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A  Appendix

To emphasize the underlying parameters of the NN, by some abuse of notation, we introduce

k
Gi(©) ::{g ‘RIS R:g(z) = Zﬁiqb(wi -2 +b;) + bo, ({Bi,wi,bi}i_1,bo) € © } , (34a)

i=1

i w; € RY, b, b;, B € R, max;=1,...k {|wij|, [b:i]} < a1
Ok(a) == ({Bi,wi, bi}i_1,bo) : J=1,.d
|ﬁi‘§a27 izla"'vk? |b0|Sa3

(34b)

Also, throughout the Appendix, we denote g(z) = Zle Bid (wi-x+b;)+by for § = ({&,wi,bi}f:l,bo) by gg,
whenever the underlying 6 needs to be emphasized.

We first state an auxiliary result which will be useful in the proofs that follow. For b > 0, an integer [ > 0,
consider the function class S ;,(R?) defined below:

0)| < b, D*f exists Lebesgue a.e. on RY Va s.t. |af =1,
Sip(RY) = {f c 'R N 2Ry OIS f exi et " o } (35)

||DafHLj(]Rd) S b for ] = 1a25 |a| S {171}

The following lemma states that functions in S ;,(R?) with sufficient smoothness order I belong to the Barron
class. Its proof essentially follows using arguments from Barron (1993), where it was mentioned without explicit
quantification. Below, we provide a proof for completeness.

Lemma 1 (Smoothness and Barron class). If f € S, (R?) for s := [2] + 2, then we have
B(f) < brg Vd, (36a)

dhim @ a) [ (1 1el7) e <o, (36P)
Consequently, Ss. (Rd) - and\/&vb'

Proof. Since f € L' (Rd), its Fourier transform f is well-defined. Also,

[ i) 2 (/ H‘ﬁ” ([, (s o) ]fw\("dw)é

(b) dw o
¢ (/ |> e+ S 1D oy | < oo,

a1+ Hw a:lal=s

[NIE
(NI

where

(a) follows from Cauchy-Schwarz inequality;

(b) is by Plancherel’s theorem and definition of S ;(R?).

Hence, f € L' (R?) and the Fourier inversion formula holds with F(dw) = f(w)dw. Then, it follows that

B = [ sup -l | )] do <V [ ol |fw)] o (37)

where we used sup,¢ y |w - #| < V/d||w|| which holds by Cauchy-Schwarz inequality.

Next, recall that if the partial derivatives D f, || = s, exists on R%, then all partial derivatives D*f, 0 < |a| <
s, also exists. Hence, if | D f|| ;2gay < b for all a with |af € {1,s}, we have

[ el fw]as < ( /. W) (LG ) \f«u)\gdwf (39)
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) dw R
< (/R 2(51)> > D@y + Y 1D f 17z

414 ||w|| a:la]=1 a:|la|=s

[N

(¢)
< Hdb7 (39)

where

(a) follows from Cauchy-Schwarz inequality;
(b) is due to Plancherel’s theorem;

(c) follows since |{a: |a] = s}[ = d* and || D* f|| p2(gay < b.

Combining and leads to (36a)). The final claim follows from (5) and (36a)) by noting that |f(0)] < b by
definition. O

A.1 Proof of Theorem 2

The proof relies on arguments from Barron (1992) and Barron (1993), along with the uniform central limit
theorem for uniformly bounded VC function classes. Fix an arbitrary (small) § > 0, and let f : R? — R be such
that f = f|x and B(f)V f(0) < ¢+6. This is possible since ¢} (f) < ¢. Then, it follows from the proof of Barron
(1993, Theorem 2) that

h@) =10 =10 = [ ot o),
where

B(f)

SUpgex | - 7|

B = [ sup -] Fld)

dgeX

o(z,w) = (cos(w - 2 + ((w)) — cos(¢(w)))

sup, e v | - 2 F(dw)

B(f) ’
and ¢ : R? — R. Note that u € P(R?) is a probability measure.

Let O, (k, B(f)) := ©1(Vklogk,2B(f),0) (see (34b)). Then, it further follows from the proofs* of Barron (1993,
Lemma 2-Lemma 4, Theorem 3) that there exists a probability measure uy € P (él (k, B(f))) (see Barron (1993,
Eqns. (28)-(32))) such that

p(dw) =

2(B(f) +1)
<=

o, P,Q

(40)

fo— / ~ g6() pux (d0)
0€01(k,B(f))

where gg(z) = B¢ (w -z + b) for 6 = (8,w,b). Note that fél(k,B(f)) pr(dd) =1 < oo.

