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A Appendix

To emphasize the underlying parameters of the NN, by some abuse of notation, we introduce

Gk(Θ) :=

{
g : Rd→ R : g(x) =

k∑
i=1

βiφ (wi · x+ bi) + b0,
(
{βi, wi, bi}ki=1, b0

)
∈ Θ

}
, (34a)

Θk(a) :=

({βi, wi, bi}ki=1, b0
)

:
wi ∈ Rd, b0, bi, βi ∈ R, maxi=1,...,k

j=1,...,d
{|wi,j |, |bi|} ≤ a1

|βi| ≤ a2, i = 1, . . . , k, |b0| ≤ a3

 . (34b)

Also, throughout the Appendix, we denote g(x) =
∑k
i=1 βiφ (wi ·x+bi) + b0 for θ =

(
{βi, wi, bi}ki=1, b0

)
by gθ,

whenever the underlying θ needs to be emphasized.

We first state an auxiliary result which will be useful in the proofs that follow. For b ≥ 0, an integer l ≥ 0,
consider the function class Sl,b(Rd) defined below:

Sl,b(Rd) :=

{
f ∈ L1(Rd) ∩ L2(Rd) :

|f(0)| ≤ b, Dαf exists Lebesgue a.e. on Rd ∀α s.t. |α| = l,

‖Dαf‖Lj(Rd) ≤ b for j = 1, 2, |α| ∈ {1, l}

}
. (35)

The following lemma states that functions in Sl,b(Rd) with sufficient smoothness order l belong to the Barron
class. Its proof essentially follows using arguments from Barron (1993), where it was mentioned without explicit
quantification. Below, we provide a proof for completeness.

Lemma 1 (Smoothness and Barron class). If f ∈ Ss,b
(
Rd
)

for s := bd2c+ 2, then we have

B(f) ≤ bκd
√
d, (36a)

κ2
d := (d+ ds)

∫
Rd

(
1 + ‖ω‖2(s−1) )−1

dω <∞. (36b)

Consequently, Ss,b
(
Rd
)
⊆ Bbκd

√
d∨b.

Proof. Since f ∈ L1
(
Rd
)
, its Fourier transform f̂ is well-defined. Also,

∫
Rd

∣∣∣f̂(ω)
∣∣∣ dω (a)

≤

(∫
Rd

dω

1 + ‖ω‖2s

) 1
2 (∫

Rd

(
1 + ‖ω‖2s

) ∣∣∣f̂(ω)
∣∣∣2 dω) 1

2

(b)

≤

(∫
Rd

dω

1 + ‖ω‖2s

) 1
2

‖f‖2L2(Rd) +
∑

α:|α|=s

‖Dαf‖2L2(Rd)

 1
2

<∞,

where

(a) follows from Cauchy-Schwarz inequality;

(b) is by Plancherel’s theorem and definition of Sl,b(Rd).

Hence, f̂ ∈ L1
(
Rd
)

and the Fourier inversion formula holds with F̃ (dω) = f̂(ω)dω. Then, it follows that

B(f) =

∫
Rd

sup
x∈X
|ω · x|

∣∣∣f̂(ω)
∣∣∣ dω ≤ √d∫

Rd
‖ω‖

∣∣∣f̂(ω)
∣∣∣ dω, (37)

where we used supx∈X |ω · x| ≤
√
d ‖ω‖ which holds by Cauchy-Schwarz inequality.

Next, recall that if the partial derivatives Dαf , |α| = s, exists on Rd, then all partial derivatives Dαf , 0 ≤ |α| ≤
s, also exists. Hence, if ‖Dαf‖L2(Rd) ≤ b for all α with |α| ∈ {1, s}, we have

∫
Rd
‖ω‖

∣∣∣f̂(ω)
∣∣∣ dω (a)

≤

(∫
Rd

dω

1 + ‖ω‖2(s−1)

) 1
2 (∫

Rd

(
‖ω‖2 + ‖ω‖2s

) ∣∣∣f̂(ω)
∣∣∣2 dω) 1

2

(38)
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(b)

≤

(∫
Rd

dω

1 + ‖ω‖2(s−1)

) 1
2

 ∑
α:|α|=1

‖Dαf‖2L2(Rd) +
∑

α:|α|=s

‖Dαf‖2L2(Rd)

 1
2

(c)

≤ κdb, (39)

where

(a) follows from Cauchy-Schwarz inequality;

(b) is due to Plancherel’s theorem;

(c) follows since |{α : |α| = s}| = ds and ‖Dαf‖L2(Rd) ≤ b.

Combining (37) and (39) leads to (36a). The final claim follows from (5) and (36a) by noting that |f(0)| ≤ b by
definition.

