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Abstract

Gaussian Process Latent Variable Model
(GPLVM) is a flexible framework to han-
dle uncertain inputs in Gaussian Processes
(GPs) and incorporate GPs as components
of larger graphical models. Nonetheless, the
standard GPLVM variational inference ap-
proach is tractable only for a narrow fam-
ily of kernel functions. The most popular
implementations of GPLVM circumvent this
limitation using quadrature methods, which
may become a computational bottleneck even
for relatively low dimensions. For instance,
the widely employed Gauss-Hermite quadra-
ture has exponential complexity on the num-
ber of dimensions. In this work, we pro-
pose using the unscented transformation in-
stead. Overall, this method presents com-
parable, if not better, performance than off-
the-shelf solutions to GPLVM, and its com-
putational complexity scales only linearly on
dimension. In contrast to Monte Carlo meth-
ods, our approach is deterministic and works
well with quasi-Newton methods, such as the
Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm. We illustrate the applicability of
our method with experiments on dimension-
ality reduction and multistep-ahead predic-
tion with uncertainty propagation.

1 INTRODUCTION

Gaussian process (GP) models have been widely
adopted in the machine learning community as a
Bayesian approach to nonparametric kernel-based
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learning due to their simplicity and fully probabilistic
predictions (Rasmussen and Williams 2006). Thanks
to its flexibility, many authors have applied the GP
framework in contexts such as dynamical modeling
(Eleftheriadis, Nicholson, et al. 2017; Mattos et al.
2016), autoencoders (Casale et al. 2018; Eleftheri-
adis, Rudovic, et al. 2017), and hierarchical modeling
(Havasi et al. 2018; Salimbeni and Deisenroth 2017).

The works above rely on a common building block:
the GP Latent Variable Model (GPLVM), proposed
by Lawrence (2004) to handle learning scenarios with
uncertain inputs. The GPLVM was extended with
a Bayesian training approach (Bayesian GPLVM) by
Titsias and Lawrence (2010) and later by Damianou
and Lawrence (2013) in a multilayer setting (Deep
GPs).

The variational approach presented by Titsias and
Lawrence (2010) for the Bayesian GPLVM presents
tractable calculations only for a few choices of kernel
function, such as the radial basis function (RBF) ker-
nel. However, the RBF kernel presents limited extrap-
olation capability (MacKay 1998). Some authors have
tried to address that issue. The work by Duvenaud
et al. (2013) and Lloyd et al. (2014) pursues a compo-
sitional approach to building more expressive kernels
from simpler ones. Wilson and Adams (2013) propose
the spectral mixture kernel family, capable of auto-
matic pattern discovery and extrapolating beyond the
training data. Al-Shedivat et al. (2017), Wilson, Hu,
et al. (2016a), and Wilson, Hu, et al. (2016b) propose
using deep neural networks to learn kernel functions
directly from the available data. Although those pro-
posals achieve more flexible models than those with
the RBF kernel, they turn some Bayesian GPLVM ex-
pressions intractable.

Alternatively, some works (e.g. Eleftheriadis, Nichol-
son, et al. 2017; Salimbeni and Deisenroth 2017)
handle non-RBF kernels with uncertain inputs us-
ing the so-called “reparametrization trick” (Kingma
and Welling 2014; Rezende et al. 2014) in the dou-
bly stochastic variational inference framework, intro-
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duced by Titsias and Lázaro-Gredilla (2014). This
approach results in a flexible methodology, but, in
contrast to deterministic inference, it does not sup-
port popular quasi-Newton optimizers, like the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

In this work, we handle the propagation of uncertainty
in the GPLVM while maintaining the non-stochastic
framework presented by Titsias and Lawrence (2010).
We tackle the intractabilities of uncertain inputs and
non-RBF kernels by employing the unscented trans-
formation (UT), a deterministic technique to approxi-
mate nonlinear mappings of a random variable (Julier
and Uhlmann 2004; Menegaz et al. 2015). The UT
projects a finite number of sigma points through this
mapping and uses the output statistics to estimate the
mean and covariance of the transformed random vari-
able, resulting in a more scalable method than, for
instance, the Gauss-Hermite (GH) quadrature.