Next, for each fixed z, let v, : ©; (k, B(f)) — R be given by v, () := gg(z), and consider the function class
Vi (é1 (k, B(f))) = {vs, « € R?}. Note that every v, € Vj, ((:)1 (k, B(f))) is a composition of an affine function

in 6 with the bounded monotonic function S¢(-). Hence, noting that Vj ((:)1 (k, B( f))) is a VC function class

“The claims in Barron (1993, Lemma 2- Lemma 4, Theorem 3) are stated for L? norm, but it is not hard to see from
the proof therein that the same also holds for L°° norm, apart from the following subtlety. In the proof of Lemma 3, it
is shown that o(z,w), w € R?, lies in the convex closure of a certain class of step functions, whose discontinuity points
are adjusted to coincide with the continuity points of the underlying measure p. Similarly, here, the step discontinuities
needs to be adjusted to coincide with the continuity points of both P and ). Nevertheless, the same arguments hold
since the common continuity points of P and @ form a dense set.
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(Van Der Vaart and Wellner (1996)), it follows from Van Der Vaart and Wellner (1996, Theorem 2.8.3) that
it is a uniform Donsker class (in particular, pg-Donsker) for all probability measures p € P (él (k,B(f)))

Furthermore, an application of Van Der Vaart and Wellner (1996, Corollary 2.2.8)) yields that there exists k&
parameter vectors, 0; := (8;,w;, b;) € ©1 (k, B(f)), 1 <1i <k, such that (see also Yukich et al. (1995, Theorem
2.1))

sup
z€ERY

1< ,
o) — = . baB(f)k—3 4
/eeél(k,B(f))ge(x) pi(0) k;get(l‘) = GBS, )

where ¢, is a constant which depends only on d. Note that the R.H.S. of is independent of p and depends
on f and X only via B(f).

From (40)), and triangle inequality, we obtain

1 k
fO - gzgal
i=1

< (eaB(f)+2B(f) +2) k2.
o0, P,Q

Setting 0 = {{(i , Wi, b >}j:1 ,f(())} and go(z) = f(0) + %Zle 9o, (x), we have

1f = 98lloc.pq < ((Cat+2)B() +2) k™% < ((Ea+2)(c+0) +2) k™=,
Next, note that Hf - ggH =|f =90l pg and go € Gi (B(f) V f(0)) € G} (¢ +6). Since § > 0 is arbitrary,
we obtain that there exists 9o € Gi (¢)

|F=oo| . <(@a+2et2)hd = Capk?, (42)

007 7
thus proving the claim in (12).

On the other hand, it follows similar to in Lemma [1] that for a fixed e > 0 and I(e) = d/2 + 1 + ¢, the set of
functions f € RY — R such that B(f) < c includes those whose Fourier transform f(w) satisfies

-1
2 21(€) ‘ R ‘2 2 ;-1 / dw

wll® + |w fw)] dw<cd _— , 43

/R (el + 1) [ ) <Rd1+||w||2<l - (43)

since [pq W < 0. Then, (13) follows from the proof of Barron (1992)[Theorem 3]. Note from the

proof therein that the constant in (13) may in general depend on d and e.

A.2 Proof of Corollary 1

By Theorem 2, it suffices to show that there exists an extension f. of f from U to R? such that B(f.) V fe(0) <
Ch,c,d- Let aj denote a multi-index of order j, and recall that s := |4 | 4 2. Consider an extension of D: f from
U to R? for each o as follows:

D* f(z) := inf D* f(a') +clz — ), e RI\U. (44)
z' €

Note that D f extended this way is Holder continuous with the same constant ¢ and exponent § on R, Fixing
D% f on R induces an extension of all lower (and also higher) order derivatives D% f, 0 < j < s to R%, which
can be defined recursively as D D®:i f(z) = D™ *+@:=i f(z), z € R%, for all a1, as—; and j =1,...,s.