A.1 Proof of Theorem 2

The proof relies on arguments from Barron (1992) and Barron (1993), along with the uniform central limit
theorem for uniformly bounded VC function classes. Fix an arbitrary (small) δ > 0, and let f : Rd → R be such
that f̃ = f |X and B(f)∨f(0) ≤ c+δ. This is possible since c?B(f̃) ≤ c. Then, it follows from the proof of Barron
(1993, Theorem 2) that

f0(x) := f(x)− f(0) =

∫
ω∈Rd\{0}

%(x, ω)µ(dω),

where

%(x, ω) =
B(f)

supx∈X |ω · x|
(cos(ω · x+ ζ(ω))− cos(ζ(ω))) ,

B(f) :=

∫
Rd

sup
x∈X
|ω · x|F (dω),

µ(dω) =
supx∈X |ω · x|F (dω)

B(f)
,

and ζ : Rd → R. Note that µ ∈ P(Rd) is a probability measure.

Let Θ̃1 (k,B(f)) := Θ1(
√
k log k, 2B(f), 0) (see (34b)). Then, it further follows from the proofs4 of Barron (1993,

Lemma 2-Lemma 4,Theorem 3) that there exists a probability measure µk ∈ P
(

Θ̃1 (k,B(f))
)

(see Barron (1993,

Eqns. (28)-(32))) such that ∥∥∥∥∥f0 −
∫
θ∈Θ̃1(k,B(f))

gθ(·) µk (dθ)

∥∥∥∥∥
∞,P,Q

≤ 2(B(f) + 1)√
k

, (40)

where gθ(x) = βφ (w · x+ b) for θ = (β,w, b). Note that
∫

Θ̃1(k,B(f))
µk(dθ) = 1 <∞.

Next, for each fixed x, let υx : Θ̃1 (k,B(f)) → R be given by υx(θ) := gθ(x), and consider the function class

Vk
(

Θ̃1 (k,B(f))
)

=
{
υx, x ∈ Rd

}
. Note that every υx ∈ Vk

(
Θ̃1 (k,B(f))

)
is a composition of an affine function

in θ with the bounded monotonic function βφ(·). Hence, noting that Vk
(

Θ̃1 (k,B(f))
)

is a VC function class

4The claims in Barron (1993, Lemma 2- Lemma 4, Theorem 3) are stated for L2 norm, but it is not hard to see from
the proof therein that the same also holds for L∞ norm, apart from the following subtlety. In the proof of Lemma 3, it
is shown that %(x, ω), ω ∈ Rd, lies in the convex closure of a certain class of step functions, whose discontinuity points
are adjusted to coincide with the continuity points of the underlying measure µ. Similarly, here, the step discontinuities
needs to be adjusted to coincide with the continuity points of both P and Q. Nevertheless, the same arguments hold
since the common continuity points of P and Q form a dense set.
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(Van Der Vaart and Wellner (1996)), it follows from Van Der Vaart and Wellner (1996, Theorem 2.8.3) that

it is a uniform Donsker class (in particular, µk-Donsker) for all probability measures µ ∈ P
(

Θ̃1 (k,B(f))
)

.

Furthermore, an application of Van Der Vaart and Wellner (1996, Corollary 2.2.8)) yields that there exists k
parameter vectors, θi := (βi, wi, bi) ∈ Θ̃1 (k,B(f)) , 1 ≤ i ≤ k, such that (see also Yukich et al. (1995, Theorem
2.1))

sup
x∈Rd

∣∣∣∣∣
∫
θ∈Θ̃1(k,B(f))

gθ(x) µk(dθ)− 1

k

k∑
i=1

gθi(x)

∣∣∣∣∣ ≤ ĉdB(f)k−
1
2 , (41)

where ĉd is a constant which depends only on d. Note that the R.H.S. of (41) is independent of µk and depends
on f and X only via B(f).

From (40), (41) and triangle inequality, we obtain∥∥∥∥∥f0 −
1

k

k∑
i=1

gθi

∥∥∥∥∥
∞,P,Q

≤ (ĉdB(f) + 2B(f) + 2) k−
1
2 .

Setting θ =

{{(
βi
k , wi, bi

)}k
i=1

, f(0)

}
and gθ(x) = f(0) + 1

k

∑k
i=1 gθi(x), we have

‖f − gθ‖∞,P,Q ≤ ((ĉd + 2)B(f) + 2) k−
1
2 ≤ ((ĉd + 2)(c+ δ) + 2) k−

1
2 .

Next, note that
∥∥∥f̃ − gθ∥∥∥

∞,P,Q
= ‖f − gθ‖∞,P,Q and gθ ∈ G∗k (B(f) ∨ f(0)) ⊆ G∗k (c+ δ). Since δ > 0 is arbitrary,

we obtain that there exists gθ ∈ G∗k (c)∥∥∥f̃ − gθ∥∥∥
∞,P,Q

≤ ((ĉd + 2)c+ 2) k−
1
2 =: C̃d,c k

− 1
2 , (42)

thus proving the claim in (12).