We use the UT to handle the intractabilities of the
Bayesian GPLVM and propose using this approxima-
tion in the integrals that arise by convolving ker-
nel functions and a Gaussian density in the varia-
tional framework by Titsias and Lawrence (2010). Our
methodology enables the use of any kernel, includ-
ing ones obtained via auxiliary parametric models in
a kernel learning setup, while maintaining fast de-
terministic inference and without imposing any addi-
tional hyperparameters. We evaluate this approach
in GPLVM’s original task of dimensionality reduction
in the uncertainty propagation during a free simula-
tion (multistep-ahead prediction) of dynamical mod-
els. Our experimental results show that, even for a
moderate latent space size, the commonly used GH
quadrature is only feasible when the user picks a very
low number of evaluation points. Moreover, in such
scenarios, the UT still presents excellent results.

In summary, our main contributions are: i) an exten-
sion to the Bayesian GPLVM using the UT to han-
dle intractable integrals deterministically and enable
the use of any kernel; ii) a set of experiments com-
paring the proposed approach and alternative approx-
imations using Gauss-Hermite quadrature and Monte
Carlo sampling in tasks involving dimensionality re-
duction and dynamical free simulation.

We organize the remainder of this paper as follows.
Section 2 presents the theoretical background by sum-
marizing the GPLVM framework and the UT approx-
imation. In Section 3, we detail our proposal to apply
the UT within the Bayesian GPLVM setting. In Sec-
tion 4, we present and discuss the obtained empirical
results. Finally, in Section 5, we review related works
related to GPs and UT, and we conclude the paper in
Section 6 with ideas for further work.

2 THEORETICAL BACKGROUND

In this section, we summarize GPs, the Bayesian
GPLVMs, and the UT.

2.1 The Gaussian Process Framework

Let N inputs xi ∈ RDx , organized in a design matrix
X ∈ RN×Dx be mapped via f : RDx → RDy to N cor-
respondent outputs fi ∈ RDy , organized in the matrix
F ∈ RN×Dy . We observe Y ∈ RN×Dy , a noisy version
of F . Considering an observation noise ε ∼ N (0, σ2I),
we have f:d = [f(x1) . . . f(xN )]> and y:d = f:d + ε,
where y:d ∈ RN is comprised of the d-th component
of each observed sample, i.e., the d-th column of the
matrix Y . If we choose independent multivariate zero
mean Gaussian priors for each dimension of F , we get
(Rasmussen and Williams 2006):

p(Y |X) =

Dy∏
d=1

N (y:d|0,Kf + σ2I),

where we were able to analytically integrate out the

non-observed (latent) variables f:d|
Dy

d=1. The elements
of the covariance matrix Kf ∈ RN×N are calculated
by [Kf ]ij = k(xi,xj),∀i, j ∈ {1, · · · , N}, where k(·, ·)
is the so-called covariance (or kernel) function.

2.2 The Bayesian GPLVM

The Gaussian Process Latent Variable Model
(GPLVM), proposed by Lawrence (2004), extends
the GP framework for scenarios where we do not
observe the inputs X, which generated the response
variables Y via the modeled function. The GPLVM
was initially proposed in the context of nonlinear
dimensionality reduction1, which can be done by
choosing Dx < Dy. However, the approach has
proved to be flexible enough to be used in several
other scenarios. For instance, in supervised tasks,
the matrix X can be seen as a set of observed but
uncertain inputs (Damianou, Titsias, et al. 2016).

The Bayesian GPLVM, proposed by Titsias and
Lawrence (2010), considers a variational approach
(Jordan et al. 1999) to approximately integrate the
latent variables X. Inspired by Titsias’ variational
sparse GP framework (Titsias 2009), the Bayesian
GPLVM avoids overfitting by considering the uncer-
tainty of the latent space and enables the determina-
tion of Dx by using a kernel function with ARD (au-
tomatic relevance determination) hyperparameters.

Following Titsias and Lawrence (2010), we start by
including M inducing points u:d ∈ RM associated to

1The GPLVM is a nonlinear extension of the probabilis-
tic Principal Component Analysis (Lawrence 2004).
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each output dimension and evaluated in M pseudo-
inputs zj |Mj=1 ∈ RDx , where p(u:d) = N (u:d|0,Ku)

and Ku ∈ RM×M is the kernel matrix computed from
the pseudo-inputs. The joint distribution of all the
variables in the GPLVM p(Y ,X,F ,U) is now given
by (with omitted dependence on zj):

p(X)

Dy∏
d=1

p(y:d|f:d)p(f:d|u:d,X)p(u:d).

