that the scatter plot will be displayed in
a three-dimensional manner: (a, b) ∈ R2 in position
and c ∈ R in color. However, we remark that our
theoretical results are valid for any dimension. We al-
ways consider the uniform distribution xi ∼ U(−1, 1)
for the input vectors, and generate n = 1, 000 samples
for training, except for the case of Topologist’s Sine
Curve (TSC) yi = sin 2π

xi
. For the TSC, we generate

n = 10, 000 because the frequency tends to infinity as
x tends to 0.

4.2 Scatter Plot of SGD Trained Parameters

Given a dataset Dn = {(xi, yi)}ni=1, we repeat-
edly train s = 1, 000 neural networks g(x; θ(t)) =∑d
i=1 c

(t)
i σ(a

(t)
i x − b(t)i ), (t ∈ [s]) with activation func-

tion σ = periodic Gaussian, periodic Tanh and pe-
riodic ReLU. The training is conducted by minimiz-
ing the square loss: L(θ) = 1

n

∑n
i=1 |yi − g(xi; θ)|2 us-

ing stochastic gradient descent (SGD) with learning
rate η > 0 and weight decay rate β > 0. Note that
the weight decay has an equivalent effect to the L2-
regularization. In the main theory, only c is imposed
L2-regularization, and (a, b) are strictly restricted in a
compact domain ImA ×T. However, in the experiments,
all the parameters are imposed L2-regularization for
the sake of simplicity. The initial parameters are
drawn from the uniform distribution U(−1, 1). All
the parameters are updated by SGD, so that this is
not a random features method (Rahimi and Recht,
2008) in which hidden parameters (a, b) are frozen af-
ter initialization. After the training, we obtain sd sets
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(a) SGD params, Gaussian (b) SGD params, Tanh (c) SGD params, ReLU

(d) R. spect, Gaussian (e) R. spect, Tanh (f) R. spect, ReLU

Figure 1: Parameter distributions γ(a, b) trained by SGD (top) and ridgelet spectra R[f ](a, b) obtained by
numerical integration (bottom) for the common data generating function f(x) = sin 2πx, (x ∈ [−1, 1]).

of parameters {(a(t)
i , b

(t)
i , c

(t)
i )}t∈[s],i∈[d], and plot them

in the (a, b, c)-space. (c is visualized in color.)

4.3 Heatmap of Ridgelet Spectrum

Given a dataset Dn = {(xi, yi)}ni=1, we approximately
compute the ridgelet spectrum R[f ](a, b) of f at every
sample points (a, b) by numerical integration:

R[f ](a, b) ≈ 1

n

n∑
i=1

yiσ(axi − b)∆x, (14)

where ∆x is a normalizing constant, which is a con-
stant because we assume that xi be uniformly dis-
tributed. We remark that more sophisticated methods
for the numerical computation of the ridgelet trans-
form have been developed. See Do and Vetterli (2003)
and Sonoda and Murata (2014) for example.

4.4 Results

In Figure 1, we compare the scatter plots of SGD
trained parameters and the heatmaps of ridgelet spec-
tra. All six figures are obtained from the common data
generating function f(x) = sin 2πx on [−1, 1]. De-
spite the fact that the scatter plots and heatmaps are
obtained from different procedures: numerical opti-
mization and numerical integration, both figures share
characteristics in common. For example, red and blue

parameters in the scatter plots (a-c) concentrate in
the area where the heatmaps (d-f) indicate the same
colors. Due to the periodic assumption, the ridgelet
spectrum spreads infinitely in b with period T = 1.
On the other hand, due to the weight decay and initial
locations of parameters, the SGD trained parameters
gather around the origin. Here, we used the uniform
distribution U(−1, 1) for the initialization. We can
understand that these differences between the scatter
plot and ridgelet spectrum as the residual term ∆A,β

in the main theorem. Another remarkable fact is that
the SGD trained parameters essentially did not change
their positions in (a, b) from the initialized value. This
is reasonable when the support of initial parameters
overlap the ridgelet spectrum from the beginning. We
can understand this phenomenon as the so-called lazy
regime.

5 RELATED WORKS

A preprint by Sonoda et al. (2018) is the closest re-
sult with non-periodic σ. Compared to their result,
we improved a lot. In their work, the function class
of the data generating gunctions f remains to be an
abstract RKHS Hσρ, the minimizer γ∗ is given as an
abstract projection of R[f ] onto a closed subspace, a
hyper-parameter ρ in the ridgelet transform R remains
not specified, and neither finite models nor finite sam-
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ples are discussed. As far as we have noticed, we are
the first to have revealed that the finite empirical min-
imizers do converge to the ridgelet spectrum.