On the other hand, it follows similar to (38) in Lemma 1 that for a fixed ε > 0 and l(ε) = d/2 + 1 + ε, the set of

functions f ∈ Rd → R such that B(f) ≤ c includes those whose Fourier transform f̂(ω) satisfies

∫
Rd

(
‖ω‖2 + ‖ω‖2l(ε)

) ∣∣∣f̂(ω)
∣∣∣2 dω ≤ c2d−1

(∫
Rd

dω

1 + ‖ω‖2(l(ε)−1)

)−1

, (43)

since
∫
Rd

dω
1+‖ω‖2(l(ε)−1) < ∞. Then, (13) follows from the proof of Barron (1992)[Theorem 3]. Note from the

proof therein that the constant in (13) may in general depend on d and ε.

A.2 Proof of Corollary 1

By Theorem 2, it suffices to show that there exists an extension fe of f from U to Rd such that B(fe) ∨ fe(0) ≤
c̄b,c,d. Let αj denote a multi-index of order j, and recall that s := bd2c+ 2. Consider an extension of Dαsf from
U to Rd for each αs as follows:

Dαsf(x) := inf
x′∈U

Dαsf(x′) + c ‖x− x′‖δ , x ∈ Rd \ U . (44)

Note that Dαsf extended this way is Hölder continuous with the same constant c and exponent δ on Rd. Fixing
Dαsf on Rd induces an extension of all lower (and also higher) order derivatives Dαjf, 0 ≤ j < s to Rd, which
can be defined recursively as Dα1Dαs−jf(x) = Dα1+αs−jf(x), x ∈ Rd, for all α1, αs−j and j = 1, . . . , s.

Let U ′ := {x′ ∈ Rd : ‖x′ − x‖ < 1 for some x ∈ X}. Suppose U ⊂ U ′. By the mean value theorem, we have for
any x, x′ ∈ U ′ and j = 1, . . . , s,

|Dαs−jf(x′)| ≤ |Dαs−jf(x)|+ max
x̃∈U ′,
α1

∣∣Dαs−j+α1f(x̃)
∣∣ ‖x− x′‖1
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≤ |Dαs−jf(x)|+ max
x̃∈U ′,
α1

∣∣Dαs−j+α1f(x̃)
∣∣√d ‖x− x′‖ , (45)

where the last step follows from ‖x− x′‖1 ≤
√
d ‖x− x′‖. Also, note from (44) that Dαsf(x) < b + c for all

x ∈ U ′, and recall that since f ∈ Hs,δb,c (U), we have |Dαs−jf(x)| ≤ b for all x ∈ U . Then, for any x′ ∈ U ′, taking
x ∈ X satisfying ‖x− x′‖ ≤ 1 (such an x exists by definition of U ′) in (45) yields

|Dαs−1f(x′)| ≤ b+ (b+ c)
√
d. (46)

Starting from (46) and recursively applying (45), we obtain for j = 1, . . . , s, and x′ ∈ U ′,

|Dαs−jf(x′)| ≤ b
j∑
i=1

d
i−1

2 + (b+ c)d
j
2 ≤ b 1− d s2

1−
√
d

+ (b+ c)d
s
2 =: b̃. (47)

Thus, the extension f from U to Rd satisfies f |U ′ ∈ Hs,δb̃,c (U
′). If U ′ ⊆ U , then f |U ′ ∈ Hs,δb,c (U ′) by definition, and

thus, in either case, f |U ′ ∈ Hs,δb̃,c (U
′).

The desired final extension is fe : Rd → R given by fe(x) := f(x) · fC(x), where

fC(x) := 1X ′ ∗ ψ 1
2
(x) :=

∫
Rd
1X ′(y)ψ 1

2
(x− y)dy, x ∈ Rd, (48)

X ′ :=
{
x′ ∈ Rd : ‖x′ − x‖ ≤ 0.5 for some x ∈ X

}
,

ψ(x) :=

{
u−1e

− 1
1
2
−‖x‖2 , ‖x‖ < 1

2 ,

0, otherwise,
(49)

and u is the normalization constant such that
∫
Rd ψ(x)dx = 1. Note that ψ ∈ C∞

(
Rd
)
, and consequently,

fC ∈ C∞
(
Rd
)

from (48) by dominated convergence theorem. Also, observe that fC(x) = 1 for x ∈ X , fC(x) = 0
for x ∈ Rd \ U ′ and fC(x) ∈ (0, 1) for x ∈ U ′ \ X . Hence, fe(x) = f(x) for x ∈ X , fe(x) = 0 for x ∈ Rd \ U ′ and
|fe(x)| ≤ |f(x)| for x ∈ U ′ \ X , thus satisfying fe|X = f |X = f̃ as required. Moroever, for all j = 0, . . . , s,

|Dαjfe(x)|
(a)

≤ 2j b̃ max
x∈U ′,

α:|α|≤j

|DαfC(x)|
(b)

≤ 2sb̃ max
x:‖x‖≤0.5,
α:|α|≤s

|Dαψ(x)| =: b̂, x ∈ U ′, (50a)

Dαjfe(x) = 0, x /∈ U ′, (50b)

where

(a) follows using chain rule for differentiation and (47);

(b) follows from the definition in (48).