Let U' := {2’ € R : ||z’ — x|| < 1 for some = € X'}. Suppose U C U'. By the mean value theorem, we have for
any x,z’ €U and j =1,.

| D=2 f(a")] < [D* f(z)] + max | D=t f(@)| ||l — o'l

[e3}
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< D= (@) + mix [D¥ = @) Vil o = ] (45)

(23]

where the last step follows from ||z — 2’|, < V/d ||z — 2'||. Also, note from that D f(x) < b+ ¢ for all

x € U', and recall that since f € ’HZ:?(Z/{), we have | D= f(x)| < b for all x € U. Then, for any 2’ € U’, taking
x € X satisfying || — 2’| < 1 (such an z exists by definition of ¢’) in yields

| D=1 f(2")| < b+ (b+ c)Vd. (46)
Starting from and recursively applying , we obtain for j =1,...,s, and 2’ € U/,

EX

. 1—
Do <N a7 c)dz <b
| f(a)] Z <b—7

Thus, the extension f from U to RY satisfies fly € HE’S(U’). If U CU, then fly € H;:S(U') by definition, and
thus, in either case, fly € Hg’i(U’).

+ (b+c)d? =:b. (47)

The desired final extension is fe : R? — R given by fe(x) := f(z) - fc(z), where

fel) = Ly wy (@) = [ L)y lo = )iy, @ € B (18)
X' i={2’ eR?: |2’ —z|| < 0.5 for some z € X'},
1
ploy=4u e T el <, (49)
0, otherwise,

and w is the normalization constant such that [;,1(z)dz = 1. Note that ¢ € C> (R?), and consequently,
fc € € (R?) from by dominated convergence theorem. Also, observe that fc(z) =1 for x € X, fc(z) =0
for z € R4\ U’ and fc(x) € (0,1) for x € U’ \ X. Hence, fo(z) = f(z) for x € X, fo(x) =0 for z € R4\ U’ and
[fe(@)] < |f(x)] for x € U'\ X, thus satisfying fe|x = flx = f as required. Moroever, for all j =0,...,s,

(a) .- (b N
|D% fo(z)] < 27b max |D%fc(x)] < 2% |\H|l\a<}f)5 |D*(x)| =:b, x €U, (50a)
zeu’, x
otlad<i culaf<s
D% f(x) =0, z ¢ U, (50b)

where

(a) follows using chain rule for differentiation and ([{7);

(b) follows from the definition in (48)).

Then, we have for j =0,...,sand i =1, 2,

Ll(Rd / Da] fe

/ (D% f.)!(x)dx < b Volg(0.5v/d + 1)

1D fell;

Q.

T2
(5 +1)
where Volg(r) denotes the volume of a Euclidean ball in R? with radius  and T denotes the gamma function.

Defining b o= Z;W%F*I(g + 1)(0.5v/d 4+ 1)% and noting that ¥’ > b, we have from (50) and (1) that fe(z) €
Sy (Rd)7 where

=b———(0.5Vd + 1), (51)

o iata . d . _
S (RY) = {f e L' (RY) N L2 (RY) : |£(0)] <b', D*f exists Lebesgue a.e. on R Va s.t. |a| = s,}’ (52)

|\D°‘f||Li(Rd) <Vfori=12, |a|=1,...,s
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Observe that Ss’bf (Rd) CSsp (Rd) (see ) This implies via Lemmathat B(fe) < := kg db and

fe € Byve NSy (RY) C Byrver NS (RY). (53)
Then, by defining
Che,d =0V, (54)
where
b =m0 (0.5d + 1)(0.5V/d + 1)42° (bll_‘\i/% +(b+ )d3> w:@a‘%ﬁ (@) () (55)
d =Vdrgl, (56)

W2 = (d+ds)/ (14 ]2 Y o,
Rd
it follows from Theorem 2 (see (42)) that there exists g € G (¢p,c,a) such that
; _1
Hf_gHOOPQ—CdCdek 2. (57)

This completes the proof.

A.3 Proof of Theorem 3

We will show that Theorem 3 holds with

Vian = 4Ca2kR2,, ., (58)
Erann i=2V20" 2 kasRya = 4V/2n" 7k 2a, (w'gk(a) n 1) : (59)

where
Riary =2 (6,00 + 1) VE: (60)

and g, , is defined in (16). We have
Hogu@ (@) = Hygu@ (P Q)

= sup de x; —727 90(v:)) ( sup  Epgo(X)] — Eq [V(Qe(Y))}>

go€Tk(a 96 €9k (a)
< s de 7)) = — Zv 90(y:)) — Eplge(X)] +Eq [v(9s(Y))]. (61)
Let
= S ) - L )~ Bl (0] + Eo e ). (62)

We have h h
0= 201 £ 32 2 0050 = 30 X0 = Bl ) = g ()]