Earlier Global Convergence Results. In the
past, many authors have investigated the local min-
ima of deep learning. However, these results have often
posed strong assumptions such as that (A1) the activa-
tion function is limited to linear or ReLUs (Kawaguchi,
2016; Soudry and Carmon, 2016; Nguyen and Hein,
2017; Hardt and Ma, 2017; Lu and Kawaguchi, 2017;
Yun et al., 2018); (A2) the parameters are random
(Choromanska et al., 2015; Poole et al., 2016; Pen-
nington et al., 2018; Jacot et al., 2018; Lee et al., 2019;
Frankle and Carbin, 2019); (A3) the input is subject to
normal distribution (Brutzkus and Globerson, 2017);
or (A4) the target functions are low-degree polyno-
mials or another sparse neural network (Yehudai and
Shamir, 2019; Ghorbani et al., 2019). Due to these
simplifying assumptions, we know very little about the
minimizers themselves. In this study, from the per-
spective of harmonic analysis, we present a stronger
characterization of the distribution of parameters in
the over-parametrized regime. As a result, our the-
ory (A1’) accepts a wide range of activation functions,
(A2’) need not assume the randomness of parameter
distributions, (A3’) need not specify the data distribu-
tion, and (A4’) preserves the universal approximation
property of neural networks such as the density in L2.

Mean-Field Theory. The mean-field theory (Rot-
skoff and Vanden-Eijnden, 2018; Mei et al., 2018; Sirig-
nano and Spiliopoulos, 2020a,b) a.k.a. the gradient
flow theory (Nitanda and Suzuki, 2017; Chizat and
Bach, 2018; Arbel et al., 2019) has employed the in-
tegral representation and parameter distribution to
prove the global convergence. These lines of studies
claim that for the stochastic gradient descent learn-
ing of two-layer networks, the time evolution of a fi-
nite parameter distribution, say γd(t), with parame-
ter number d and continuous training time t, asymp-
totically converges to the time evolution of the con-
tinuous parameter distribution as d → ∞. Here,
the time evolution is described by a gradient flow,
called the partial differential equation, the Wasser-
stein gradient flow, or the McKean-Vlasov equation,
d
dtγ∞(t) = − 1

2∇γ‖f − S[γ∞(t)]‖2 with initial condi-
tion γ∞(0) = γinit. However, we should point out
that these arguments oversights the null component
in the parameter distributions. As we explained in
Appendix A.4, the equation f = S[γ] has an in-
finitely different solutions, say γ1 and γ2 that sat-
isfy S[γ1] = S[γ2] but γ1 6= γ2. Hence, even though
the convergence S[γd] → S[γ∞] in the function space
L2(P ) is established, in general, we cannot conclude

the convergence γd → γ∞ in the space of parameter
distributions L2(µA). This leaves the parameter dis-
tribution indeterminate. Nevertheless, our numerical
simulation results have shown a “visual” convergence.
By explicitly posing a regularization term on γ, we
have specified the parameter distribution at the global
minimum and have shown that the weak convergence
in the space of parameter distributions: γd

w.−→ R[f ].
(We remark that some authors consider noisy SGD,
which is equivalent to imposing the L2-regularization.)

In order to avoid potential confusions, we provide
supplementary explanations on the trick behind the
mean-field theory. In the mean-field theory, the gra-
dient flow dγ(t)/dt = −∇‖f − S[γ(t)]‖2 is often ex-
plained as the system of interacting particles by iden-
tifying the parameters {(ai, bi)}di=1 as the coordinate
system of d physical particles. The particles obeys
a non-linear equation of motion with interacting po-
tential I[γ](a, b) :=

∫
K(a, b;a′, b′)dγ(a′, b′), where

K(a, b;a′, b′) :=
∫
σ(a·x−b)σ(a′ ·x−b′)dP (x), which

is naturally derived by expanding the square loss func-
tion. Based on this physical analogy, this potential
seems natural. However, here is the trick because in
the potential I, the null space kerS is eliminated by
implicitly applying S. Namely, since

I[γ](a, b) =

∫
σ(a · x− b)S[γ](x)dP (x), (15)

we can verify that I[γ + kerS] = I[γ]. This clearly
indicates that the interactive potential is degenerate
in γ, and thus the mean-field theory would only show
a weaker convergence result than our main results.