Then, we have for j = 0, . . . , s and i = 1, 2,

‖Dαjfe‖iLi(Rd) =

∫
Rd

(Dαjfe)
i(x)dx

=

∫
U ′

(Dαjfe)
i(x)dx ≤ b̂i Vold(0.5

√
d+ 1)

= b̂i
π
d
2

Γ(d2 + 1)
(0.5
√
d+ 1)d, (51)

where Vold(r) denotes the volume of a Euclidean ball in Rd with radius r and Γ denotes the gamma function.

Defining b′ := b̂π
d
2 Γ−1(d2 + 1)(0.5

√
d + 1)d and noting that b′ ≥ b̂, we have from (50) and (51) that fe(x) ∈

S̃s,b′
(
Rd
)
, where

S̃s,b′
(
Rd
)

:=

{
f ∈ L1

(
Rd
)
∩ L2

(
Rd
)

:
|f(0)| ≤ b′, Dαf exists Lebesgue a.e. on Rd ∀α s.t. |α| = s,

‖Dαf‖Li(Rd) ≤ b
′ for i = 1, 2, |α| = 1, . . . , s

}
, (52)
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Observe that S̃s,b′
(
Rd
)
⊆ Ss,b′

(
Rd
)

(see (35)). This implies via Lemma 1 that B(fe) ≤ c′ := κd
√
db′ and

fe ∈ Bb′∨c′ ∩ S̃s,b′
(
Rd
)
⊆ Bb′∨c′ ∩ Ss,b′

(
Rd
)
. (53)

Then, by defining

c̄b,c,d := b′ ∨ c′, (54)

where

b′ = π
d
2 Γ−1(0.5d+ 1)(0.5

√
d+ 1)d2s

(
b

1− d s2
1−
√
d

+ (b+ c)d
s
2

)
max

x:‖x‖≤0.5,
α:|α|≤s

ψ(α)(x), (55)

c′ =
√
dκdb

′, (56)

κ2
d = (d+ ds)

∫
Rd

(
1 + ‖ω‖2(s−1) )−1

dω,

it follows from Theorem 2 (see (42)) that there exists g ∈ G∗k (c̄b,c,d) such that∥∥f̃ − g∥∥∞,P,Q ≤ C̃d,c̄b,c,d k− 1
2 . (57)

This completes the proof.

A.3 Proof of Theorem 3

We will show that Theorem 3 holds with

Vk,a,γ := 4Ca2
2kR

2
k,a,γ , (58)

Ek,a,n,γ := 2
√

2n−
1
2 ka2Rk,a,γ = 4

√
2n−

1
2 k3/2a2

(
γ̄′Gk(a) + 1

)
, (59)

where

Rk,a,γ := 2
(
γ̄′Gk(a) + 1

)√
k, (60)

and γ̄′Gk(a) is defined in (16). We have

Ĥγ,Gk(a)(x
n, yn)− Hγ,Gk(a)(P,Q)

= sup
gθ∈Gk(a)

1

n

n∑
i=1

gθ(xi)−
1

n

n∑
i=1

γ(gθ(yi))−

(
sup

gθ∈Gk(a)

EP [gθ(X)]− EQ [γ(gθ(Y ))]

)

≤ sup
gθ∈Gk(a)

1

n

n∑
i=1

gθ(xi)−
1

n

n∑
i=1

γ(gθ(yi))− EP [gθ(X)] + EQ [γ(gθ(Y ))] . (61)

Let

Zθ :=
1

n

n∑
i=1

gθ(Xi)−
1

n

n∑
i=1

γ (gθ(Yi))− EP [gθ(X)] + EQ [γ(gθ(Y ))] . (62)

We have

|Zθ − Zθ′ | ≤
n∑
i=1

1

n
|gθ(Xi)− gθ′(Xi)− EP [gθ(X)− gθ′(X)]|

+
1

n
|γ(gθ(Yi))− γ(gθ′(Yi))− EQ [γ(gθ(Y ))− γ(gθ′(Y ))]| . (63)

Since 0 ≤ φ(x) ≤ 1 for all x ∈ Rd, for any x, x′ ∈ X and θ =
(
{βi, wi, bi}ki=1, b0

)
, θ′ =

(
{β′i, w′i, b′i}ki=1, b

′
0

)
∈ Θk(a),

|gθ(x)− gθ′(x′)| ≤
k∑
i=1

|βi − β′i| ≤ ‖β(θ)− β(θ′)‖1 , (64)
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where β(θ) := (β1, . . . , βk). Moreover, an application of the mean value theorem yields that for all θ, θ′ ∈ Θk(a),

|γ(gθ(x))− γ(gθ′(x
′))| ≤ γ̄′Gk(a) |gθ(x)− gθ′(x′)| ≤ γ̄′Gk(a) ‖β(θ)− β(θ′)‖1 , (65)

where γ̄′Gk(a) is defined in (16). Hence, with probability one

1

n
|gθ(Xi)− gθ′(Xi)− EP [gθ(Xi)− gθ′(Xi)]|+

1

n

∣∣γ(gθ(Yi))− γ(gθ′(Yi))− EQ [γ(gθ(Yi))− γ(gθ′(Yi))]
∣∣

≤ 1

n
[|gθ(Xi)− gθ′(Xi)|+ |EP [gθ(Xi)− gθ′(Xi)]|+ |γ(gθ(Yi))− γ(gθ′(Yi))|+ |EQ [γ(gθ(Yi))− γ(gθ′(Yi))]|]