+ 2 (g (1)) = 290 (%) — Bq brlgo(Y)) = 2 (g (V)] (63)
Since 0 < ¢(z) < 1forallz € RY, for any z,2’ € X and 0 = ({3;, w;, b}y, bo) , 0" = ({8}, w}, b;}2_1,b)) € Ox(a),

k
|90 () — gor (2 Z = Bil < 118(8) = BE); (64)
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where B(6) := (81, . .., Bx). Moreover, an application of the mean value theorem yields that for all 8,6’ € ©(a),

17(g90(2)) — (g0 (2")] < G, () 196(2) — 9o (&) < 7, () 1B(6) — BEO):, (65)
where "y&k (a) 18 defined in (16). Hence, with probability one

< 2 llg0(X0) — g0 (X1 + [Eplan(X:) — g (XN + 1(0(¥2) — (a0 ()] + B [y (90 (Y2)) — (g (V)]
< Tstan 18(0) B, (66)

where spa~ = 2(’7lgk(a) +1>. Note that E[Zg] = 0 for all § € Og(a). Then, using the fact that
18(6) — B, < VE|B(H) —B(#)], it follows from and via Hoeffding’s lemma that

E {(J(Zefze’)} < 6%t2d’“a*"”(0’6/)2, (67)

where

G0 1= 22RO DO _ Fens ) (. (63)

It follows that {Zp}gco,(a) is a separable subgaussian process on the metric space (O(a),dy,a,n,(0,0")). Next,

note that N (O(a), dp.an~(-),€) = N ([fag,aQ]k,m%Rkﬂa,7 I ,e). Also, [—as,as]* C BE (\/E aQ). Hence,
we have

N (04(a), diann () €) < N (B’f (\/E aQ) " Rpan || ,e)
=N (B* (VE az) I, VAR e)
(\/E az + \/HR/’;;,’YE)IC
<

» - (69)
(\/ﬁRk’aﬁe)
k
— (14 \/E a2 Rk,a,'y
Ve ’
where, in 7 we used that the covering number of Euclidean ball B(r) w.r.t. Euclidean norm satisfies
r+e ¢
N (B < (1) (70)
Also, for € > diam(©x(a),dran~) = maxgeco,(a) dkany(0,0) = 2\/Ea2Rk7aﬁn’%, we have that

N(@k(a)vdk,a,n,'y(‘, ‘)76) =1. Then,

Ek,a,m'y = / \/IOgN (@k (a)7 dk,a,n,v('v ')a e)dG
0

diam(@k(a),dk,a,n,’y)
= / \/1OgN(@k(a),dk,a,n,'y('a')76)d6
0

diam(@k(a)7dk,a,n,7) ]{j
S\/E/ \llog<1+m>de
) Vne

. diam(©x(a),dr,a,n4)
gn*ﬂm\/m/ € 2de i

0
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= 2k4n" %\ s Ry 0, diam (O (a), dkans). (72)

where, we used the inequality log(1 4 z) < z (for z > —1) in (71]). It follows from Theorem 1 that there exists a
constant C such that for § > 0,

P sup Zo>CEran~y+0|=P| sup Zy—Z0>CEran~+9
9o €Gk(a) 9o €Gk(a)

— 52 5 _ 2n522
< Ce Cdiam(©4, (a)dg an . ) — Ce 4ca21?,k‘aﬁk’ (73)

where Zg = 0. It follows similarly that for § > 0,
ns2

P sup —Zp >0+ CEpan~ | < Ce *C3RTa b (74)
go€Gk(a)

Combining and yields

_ ns2
P( sup |Zp| >0+ CEyany | <2Ce 4Ca3R} , k- (75)
go€Gk (a)
From 7 and , we obtain that for 6 > 0,
P (’H%gk(a)(F)7 Q) — |:|,Y7gk(a)(Xn, Yn) > o+ CEk,a,n,’y)
_ ns2
<P| sup |Zo|>6+CEran~ | <20e *3an", (76)
90 €Tk (a)

B Appendix: KL divergence

B.1 Proof of Theorem 4

Let Dg, (a,)(P, Q) := Hy g, (ap) (P, Q). The proof of Theorem 4 relies on the following lemma, whose proof is
given in Appendix
Lemma 2. Let P,Q € PxL(X). Then, for X" ~ P®" and Y™ ~ Q®", the following holds for any a > 0:

. 2 11—«
(i) For n,ky,ax, = (a1k, a2, ,a3,) such that kZ? ag p, efno2kn 00 = O (n 2 ),

ngn(akn)<xn, V") —— Dg, (a,)(P:Q), P—as. (77)

n—oo

l1—a

(ii) For n,k,a; = (a1.k, a2k, as,k) such that k%ag’kekazfr“&k =0 (nT)
E H‘ng(ak)(Xn7 Y") — ‘ng(ak)(‘P? Q)H =0 <n_%k%a2,keka2’k+a3’k> . (78)

We proceed to prove (20). Since fxL € C(X) for a compact set X, it follows from Stinchcombe and White (1990,
Theorem 2.8) that for any € > 0 and k > ko(€), there exists a g € Gi(1) such that

sup | fur () — gg(a)| <e. (79)

This implies that

lim Dg, (P, Q) = D (P[Q). (80)
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To see this, note that
ng(l)(PaQ) < DxL (P”Q) ) vk € Na (81)

by (18) since gy is continuous and bounded (]go] < k + 1). Moreover, the left hand side (L.H.S.) of is
monotonically increasing in k, and being bounded, has a limit point. Then, will follow if we show that
the limit point is Dk (P||Q). Assume otherwise that limg_,oc Dg, 1)(P, Q) < DkL (P||Q). Note that Gr(1) is a
closed set and hence the supremum in the variational form of the L.H.S. of is a maximum. Then, defining

D(g) :=1+Epg(X)] — Eq [/™], (82)

this implies that there exists § > 0 and

gor = argmax D(gp), (83)
90€GK (1)
such that for all &,
DL (P[|Q) — D(ge;) > 0. (84)

However, it follows from that for all k > ko(e),

Dk (P|Q) — D(ge;) < Dk (P[|Q) — D(g5)
< B [ (X) 50 + B[R e
< Ep [|fa(X) = g5(X)|] + Lig Eq [[1 — e =] (85)
<e+ prQ(ee - 1), (86)

where follows from (79)). Note that
dP
0<L === 87
<iro= | ] <= 0

since efkt is a continuous function and hence bounded over a compact support X. Taking e sufficiently small in

contradicts , thus proving . Next, for a3 = asy = a1, = 1 and any n > 0, k%agykek‘”vk*““ <
eF+m) provided k is sufficiently large. Then, (20) follows from and by letting k = k,, — oo (subject to
constraint in Lemma [2{7)), and noting that n > 0 is arbitrary.

Next, we prove (21). Note that since fx. € Z(M), we have from that for k such that my > M, there exists
go € Gi(my,) satisfying

ke = 90ll o po < Canek™% = ((ea+2)M +2) k2.

On the other hand, for k such that my < M, taking go = 0 yields || fuL — golloo po < M. Hence, for all k, there
exists ggr € Gy, (myg) such that

|| fke — gor 0.PQ = Dd,M,mkf%, (88)

where m = {my }ren,
Dantom := Can V /m(M, m)M, (89)
m(M,m) :=min{k € N:my > M}. (90)

Also, observe that Dk (P[|Q) > Dg: (m,) (P, Q) since go: € Gy (my) is bounded. Then, the following chain of
inequalities hold:

Dki (P(Q) = Dg; (my) (P, Q)
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= Dt (PIQ) = Dgymi (P Q)
(a) * —
< Ep [ fe(X) = g0; ()] + L Eq Hl — %) fKL(Y)H

(b) Y
< Ddek 3 +€ (eDd,M,mk: 2 1> 7
where

(a) follows similar to (85);
(b) is due to and Lp g < eM since fxL € Z(M).

(91)

On the other hand, taking ay ; = Vklogk, kas i, = a3 = my, and k satisfying VEkerme = O (nkTa) for some

a > 0, we have

E Hf)gz(mk)(X",Y”) — DL (P||Q)H
(a)

< |Dgz i (P Q) = D (PIQ)] + E [ | Dgmy (P, Q) = Dy (X, Y™)

(b) o
< Dy rrmk™ 3 +eM <6Dd‘M‘mk G 1) + 0 (62’”’“\/% nf%)

(é) OM<€Dd,JM,mk% - 1) + O(ezmk\/gn,% 7

}

where

(a) is due to triangle inequality;
(b) follows from and (91).