Then, we define an approximation to the posterior

q(X,F ,U) =
∏Dy

d=1 q(x:d)q(u:d)p(f:d|u:d,X) with a

mean-field approximation for q(x:d) =
∏N
i=1 q(xid).

By applying Jensen’s inequality to the joint distribu-
tion of each output dimension, we obtain the evidence
lower bound (ELBO):

log p(y:d) ≥
ln|Ku|

2
−
n ln

(
2πσ2

)
2

− ln|σ2Ku + Ψ2|
2

−
yᵀ
:dy:d
2σ2

+
yᵀ
:dΨ1

(
σ2Ku + Ψ2

)−1
Ψᵀ

1y:d

2σ2

− ψ0

2σ2
+

tr
(
K−1u Ψ2

)
2σ2

,

in which ψ0, Ψ1 and Ψ2 involve convolutions of
the kernel function with the variational distribu-
tion. These values are known as Ψ-statistics and are
tractable only for a few kernel functions, such as the
RBF, the linear kernels, and their mixtures. For com-
pleteness, we provide a detailed derivation in the sup-
plementary material.

2.3 The Unscented Transformation

The unscented transformation (UT) is a method for
estimating the first two moments of a transformed ran-
dom variable under an arbitrary function. First pro-
posed by Uhlmann (1995) for nonlinear Kalman fil-
ters, the transformation itself is decoupled from the
proposed Unscented Kalman Filter.

The UT approximates the mean and covariance of the
transformed random variable with a weighted average
of transformed sigma points S, derived from the first
two moments of the original input.

Let p(x) = N (µ,Σ), where x ∈ RD, be the input of
an arbitrary transformation f : RD → RQ. Given uni-
form weights for the sigma points, the output moments
are computed by:

〈f(x)〉p(x) ≈
∑2D
i=1 f(si)

2D
= µ̃UT, (1)

Cov(f(x)) ≈
∑2D
i=1(f(si)− µ̃UT)(f(si)− µ̃UT)ᵀ

2D
.

There are several strategies to select sigma points2.
However, we follow the original scheme by Uhlmann
(1995), with uniform weights and sigma points cho-
sen from the columns of the squared root of DΣ, an
efficient way to generate a symmetric distribution of
sigma points.

This scheme is defined as follow. Let Chol(Σ) be the
Cholesky decomposition of the matrix Σ. Then, the
sigma points S are defined as:

si = µ+ [Chol(DΣ)]:i

si+D = µ− [Chol(DΣ)]:i, ∀i ∈ [1, D],

where [Chol(DΣ)]:i denotes the i-th column of the
matrix Chol(DΣ).

3 PROPOSED METHODOLOGY

This section details our proposal, discusses its advan-
tages and limitations, and presents an initial empirical
validation.

3.1 Learning Bayesian GPLVMs using UT

As mentioned in Section 2.2, the computation of the
Ψ-statistics is the only part that hinders the applica-
tion of Bayesian GPLVMs with arbitrary kernels. For
the intractable cases, we propose cases using the mean
provided by the UT (Equation 1) as follows:

ψ0 =

N∑
i=1

〈k(xi,xi)〉q(xi)
(2)

≈ 1

2Dx

N∑
i=1

2Dx∑
k=1

k(s
(i)
k , s

(i)
k ),

[Ψ1]ij = 〈k(xi, zj)〉q(xi)
≈ 1

2Dx

2Dx∑
k=1

k(s
(i)
k , zj), (3)

[Ψ2]jm =

N∑
i=1

〈k(xi, zj)k(xi, zm)〉q(xi)
(4)

≈ 1

2Dx

N∑
i=1

2Dx∑
k=1

k(s
(i)
k , zj)k(s

(i)
k , zm),

where ψ0 ∈ R, Ψ1 ∈ RN×M , and Ψ2 ∈ RM×M are

the Ψ-statistics and s
(i)
k indicates the k-th sigma point

related to q(xi).

3.2 Advantages and limitations

Besides enabling the use of non-analytical kernels in
the Bayesian GPLVM, the choice of using UT-based

2e.g. Menegaz et al. (2015)
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approximations in place of, for instance, the Gauss-
Hermite (GH) quadrature, brings great computational
benefits due to the number of points evaluated to com-
pute the Gaussian integral. Given a D-dimensional
random variable, the UT requires just a linear number
of 2D evaluations. In contrast, the GH quadrature re-
quires HD evaluations, where H is a user-chosen order
parameter. Even for H = 2 and moderate dimension-
ality values, e.g. D = 20, the GH approach would re-
quire at least 220 evaluations per approximation, which
is infeasible.