≤ 1

n
sk,a,γ ‖β(θ)− β(θ′)‖1 , (66)

where sk,a,γ := 2
(
γ̄′Gk(a) + 1

)
. Note that E [Zθ] = 0 for all θ ∈ Θk(a). Then, using the fact that

‖β(θ)− β(θ′)‖1 ≤
√
k ‖β(θ)− β(θ′)‖, it follows from (63) and (66) via Hoeffding’s lemma that

E
[
et(Zθ−Zθ′ )

]
≤ e 1

2 t
2dk,a,n,γ(θ,θ′)2

, (67)

where

dk,a,n,γ(θ, θ′) :=
sk,a,γ

√
k ‖β(θ)− β(θ′)‖√

n
:=

Rk,a,γ√
n
‖β(θ)− β(θ′)‖ . (68)

It follows that {Zθ}θ∈Θk(a) is a separable subgaussian process on the metric space (Θk(a), dk,a,n,γ(θ, θ′)). Next,

note that N (Θk(a), dk,a,n,γ(·, ·), ε) = N
(

[−a2, a2]k, n−
1
2Rk,a,γ ‖·‖ , ε

)
. Also, [−a2, a2]k ⊆ Bk

(√
k a2

)
. Hence,

we have

N (Θk(a), dk,a,n,γ(·, ·), ε) ≤ N
(
Bk
(√

k a2

)
, n−

1
2Rk,a,γ ‖·‖ , ε

)
= N

(
Bk
(√

k a2

)
, ‖·‖ ,

√
nR−1

k,a,γε
)

≤

(√
k a2 +

√
nR−1

k,a,γε
)k

(√
nR−1

k,a,γε
)k (69)

=

(
1 +

√
k a2 Rk,a,γ√

nε

)k
,

where, in (69), we used that the covering number of Euclidean ball Bd(r) w.r.t. Euclidean norm satisfies

N
(
Bd(r), ‖·‖ , ε

)
≤
(
r + ε

ε

)d
. (70)

Also, for ε ≥ diam (Θk(a), dk,a,n,γ) := maxθ,θ′∈Θk(a) dk,a,n,γ(θ, θ′) = 2
√
ka2Rk,a,γn

− 1
2 , we have that

N (Θk(a), dk,a,n,γ(·, ·), ε) = 1. Then,

Ek,a,n,γ :=

∫ ∞
0

√
logN (Θk(a), dk,a,n,γ(·, ·), ε)dε

=

∫ diam(Θk(a),dk,a,n,γ)

0

√
logN (Θk(a), dk,a,n,γ(·, ·), ε)dε

≤
√
k

∫ diam(Θk(a),dk,a,n,γ)

0

√√√√log

(
1 +

a2

√
kRk,a,γ√
nε

)
dε

≤ n− 1
4 k

3
4

√
a2Rk,a,γ

∫ diam(Θk(a),dk,a,n,γ)

0

ε−
1
2 dε (71)
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= 2k
3
4n−

1
4

√
a2Rk,a,γ diam (Θk(a), dk,a,n,γ), (72)

where, we used the inequality log(1 + x) ≤ x (for x ≥ −1) in (71). It follows from Theorem 1 that there exists a
constant C such that for δ > 0,

P

(
sup

gθ∈Gk(a)

Zθ ≥ CEk,a,n,γ + δ

)
= P

(
sup

gθ∈Gk(a)

Zθ − Z0 ≥ CEk,a,n,γ + δ

)

≤ Ce
− δ2

Cdiam(Θk(a),dk,a,n,γ)
2

= Ce
− nδ2

4Ca2
2R

2
k,a,γ

k , (73)

where Z0 = 0. It follows similarly that for δ > 0,

P

(
sup

gθ∈Gk(a)

−Zθ ≥ δ + CEk,a,n,γ

)
≤ Ce

− nδ2

4Ca2
2R

2
k,a,γ

k . (74)

Combining (73) and (74) yields

P

(
sup

gθ∈Gk(a)

|Zθ| ≥ δ + CEk,a,n,γ

)
≤ 2Ce

− nδ2

4Ca2
2R

2
k,a,γ

k . (75)

From (61), (62) and (75), we obtain that for δ > 0,

P
(∣∣∣Hγ,Gk(a)(P,Q)− Ĥγ,Gk(a)(X

n, Y n)
∣∣∣ ≥ δ + CEk,a,n,γ

)
≤ P

(
sup

gθ∈Gk(a)

|Zθ| ≥ δ + CEk,a,n,γ

)
≤ 2Ce

− nδ2

4Ca2
2R

2
k,a,γ

k . (76)

B Appendix: KL divergence

B.1 Proof of Theorem 4

Let DGk(ak)(P,Q) := HγKL,Gk(ak)(P,Q). The proof of Theorem 4 relies on the following lemma, whose proof is
given in Appendix B.1.1.