Choosing my, = 0.5log k in yields

N

E [’Dg;(o,s)]ogk)(X",Y”) — DkL (PHQ)H _ O(k )_|_ O(k% ;) ’

since for k sufficiently large,

1\J o ,
eDd’M’mI(Q i <Ddek 2) Z(Dde )J :O(k_%>

j=1 j=1
This completes the proof.
Remark 10. Setting my = M in and via steps leading to , we obtain (22).
B.1.1 Proof of Lemma [2]

Note that for vk (z) = e* — 1,

_ k .
’Yé?k(ak) = wsél}v) VI%L(QQ(I')) <e a2’k+a3"ka
geegk(i’ik)

Rimes < 2VE (choartoss 11),

where 7y, denotes the derivative of kL. Since

Ehapnny <420 Tk3ag, (Fo2rtasr 4 1) —— 0,

n—oo

(95)
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for k,ay such that k%a27k€ka2'k+a3"k =0 (nlfTa> for a > 0, it follows from (17) that for any £ € N, § > 0, and

n sufficiently large,

n((s—CEk’akmﬁ)z

I G (96)

P (’ng(ak)(P7Q) - ljgk(ak)(Xn’Yn) >4

N—

3 _
Hence, for k,,,a;_ such that k2 ag . eFn@2intaren = O (n=2
) ) . sKn ?

n(5=CEg a; n,)>

>6) < QCZ 16003, KA (Fm R PR )T (97)

Z: (’ng (a) (P, Q) = Dgy (ay, ) (X", Y™)

where the final inequality in @ can be established via integral test for sum of series. This implies via the
first Borel-Cantelli lemma. To prove , note that

)

2
"(5=C P ag imy)

E HDQk(ak)(Pv Q) - ng(ak)(XnaYn)

25) ds

o T l60a2 kQ(ek“27k+“3,k+1)2
< CEk:,ak,n,'y + 2Ce 2,67 \" dé
CEk,ak,n,'y
_ 1.3
=0 (n 2 k2a27keka2'k+a3”") . (98)

B.2 Proof of Proposition 1

From proof of Corollary 1 (see ), there exists extensions fpe , fqe) € Bb/\/cf ﬁ Y, ( ) of f, f, respectively

(see and for definitions of b’ and ¢’). Define £ := f{¥ — £{?. Since £19, f{¥ € Syu (R?), their Fourier
transforms exists such that corresponding Fourier inversion formulas hold. Also, we have

B(fS) < ¢ B(f)+B (f<e) 2o v o), (99)
max ’f ‘ < max ’f(e) + max ’flge) (x)’ (%) 2b, (100)

where

(a) follows from the definition in (4) and linearity of the Fourier transform;

(b) (C) is since f]ge)7 fqe) € Bb’\/c’;

(d) is due to (P, Q) € LkL(b,c).

Hence, it follows from . ) that fK )|X € I(M) with M = 2¢, .4 (since b < V'), where &4 is given in
(54). The claim then follows from Theorem 4 since fx. = ﬁ)| x.

C Appendix: x? divergence

C.1 Proof of Theorem 5

Let Xék(ak)(P7 Q) = HAYX%gk(ak)(P7 Q). The proof of Theorem 5 is based on the lemma below (see Appendix

for proof).

Lemma 3. Let P,Q € Py2(X). For X" ~ P®" and Y™ ~ Q%", the following holds for any o > 0:
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. 5 3 1—a
(i) Forn,ky,ay, such that kia3, + kiagk,ask, =O (n z ),

X2gk(akn)(Xann) — Xékn(akn)(P’ Q), P-as

(i1) Form,k,ay such that k%a;k + k2ag pasy = O (nlga))

E[A

(ap) (X Y") — Xék(ak)(RQ)H =0 (n_% (k%a§7k + k‘%az,ka?,,k)) :

(101)

(102)

The proof of (25) follows from ([101)), using similar arguments used to establish (20) and steps leading to (104))

below. The details are omitted.

We proceed to prove (26). Since f,2 € Z(M), we have similar to that there exists gg: € Gj(my)

| 2 — gor ||OO,P7Q = Dd,M,mkiév

(103)

where Dy pr,m is defined in (89). Also, x? (P||Q) > X?};(mk)(P’ Q) since gg € G{(my) is bounded. Then, we have

W (PIQ) = X3 ) (P, Q)|
X (PIQ) = X3 () (P Q)

< X* (P||Q) — Ep|go: (X)] — Eq [go: (Y) +

< Bp [0 - g ()] + B || £ ) = g + 3 [ £200) = . )

< 2DapnmkE +Eq |1 R0~ g0 ()] £ )+ g1

< 2D(i,M,m]<77% + EQ [i |fx2(Y) — 9o; (Y)| |99;; (Y) - fx2(Y)| + % |fx2(Y) — 9o; (Y)| |fx2(Y

D% i DarraM
< 2Dy pymk 7 4 —LAm A

4k Wk

(104)

where (104)) is due to f,2 € Z(M). Taking a; = Viklogk, kasr = azr = my, and k, my, satisfying m%\f =

(0] (n(l’o‘)/Q), we have

E [[ X300 (XY™ =X (PIQ)]

(@) N
< [\ (P Q) = 2 (PQ)| + E [[x3: (1) (P Q) = X35 m (X7 Y™)

).