Since an exponentially lower number of function eval-
uations is required, the UT presents a practical al-
ternative to the GH quadrature. Furthermore, since
the sigma points are obtained in a fully deterministic
manner, it enables quasi-Newton optimization meth-
ods, unlike Monte Carlo integration. Nevertheless, if
a large quantity of evaluations is allowed for either
GH quadrature or Monte Carlo (MC) integration, in
exchange for additional computational effort, it is ex-
pected that the lower number of sigma points of the
UT would result in a coarser approximation.

Regarding the approximation quality, Menegaz et al.
(2015) proved that our choice for sigma points (de-
tailed in Section 2.3) enables computing the projected
mean correctly up to the third-order Taylor series ex-
pansion of the transformation function if x is Gaussian
distributed. Note that the GH quadrature approxima-
tion is guaranteed up to the (2H − 1)th order of the
function. So, for the H = 2 case, it is expected that
both approximations will have about the same quality.

3.3 Preliminary validation

In the Bayesian GPLVM, the amount of sampled
points is relevant since the approximations are com-
puted at each step of the variational lower bound op-
timization. Thus, the number of times we evaluate the
Ψ-statistics gives a raw estimate of the chosen approx-
imation computational budget.

To verify how performance evolves with dimensionality
when using UT in the context of the Bayesian GPLVM,
we computed Ψ1 – see Equation 3 – considering an
RBF kernel on random data (N = 40,M = 20) of
varying dimension. We compare the UT result with
the GH quadrature and MC integration.

Figure 1 shows a comparison of the relative time spend
between the UT and four competing quadrature meth-
ods: GH and MC with 2D, 2D, and 200 samples. As
expected from the theoretical complexity, GH’s expo-
nential nature makes it infeasible at dimensions be-
yond 10. Not only that, but the complexity of GH
brings an additional overhead that is apparent even
in small dimensions. On the other hand, MC integra-
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Figure 1: Relative computational effort of the UT with
other methods when computing Ψ-statistics. In prac-
tice, even in low dimensions, the overhead of comput-
ing the Hermite roots and weights can make GH slower
than UT. As expected, the exponential nature of GH
makes it infeasible at dimensions beyond 10.

tion’s simplicity brings its runtime to be faster than
UT on small dimensions, but, as it will become ap-
parent in the next section, at this regime, the UT can
achieve better results even when compared to the MC
with 200 samples.

4 EXPERIMENTS

This section intends to evaluate the UT against other
approximations methods, showing its practicability
in quality and speed on tasks requiring solving Psi-
statistics during model training and model prediction.
We considered two standard tasks for the GPLVM
that fit this criterion: dimensionality reduction and
free simulation of dynamical models with uncertainty
propagation.

We compared the proposed UT approach with the
GH quadrature and the reparametrization trick based
MC sampling for computing the Ψ-statistics of the
Bayesian GPLVM. In the tractable cases, we also
considered the analytical expressions. All experi-
ments were implemented in Python using the GPflow
framework (G. Matthews et al. 2017). The code
is available at https://github.com/spectraldani/

UnscentedGPLVM/.

To maintain a reasonable computational cost for the
GH experiments, we used 2D points, where D is the
input dimension. For the MC approximations, we used
three different numbers of samples: i) the same as
UT, ii) the same as GH, and iii) a fixed quantity of
200 samples. Each MC experiment was run ten times,
with averages and standard deviations reported. The
MC approximation is similar to the one in the doubly
stochastic variational framework (Titsias and Lázaro-
Gredilla 2014), but without mini-batch updates.

https://github.com/spectraldani/UnscentedGPLVM/
https://github.com/spectraldani/UnscentedGPLVM/
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The kernel hyperparameters, likelihood noise, and
variational parameters are all jointly optimized us-
ing the second-order optimization method L-BFGS-
B (Byrd et al. 1995). However, it is not feasible to
use L-BFGS-B for the models with MC sampling, so
these models were optimized using Adam (Kingma and
Welling 2014) with a learning rate of 0.01.

4.1 Dimensionality Reduction

The dimensionality reduction task is especially suit-
able for the UT-based approach since the dimension
of the integrand in the Ψ-statistics are usually small
for data visualization purposes.