Lemma 2. Let P,Q ∈ PKL(X ). Then, for Xn ∼ P⊗n and Y n ∼ Q⊗n, the following holds for any α > 0:

(i) For n, kn,akn = (a1,kn , a2,kn , a3,kn) such that k
3
2
n a2,kne

kna2,kn+a3,kn = O
(
n

1−α
2

)
,

D̂Gkn (akn )(X
n, Y n) −−−−→

n→∞
DGkn (akn )(P,Q), P− a.s.. (77)

(ii) For n, k,ak = (a1,k, a2,k, a3,k) such that k
3
2 a2,ke

ka2,k+a3,k = O
(
n

1−α
2

)
E
[∣∣∣D̂Gk(ak)(X

n, Y n)−DGk(ak)(P,Q)
∣∣∣] = O

(
n−

1
2 k

3
2 a2,ke

ka2,k+a3,k

)
. (78)

We proceed to prove (20). Since fKL ∈ C (X ) for a compact set X , it follows from Stinchcombe and White (1990,
Theorem 2.8) that for any ε > 0 and k ≥ k0(ε), there exists a gθ̃ ∈ Gk(1) such that

sup
x∈X

∣∣fKL(x)− gθ̃(x)
∣∣ ≤ ε. (79)

This implies that

lim
k→∞

DGk(1)(P,Q) = DKL (P‖Q) . (80)
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To see this, note that

DGk(1)(P,Q) ≤ DKL (P‖Q) , ∀k ∈ N, (81)

by (18) since gθ is continuous and bounded (|gθ| ≤ k + 1). Moreover, the left hand side (L.H.S.) of (81) is
monotonically increasing in k, and being bounded, has a limit point. Then, (80) will follow if we show that
the limit point is DKL (P‖Q). Assume otherwise that limk→∞DGk(1)(P,Q) < DKL (P‖Q). Note that Gk(1) is a
closed set and hence the supremum in the variational form of the L.H.S. of (81) is a maximum. Then, defining

D(g) := 1 + EP [g(X)]− EQ
[
eg(Y )

]
, (82)

this implies that there exists δ > 0 and

gθ∗k := arg max
gθ∈Gk(1)

D(gθ), (83)

such that for all k,

DKL (P‖Q)−D(gθ∗k) ≥ δ. (84)

However, it follows from (79) that for all k ≥ k0(ε),

DKL (P‖Q)−D(gθ∗k) ≤ DKL (P‖Q)−D(gθ̃)

≤ EP
[∣∣fKL(X)− gθ̃(X)

∣∣]+ EQ
[∣∣∣efKL(Y ) − egθ̃(Y )

∣∣∣]
≤ EP

[∣∣fKL(X)− gθ̃(X)
∣∣]+ LP,Q EQ

[∣∣∣1− egθ̃(Y )−fKL(Y )
∣∣∣] (85)

≤ ε+ LP,Q(eε − 1), (86)

where (86) follows from (79). Note that

0 ≤ LP,Q :=

∥∥∥∥ dP

dQ

∥∥∥∥
∞
<∞, (87)

since efKL is a continuous function and hence bounded over a compact support X . Taking ε sufficiently small in
(86) contradicts (84), thus proving (80). Next, for a3,k = a2,k = a1,k = 1 and any η > 0, k

3
2 a2,ke

ka2,k+a3,k <
ek(1+η) provided k is sufficiently large. Then, (20) follows from (77) and (80) by letting k = kn →∞ (subject to
constraint in Lemma 2(i)), and noting that η > 0 is arbitrary.

Next, we prove (21). Note that since fKL ∈ I(M), we have from (42) that for k such that mk ≥M , there exists
gθ ∈ G∗k(mk) satisfying

‖fKL − gθ‖∞,P,Q ≤ C̃d,Mk
− 1

2 = ((ĉd + 2)M + 2) k−
1
2 .