Lazy Learning. The lazy learning, such as the neu-
ral tangent kernel (Jacot et al., 2018; Lee et al., 2019;
Arora et al., 2019) and the strong lottery ticket hypoth-
esis (Frankle and Carbin, 2019), employs a slightly
different formulation of over-parametrization to inves-
tigate the inductive bias of deep learning. These lines
of studies draw much attention by radically claiming
that the minimizers are very close to the initialized
state. In this study, we revealed that, in the (not lazy
but) active regime, the shape of the parameter distri-
bution converges to the ridgelet spectrum. According
to our results, lazy learning is reasonable when the
initial parameter distribution covers the ridgelet spec-
trum in its support, since the initial parameters need
not to be actively updated. Furthermore, the lazy as-
sumption can be reasonable when the data generating
function f is a low frequency function, and thus the
ridgelet spectrum R[f ] concentrates around the origin,
because the initial parameter distribution is typically
a normal (or sometimes a uniform) distribution cen-
tered at the origin (a, b) = (0, 0) and thus eventually
the initial parameters cover the ridgelet supectrum.
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Implicit Regularization. Recently, gradient de-
scent methods are said to impose implicit regulariza-
tion (see eg. Zhang et al., 2017; Neyshabur, 2017;
Gunasekar et al., 2018b,a), which often motivates the
lazy learning. Although we have no unifying formula-
tion of the implicit regularization to the present, and
thus we have simply employed the L2-regularization,
we may formulate the implicitly regularized problem
as the minimization problem of Jimp[γ; f, γinit] :=
‖f −S[γ]‖2L2(P ) +β‖γ− γinit‖2L2(µA) for a given initial
parameter distribution γinit on ImA × T. Then, imme-
diately because Jimp[γ; f, γinit] = J [γ − γinit; f ], we
can conclude that the minimizer γ∗imp is given by γ∗+
Proj→kerS [γinit], as β → 0. Namely, the implicitly reg-
ularized solution γimp again meets a ridgelet spectrum
γ∗ but also holds a null component Proj→kerS [γinit].
Investigation of the role-of-null-space would be an in-
teresting future work.

6 CONCLUSION

In this study, we have derived the unique explicit
expression—the ridgelet spectrum with residual—of
over-parametrized two-layer neural networks trained
by regularized empirical square risk minimization. To
the present, many studies have proven the global con-
vergence of deep learning. However, we know very
little about the minimizer itself because the settings
are typically very simplified. To investigate the mini-
mizers, we develop the ridgelet transform on the torus,
which is a complete set of new ridgelet transform. The
scatter plots of learned parameters have shown a very
similar pattern to the ridgelet spectra, which supports
our theoretical result. Although we considered an ide-
alized ERM, the visual convergence suggested much
more. Extending our main theorem to a more realistic
settings is our important future work. Moreover, al-
though we assumed two-layer and ridge regression, as
often assumed in recent over-parametrized theories, we
conjecture that for a deep network, say f2 ◦ f1 for ex-
ample, each intermediate layer converges to ridgelet
spectrums as S[R[f2]] and S[R[f1]]; and that for a
general loss function J , if it is continuous, namely
‖γ‖ ≤ CJ(γ), then the minimizer is given as a cer-
tain modified version of R[f ] (like R[fp/(β + p)]).

6.1 Further Discussions after Rebuttal

The Main Theorems mathematically rigorously show
that finite ERMers eventually converge to the unique
closed-form solution R[fp/(β + p)]. While conven-
tional theories show the global convergence, our the-
ory characterizes the limit point as the ridgelet trans-
form, which complements the conventional theories.
The uniqueness and the closed-form expression allow

us to design theories at a higher resolution than, for
example, those that simply assume and/or conclude a
sub-Gaussian randomness of parameter distributions.
For example, we can predict the shape of minimizers
as presented in Sections A.5 and D. As for the quality
of solutions, by the uniqueness of the minimizer and
the continuity of integral representation operator S, if
the loss value of a current solution γlocal is ε ≥ 0, then
the difference vector ∆γ := γlocal − γglobal is as small
as O(ε) in L2(Rm × R). Therefore, it is reasonable
to say that regardless of the training process, a near-
optimal solution also has a similar shape with ridgelet
spectrum.

In the mean-field theory, it is known that the param-
eter distribution converges to a stable distribution,
a.k.a. a Gibbs distribution, γ∞ ∝ exp(−βL) with reg-
ularization parameter β and loss function L, under
certain convergence conditions (Mei et al., 2018; Tzen
and Raginsky, 2020; Suzuki, 2020). The existence of
such a distribution is a natural consequence of the fact
that SGD is a stochastic gradient flow induced by a lo-
cally convex function. Note, however, that the Gibbs
distribution contains an unknown loss function L, so
in general the limit point itself cannot be given ex-
plicitly. In other words, the Gibbs distribution is an
equation that encodes the sufficient conditions for a
parameter distribution γ to be a limit point. In or-
der to obtain the limit point in closed form, we need
to solve this equation. The ridgelet transform can be
understood as a closed-form solution for the Gibbs dis-
tribution. (To be exact, however, this study does not
fully consider the convergence conditions proposed in
mean-field theories, simply because these are still de-
veloping, and the current version of the convergence
conditions are quite restrictive.) Again, closed-form
solutions are more informative than equations.
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