We used two datasets, which were referred in Lawrence
(2004) and Titsias and Lawrence (2010), the Oil flow
dataset, and the USPS digit dataset. In both cases,
we compared the analytic Bayesian GPLVM model
with the RBF kernel against a kernel with non-analytic
Ψ-statistics. The following kernels were considered:
RBF, Matérn 3/2, and a Multilayer Perceptron (MLP)
composed on an RBF kernel, similar to the manifold
learning approach by Calandra et al. (2016).

The variational means were initialized based on stan-
dard Principal Component Analysis (PCA), and the
latent variances were initialized to 0.1. Also, 20 points
from the initial latent space were selected as inducing
pseudo-inputs and were appropriately optimized dur-
ing training.

Each scenario was evaluated following two approaches:
a qualitative analysis of the learned two-dimensional
latent space, a quantitative metric in which we took
the known labels from each dataset and computed the
predictive accuracy of the predicted classes of points in
the latent space. In the latter, we used a five-fold cross-
validated 1-nearest neighbor (1-NN). For the quanti-
tative results, we also show the accuracy of the PCA
projection for reference.

4.1.1 Oil Flow Dataset

The multiphase Oil flow dataset consists of 1000 obser-
vations with 12 attributes, belonging to three classes
(Bishop and James 1993). We applied GPLVM with
five latent dimensions and selected the two dimensions
with the greatest inverse lengthscales.

For the approximations with the GH quadrature, we
used 25 = 32 samples. This contrasts with the UT,
which only uses 2 · 5 = 10 samples. Note that we have
attempted to follow Titsias and Lawrence (2010) and
use ten latent dimensions, but that would require the
GH to evaluate 210 = 1024 samples at each optimiza-
tion step, which made the method too slow on the
tested hardware. On the other hand, since UT scales

Table 1: 1-NN accuracies results for the Oil flow
dataset. Note that the UT managed to achieve better
results while using 1

3 of the evaluations as GH.

Method # evaluations Kernel Accuracy

PCA - - 79.0± 6.5

Analytic - RBF 98.0± 2.7

Gauss-Hermite 32 Matérn 3/2 95.0± 6.1
RBF 98.0± 2.7

Unscented 10 Matérn 3/2 100.0± 0.0
RBF 98.0± 2.7

Monte Carlo 10 Matérn 3/2 85.6± 8.7
RBF 98.2± 2.4

32 Matérn 3/2 87.9± 5.4
RBF 98.0± 2.5

200 Matérn 3/2 95.4± 3.0
RBF 97.0± 4.0

linearly with the integrand dimension, it was still fea-
sible and provided consistent results.

Figure 2 shows that independent of the chosen method
to solve the Ψ-statistics, either the analytic expres-
sions or any of the deterministic approximations yield
similar overall qualitative results. Table 1 contains
statistics of the 1-NN accuracies for all kernels and ap-
proximation methods. As expected, all the nonlinear
approaches performed better than regular PCA. The
RBF results for the deterministic strategies are identi-
cal, while the Matérn 3/2 kernel with the UT approx-
imation obtained slightly better results overall. How-
ever, when using MC estimates with the same amount
of points that UT and GH used and the Matérn 3/2
kernel, the results were worse than both UT and GH.

4.1.2 USPS Digit Dataset

The USPS digit dataset contains 7000 16 × 16 gray-
scale images of handwritten numerals from 0 to 9. To
soften the required computational effort, we used just
500 samples of each class. We used a GPLVM with five
latent dimensions on all kernels except the MLP ker-
nel, where two latent dimensions were used. The same
evaluation methodology previously described was fol-
lowed. Additionally, we ran this experiment ten times.

We expected the MLP kernel to fare better than the
RBF kernel due to neural networks’ well-known ca-
pabilities to find lower-dimensional representations of
higher dimensional structured data (Wilson, Hu, et
al. 2016b). From Table 2, this was the case since all
methods had an increase of 30% accuracy compared to
their results with RBF. We also noted that even MC
approximations with more evaluations than UT and
GH do not achieve the same results.
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(a) Analytic RBF. (b) Matérn 3/2 (GH). (c) Matérn 3/2 (UT). (d) Matérn 3/2 (MC(32)).

(e) Analytic RBF. (f) MLP kernel (GH). (g) MLP kernel (UT). (h) MLP kernel (MC(200)).

Figure 2: Projections of the Oil flow and USPS digits datasets for GPLVM with different kernels and ap-
proximations. The projections shown are the ones with median score obtained in the cross-validation steps.
1-NN mislabels are marked in red. By visual inspection, MC approximations deviated the most from the other
approximations despite having the same model as the others.