On the other hand, for k such that mk < M , taking g0 = 0 yields ‖fKL − g0‖∞,P,Q ≤M . Hence, for all k, there
exists gθ∗k ∈ G

∗
k(mk) such that ∥∥fKL − gθ∗k∥∥∞,P,Q ≤ Dd,M,mk

− 1
2 , (88)

where m = {mk}k∈N,

Dd,M,m := C̃d,M ∨
√
m̄(M,m)M, (89)

m̄(M,m) := min {k ∈ N : mk ≥M} . (90)

Also, observe that DKL (P‖Q) ≥ DG∗k(mk)(P,Q) since gθ∗k ∈ G
∗
k(mk) is bounded. Then, the following chain of

inequalities hold:∣∣∣DKL (P‖Q)−DG∗k(mk)(P,Q)
∣∣∣
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= DKL (P‖Q)−DG∗k(mk)(P,Q)

(a)

≤ EP
[∣∣fKL(X)− gθ∗k(X)

∣∣]+ LP,Q EQ
[∣∣∣1− egθ∗k (Y )−fKL(Y )

∣∣∣]
(b)

≤ Dd,M,mk
− 1

2 + eM
(
eDd,M,mk

− 1
2 − 1

)
, (91)

where

(a) follows similar to (85);

(b) is due to (88) and LP,Q ≤ eM since fKL ∈ I(M).

On the other hand, taking a1,k =
√
k log k, ka2,k = a3,k = mk, and k satisfying

√
ke2mk = O

(
n

1−α
2

)
for some

α > 0, we have

E
[∣∣∣D̂G∗k(mk)(X

n, Y n)− DKL (P‖Q)
∣∣∣]

(a)

≤
∣∣∣DG∗k(mk)(P,Q)− DKL (P‖Q)

∣∣∣+ E
[∣∣∣DG∗k(mk)(P,Q)− D̂G∗k(M)(X

n, Y n)
∣∣∣]

(b)

≤ Dd,M,mk
− 1

2 + eM
(
eDd,M,mk

− 1
2 − 1

)
+O

(
e2mk

√
k n−

1
2

)
(92)

(c)
= OM

(
eDd,M,mk

− 1
2 − 1

)
+O

(
e2mk

√
kn−

1
2

)
, (93)

where

(a) is due to triangle inequality;

(b) follows from (78) and (91).

Choosing mk = 0.5 log k in (93) yields

E
[∣∣∣D̂G∗k(0.5 log k)(X

n, Y n)− DKL (P‖Q)
∣∣∣] = O

(
k−

1
2

)
+O

(
k

3
2n−

1
2

)
, (94)

since for k sufficiently large,

eDd,M,mk
− 1

2 − 1 =

∞∑
j=1

(
Dd,M,mk

− 1
2

)j
j!

≤
∞∑
j=1

(
Dd,M,mk

− 1
2

)j
= O

(
k−

1
2

)
.

This completes the proof.

Remark 10. Setting mk = M in (93) and via steps leading to (94), we obtain (22).

B.1.1 Proof of Lemma 2

Note that for γKL(x) = ex − 1,

γ̄′Gk(ak) = sup
x∈X ,

gθ∈Gk(ak)

γ′KL(gθ(x)) ≤ eka2,k+a3,k ,

Rk,ak,γ ≤ 2
√
k
(
eka2,k+a3,k + 1

)
,

where γ′KL denotes the derivative of γKL. Since

Ek,ak,n,γ ≤ 4
√

2n−
1
2 k

3
2 a2,k

(
eka2,k+a3,k + 1

)
−−−−→
n→∞

0, (95)
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for k,ak such that k
3
2 a2,ke

ka2,k+a3,k = O
(
n

1−α
2

)
for α > 0, it follows from (17) that for any k ∈ N, δ > 0, and

n sufficiently large,

P
(∣∣∣DGk(ak)(P,Q)− D̂Gk(ak)(X

n, Y n)
∣∣∣ ≥ δ) ≤ 2Ce

−
n(δ−CEk,ak,n,γ

)2

16Ca2
2,k

k2(eka2,k+a3,k+1)
2

. (96)

Hence, for kn,akn such that k
3
2
n a2,kne

kna2,kn+a1,kn = O
(
n

1−α
2

)
,

∞∑
n=1

P
(∣∣∣DGkn (akn )(P,Q)− D̂Gkn (akn )(X

n, Y n)
∣∣∣ ≥ δ) ≤ 2C

∞∑
n=1

e
−

n(δ−CEk,ak,n,γ
)2

16Ca2
2,kn

k2
n(ekna2,kn

+a1,kn+1)
2

<∞, (97)

where the final inequality in (97) can be established via integral test for sum of series. This implies (77) via the
first Borel-Cantelli lemma. To prove (78), note that

E
[∣∣∣DGk(ak)(P,Q)− D̂Gk(ak)(X

n, Y n)
∣∣∣]

=

∫ ∞
0

P
(∣∣∣DGk(ak)(P,Q)− D̂Gk(ak)(X

n, Y n)
∣∣∣ ≥ δ) dδ

≤ CEk,ak,n,γ +

∫ ∞
CEk,ak,n,γ

2Ce
−

n(δ−CEk,ak,n,γ
)2

16Ca2
2,k

k2(eka2,k+a3,k+1)
2

dδ

= O
(
n−

1
2 k

3
2 a2,ke

ka2,k+a3,k

)
. (98)