}

|

Dj D yrmM 1
i R 40 (mzx/E n-
4k 2k g

© Oa M (m(M, m)lf%) +0 (m%\/é n*%) ,

where

(b) 1
< 2Dg,mmk™2 +

(a) is due to triangle inequality;

(b) follows from ) and (104));

(¢) is by the definition of Dy psm in and since m(M,m) > 1.

Setting m = {0.51log k}ren in (105]) yields (26), thus completing the proof.

(105)
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C.1.1 Proof of Lemma [3|

For vy2(x) = = + %, we have

Vo (ar) = su);() Yiz(go(x)) < 0.5(kag . + asx) + 1,
reX,
9o €Gk (ar)
quak,ﬁ/ < 2\/% (0.5(1{3(12)/c + ag’k) + 2) , (106)

where ]2 () denotes the derivative of v,2. Since

0< Epaymny <4V20 7kZagy (0.5(kag y + agy) +2) — 0, (107)

n—oo
for k,ay such that k%a%k + k%ag’kagyk =0 (nlfTu), it follows from (17) that for any k¥ € N, 6 > 0, and n
sufficiently large,

2
n(6—=CBk a; n,~)

P ()XAng(ak)(Xn, Yn) _ Xék(ak)(P7 Q)‘ Z 6) S 2Ce 16Ca§’kk2(O.S(ka21k+a3,k)+2)2 - (108)

Then, (101]) and (102) follows using similar steps used to prove (see (97)) and (see (98)) in Theorem 4,

respectively. This completes the proof.

C.2 Proof of Proposition 2

It follows from that there exists extensions fée), ée) € Bpve N Ss’bf (Rd) of f,f € HZ:?(U), respectively,
where S, 4 (R?) is defined in (52). Let ff;) =2 ( f,ge) . fée) - 1). Recall the notation a; for a multi-index of
order j. We have from the chain rule for differentiation that D% f)(:z) (x) is the sum of 27 terms of the form

D% f$9) (z) - D22 f19)(2), where aj, + a, = ;. Also, note from and that for j =0,...,s, i, fi¢
satisfies

‘D"‘J’fée)(z)‘ v ‘Dajf(ge)(;r)‘ <b<l,VazeR? (109a)

H D% fpe)

o

Li=1,2. (109D)

Li(R4) Li(R%)

Then, it follows that for 7 =0,...,sand i = 1,2,

HDajff;) pgey =212 Y. Dnf D= fE
Qg1 Rggt
oy tog, =ay Li(Rd)
< 24 2741 max | D% £(©
Qjo Li(R4)
<24 20T 1p2, (110)

Hence, ff;) € 5’5724_25“{,/2 (Rd). From Lemma it follows that B (ff:;)) < (2 + 2°T?)kgV/d. Moreover, we
have

32+2sup@g2+2b2. (111)

sup
cex q(z)

zeX

1

This implies that f;) lx €T ((2 + 25T12) (kgVd v 1)) since b’ > b. The claim then follows from Theorem 5 by

noting that f,2 = ff(ez)\x and b < & . 4.
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D Appendix: Squared Hellinger distance

D.1 Proof of Theorem 6

Let Hék(ak,t) (P,Q) := HvaQk (a,t) (P, Q). The proof of Theorem 6 hinges on the following lemma, whose proof

is given in Appendix
Lemma 4. Let P,Q € Py2(X). For X™ ~ P®" and Y™ ~ Q®", the following holds for any a > 0:

11—«

3
(i) For n, ky,ay, such that kg a27kntlzj =0 (nT),

H? X" Y") — s H2 (P,Q), P— as. (112)

G (A stk )( n— 0o Gy, (Aky, stky,)

1—a

(ii) For n,k,ay such that k%agﬁktgz =0 (nT),

2 n n 2 . —1.,3 -2
E[|H26, (a0 (X" V") = HE (o (PQ)|] =0 (n kb azati?). (113)