Figure 2 compares the analytic solution with RBF ver-
sus the approximate solutions using the MLP kernel
with a single hidden layer and [2, 30, 60] neurons (in-
put, hidden, and output, respectively). Visually, the
difference between the kernels is as stark, as noted in
the quantitative results. These plots also show that
the MC approximation finds a very different projec-
tion than the other methods that are arguably more
difficult to interpret due to the appearance of a gap in
the latent data.

4.2 Dynamical Free Simulation

Free simulation, or multistep-ahead prediction, is a
task that consists of forecasting the values of a dy-
namical system arbitrarily far into the future based
on past predicted values. In most simple models, such
as the GP-NARX (Kocijan et al. 2005), each predic-
tion does not depend on the uncertainty of past pre-
dictions but only past mean predicted values. The
lack of dependency between the current forecasts and
the uncertainty of past predictions can be a significant
problem because the user cannot be confident about
the quality of the prediction if it does not consider the
compounded errors from past estimates.

Table 2: 1-NN accuracies results for the USPS dataset.
The use of a more complex kernel brought benefits to
all methods. Despite its simplicity, the UT has better
or similar results on all kernels.

Method # evaluations Kernel Accuracy

PCA - 35.6± 1.0

Analytic - RBF 36.7± 1.4

Gauss-Hermite 4 MLP 69.0± 1.2
32 RBF 36.4± 1.6

Unscented 4 MLP 68.8± 1.3
10 RBF 39.5± 1.6

Monte Carlo 4 MLP 47.7± 1.7
10 RBF 26.8± 1.6
32 RBF 27.3± 1.4
200 MLP 54.1± 1.8

RBF 29.2± 1.3

To propagate the uncertainty of each prediction to the
next implies performing predictions with uncertain in-
puts. This task has been tackled before, for instance,
by Girard et al. (2003), but for GP models using the
RBF kernel.
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In this experiment, we first trained a GP-NARX with-
out considering uncertain inputs, following the vanilla
NARX approach (Kocijan et al. 2005). Then, we ap-
plied the same optimized kernel hyperparameters in a
GPLVM, selecting all the training inputs as pseudo-
inputs. Finally, the GPLVM is used to perform a free
simulation with uncertain inputs formed by the past
predictive distributions. Since we applied approxima-
tions for computing the Ψ-statistics in the predictions,
any proper kernel function can be chosen.

4.2.1 Airline Passenger Dataset

The Airline passenger numbers dataset records
monthly passenger numbers from 1949 to 1961 (Hyn-
dman 2018). We used the first four years for training
and left the rest for testing, and chose an autoregres-
sive lag of 12 past observations as input. After the
GP-NARX kernel hyperparameters are optimized, we
choose the variance of the variational distribution in
the GPLVM to be equal to the optimized noise vari-
ance. The free simulation starts from the beginning
of the training set until the end of the test set, us-
ing past predicted variances as variational variances
of the uncertain inputs, enabling approximate uncer-
tainty propagation during the simulation.

We used the following kernels: a mixture of an RBF
kernel with a linear kernel, a mixture of periodic3,
RBF, and linear kernels. We choose the latter combi-
nation of kernels because of our prior knowledge that
airplane ticket sales follow a periodic trend and have
an overall upward tendency because of the popularity
increase and decrease in ticket prices. We emphasize
that the choice of such a flexible combination of ker-
nels would not be possible without using approximate
methods when considering the uncertain inputs sce-
nario and the GPLVM framework.

Quantitative evaluation is done by computing the

RMSE, given by
√

1
n∗

∑n∗

i (yi − µ∗i )2, where n∗ is the

number of test samples, yi is the true output, and µ∗i
is the predicted mean output. The average NLPD is
also used as an evaluation metric, and it is defined as
1
2 log 2π + 1

2n∗

∑n∗

i

[
log σ∗i

2 +
(yi−µ∗

i )
2

σ∗
i
2

]
, where σ∗i

2 is

the i-th predicted variance. The RMSE and average
NLPD are computed using the test set. For both met-
rics, lower is better.