We first prove (31). Since fy2 € C(X) for a compact set X, its supremum is achieved at some z* € X. Also,

< o0 by definition of the Radon-Nikodym derivative, we have sup,cy fu2(x) = fh2(2*) < 1.

since H %
Moreover, ¢ < 1 — fg2(a*) for sufficiently large k since ¢, — 0. Then, it follows from Stinchcombe and White
(1990, Theorem 2.8) that for any € > 0 and k > ko(e) (some integer), there exists a gg- € QNI(Clt)k such that

sup |fg2(z) — go- ()| < €. (114)
reX

This implies similar to in Theorem 4 that

lim HZ., (P,Q)=H*(P,Q). (115)
k—oo gk,tk

Then, (31) follows from (112) and (115].

Next, we prove (32). Since fg2 € Tg2(M), 1 — fy2(z) > 55 for all z € X. Using t;, — 0, we have from (12) that
for k such that ¢ < ﬁ and my > M, there exists gy € C;(Q) such that

k.mp,ti

2 — golloo po < Canrk™%. (116)

On the other hand, for k such that t;, > < or my, < M, taking go = 0 yields | fp2 —9ollwpo < M as

fru2 € Z(M). Then, denoting t = {tj}ren, it follows similar to that for all k, there exists go: € Q,@lktk
such that

£ = 96; || o gy < Canrk™2 v (\/E(M—l,t) vV /m(M, m)) Mk™% =: Dy s mk™ 2, (117)

where £ (M1, t) := inf{k : t;, < M~'}. Moreover, note that by definition, H*(P, Q) > Hé@) (P,Q). Then,
k,mp,tg
we have o
HA(P.Q) = Hge) (P,Q)‘
:H2(P7Q)—H§<2> (P,Q)
kymip,tg
fr2(Y) g0; (Y')
<E 2(X)]—Eg |————=| —E «(X Eg | —2F——
< B e (0]~ B | 5000 | B o (0] + B | 1257
fr2(Y) 96:(Y) H

<E 2(X) —go=(X)|| + E — k
> P[|fH ( ) ng( )H QHl_fHZ(Y) 1_902(}/)
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D Y) — go+ (Y
SDd,M,t’mk_%-{-]EQ H frz(Y) = go: (Y) H

(1= fa2(Y)(1 — gop (V)
< Dynrtmk ™2 + Mt Dy aremk ™2, (118)

N

where (T18) is due to 1 — gg- () > tg, (1 — fr2(x)) " < M for all z € X, and (117).

Then, it follows from (113) and (118)) that by taking a;, = Viklogk, kasr = asr = my, and \/Emktgz =
O (n(l_c’)/Q) for some a > 0, we have

Bl|az,  cevn - e o)
kym ty
< |HXP,Q) - H2.  (PQ)|+E [ He  (X"Y")—H2, (P.Q) ]
gk,mk,tk kymip,tp gk,m,k,t,k
< Dd,M,t,mkié + M t;lDd,Mﬁtymkié + O(mk\/EtI;Qn’%) (119)

=O4.um (\/E(M—l,t) V \/m(M, m) t;lk*% + O(mkx/ét,fn*%) )
Setting my = 0.5logk and t, = log™ ' k in (T19) yields (32), thus completing the proof.

D.1.1 Proof of Lemma [4]

Note that Theorem 3 continues to hold with Gy (a) in (16) and (17) replaced with Gy (a, t), since for vz (z) = 2

11—z’
5 b (g0 ) <
. = su xT)) = su R
V61 (a tr) xei’), Tz xei’), (1—g0)*> ~ ti
90 €5k (ak,tr) 90€Gk (aktr)

where 7/, (-) denotes the derivative of yg2. This implies that Ry o, ~ < Wk (62 +1 , and
TH v Ak ,Y k

0 < Epapnny <4V20 ZkZagy, (72 +1) —— 0,

n—oo
for k,ay, tr such that k’%aQ’kt;Q =0 (nl_Ta> It then follows from (17) that for any k¥ € N, § > 0, and n
sufficiently large,
n(6—CEp a, n,)>

7 B a2 k2(t7241)°
F (‘H2gk(ak)(Xn7Yn) - Hék(ak)(P7 Q)‘ 2 6) <2Ce "9 (t7+1) .

Then, (112)) and (113)) follows using similar steps used to prove (see (97)) and (see (98)) in Theorem 4,

respectively. This completes the proof.
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