Table 3 presents the obtained results. Although with
similar RMSE, all GPLVM variants showed better
NLPD values than their standard GP-NARX coun-
terparts. That is expected since the uncertainty of
each prediction is being approximately propagated to
the next predictions. As for the models with UT,

3As defined by MacKay (1998) at Eq. (47).

its results were better than the equivalent MC sam-
ple sizes but had a much better cost-benefit over the
other methods given that they are using 8 to 170 times
more samples for a 0.07 to 0.06 decrease in NLPD. As
shown in Figure 3, the visual difference between the
two methods is subtle.

Table 3: Summary of the free simulation results for the
Air passengers dataset. All methods have comparable
RMSE but when comparing with GH, a 170 fold in-
crease in evaluations resulted with just a 0.06 decrease
in NLPD.

Method # evaluations Kernel NLPD RMSE

GP-NARX - RBF+Linear 11.37 69.40
- Per.+RBF+Lin. 7.46 44.98

GPLVM - Analytic - RBF+Linear 7.08 68.93

GPLVM - GH 4096 RBF+Linear 7.07 68.88
Per.+RBF+Lin. 5.20 45.00

GPLVM - UT 24 RBF+Linear 7.10 69.11
Per.+RBF+Lin. 5.26 45.27

GPLVM - MC 24 RBF+Linear 7.52± 0.41 71.16± 3.15
Per.+RBF+Lin. 5.41± 0.17 46.99± 3.04

200 RBF+Linear 7.09± 0.20 68.82± 2.09
Per.+RBF+Lin. 5.19± 0.06 45.19± 1.32

4096 RBF+Linear 7.07± 0.03 68.81± 0.37
Per.+RBF+Lin. 5.19± 0.01 45.29± 0.28

5 RELATED WORK

A few authors have considered the UT in the context
of GP models. For instance, Ko and Fox (2009) and
Ko, Klein, et al. (2007) propose using the Unscented
Kalman Filter (UKF) with GP-based transition and
observation functions, and others have successfully ap-
plied the resulting GP-UKF (Anger et al. 2012; Sa-
farinejadian and Kowsari 2014; Wang et al. 2014). Ko
and Fox (2010) extend the previous works by consider-
ing the original GPLVM (Lawrence 2004), where the
latent variables are optimized, instead of integrated.
Steinberg and Bonilla (2014) tackle other kinds of
intractabilities and use the UT in GP models with
non-Gaussian likelihoods in a variational framework.
The resulting Unscented GP (UGP) is evaluated in
synthetic inversion problems and binary classification.
Later, Bonilla et al. (2016) generalize that method-
ology to solve multi-output and multi-task problems
while also enabling non-Gaussian likelihoods.

In summary, the GP-UKF and related models use
GPs for filtering by basing their models on unscented
Kalman filters. Furthermore, the UGP and related
models focus on using the UT to solve intractable in-
tegrals that arise when considering non-Gaussian like-
lihoods in GP models. However, this paper’s sub-
ject matter is the use of arbitrary kernels through
the UT in Bayesian GPLVM models, where the latent
variables that represent uncertain inputs are approxi-
mately marginalized.
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Figure 3: Results obtained in the dynamical free simulation experiments. Best obtained runs are shown. Visibly,
the MC approximation with 24 points has a much lower quality in its mean compared to the UT approximation
by failing to model the peaks of the curve properly.

6 CONCLUSION

This paper considers learning Bayesian GPLVM mod-
els using arbitrary kernels. More specifically, we use
the UT to tackle the intractabilities that arise in the
popular VI scheme by Titsias and Lawrence (2010).

We perform experiments on two tasks: dimensional-
ity reduction and free simulation of dynamical models
with uncertainty propagation. In both cases, the UT-
based approach scales much better than the Gauss-
Hermite quadrature while obtaining a similar overall
approximation in our experiments. The UT results are
also more stable and consistent than those obtained
by Monte Carlo sampling, which may require a more
significant number of samples and is not compatible
with the popular quasi-Newton BFGS optimization al-
gorithm. Notably, the method is simple to implement
and maintains the deterministic nature of the standard
VI for Bayesian GLPLVMs.

For future work, we aim to evaluate how other meth-
ods of obtaining sigma points might increase or de-
crease the quality of the approximations taken. Also,
we intend to assess the UT in more scenarios where
inference with GP models falls into intractable ex-
pectations. For instance, we could tackle integrals

that arise from DGP models for which inference is
intractable due to low-dimensional integrals, like the
doubly stochastic Gaussian process by Salimbeni and
Deisenroth (2017) and recurrent Gaussian processes by
Mattos et al. (2016).
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