B.2 Proof of Proposition 1

From proof of Corollary 1 (see (53)), there exists extensions f
(e)
p , f

(e)
q ∈ Bb′∨c′ ∩ Ss,b′

(
Rd
)

of f, f̄ , respectively

(see (55) and (56) for definitions of b′ and c′). Define f
(e)
KL := f

(e)
p −f (e)

q . Since f
(e)
p , f

(e)
q ∈ Ss,b′

(
Rd
)
, their Fourier

transforms exists such that corresponding Fourier inversion formulas hold. Also, we have

B
(
f

(e)
KL

) (a)

≤ B
(
f (e)
p

)
+B

(
f (e)
q

) (b)

≤ 2(b′ ∨ c′), (99)

max
x∈X

∣∣∣f (e)
KL (x)

∣∣∣ ≤ max
x∈X

∣∣∣f (e)
p (x)

∣∣∣+ max
x∈X

∣∣∣f (e)
q (x)

∣∣∣ (d)

≤ 2b, (100)

where

(a) follows from the definition in (4) and linearity of the Fourier transform;

(b) (c) is since f
(e)
p , f

(e)
q ∈ Bb′∨c′ ;

(d) is due to (P,Q) ∈ LKL(b, c).

Hence, it follows from (99)-(100) that f
(e)
KL |X ∈ I(M) with M = 2c̄b,c,d (since b ≤ b′), where c̄b,c,d is given in

(54). The claim then follows from Theorem 4 since fKL = f
(e)
KL |X .

C Appendix: χ2 divergence

C.1 Proof of Theorem 5

Let χ2
Gk(ak)(P,Q) := Hγχ2 ,Gk(ak)(P,Q). The proof of Theorem 5 is based on the lemma below (see Appendix

C.1.1 for proof).

Lemma 3. Let P,Q ∈ Pχ2(X ). For Xn ∼ P⊗n and Y n ∼ Q⊗n, the following holds for any α > 0:
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(i) For n, kn,akn such that k
5
2
n a2

2,kn
+ k

3
2
n a2,kna3,kn = O

(
n

1−α
2

)
,

χ̂2
Gk(akn )(X

n, Y n) −−−−→
n→∞

χ2
Gkn (akn )(P,Q), P− a.s. (101)

(ii) For n, k,ak such that k
5
2 a2

2,k + k
3
2 a2,ka3,k = O

(
n

1−α
2

)
,

E
[∣∣∣χ̂2

Gk(ak)(X
n, Y n)− χ2

Gk(ak)(P,Q)
∣∣∣] = O

(
n−

1
2

(
k

5
2 a2

2,k + k
3
2 a2,ka3,k

))
. (102)

The proof of (25) follows from (101), using similar arguments used to establish (20) and steps leading to (104)
below. The details are omitted.

We proceed to prove (26). Since fχ2 ∈ I(M), we have similar to (88) that there exists gθ∗k ∈ G
∗
k(mk)∥∥fχ2 − gθ∗k

∥∥
∞,P,Q = Dd,M,mk

− 1
2 , (103)

where Dd,M,m is defined in (89). Also, χ2 (P‖Q) ≥ χ2
G∗k(mk)(P,Q) since gθ ∈ G∗k(mk) is bounded. Then, we have∣∣∣χ2 (P‖Q)− χ2

G∗k(mk)(P,Q)
∣∣∣

= χ2 (P‖Q)− χ2
G∗k(mk)(P,Q)

≤ χ2 (P‖Q)− EP [gθ∗k(X)]− EQ

[
gθ∗k(Y ) +

g2
θ∗k

(Y )

4

]

≤ EP
[∣∣fχ2(X)− gθ∗k(X)

∣∣]+ EQ
[∣∣fχ2(Y )− gθ∗k(Y )

∣∣+
1

4

∣∣∣f2
χ2(Y )− g2

θ∗k
(Y )
∣∣∣]

≤ 2Dd,M,mk
− 1

2 + EQ
[

1

4

∣∣fχ2(Y )− gθ∗k(Y )
∣∣ ∣∣fχ2(Y ) + gθ∗k(Y )

∣∣]
≤ 2Dd,M,mk

− 1
2 + EQ

[1

4

∣∣fχ2(Y )− gθ∗k(Y )
∣∣ ∣∣gθ∗k(Y )− fχ2(Y )

∣∣+
1

2

∣∣fχ2(Y )− gθ∗k(Y )
∣∣ ∣∣fχ2(Y )

∣∣ ]
≤ 2Dd,M,mk

− 1
2 +

D2
d,M,m

4k
+
Dd,M,mM

2
√
k

, (104)

where (104) is due to fχ2 ∈ I(M). Taking a1,k =
√
k log k, ka2,k = a3,k = mk, and k,mk satisfying m2

k

√
k =

O
(
n(1−α)/2

)
, we have

E
[∣∣∣χ̂2

G∗k(mk)(X
n, Y n)− χ2 (P‖Q)

∣∣∣]
(a)

≤
∣∣∣χ2
G∗k(mk)(P,Q)− χ2 (P‖Q)

∣∣∣+ E
[∣∣∣χ2
G∗k(mk)(P,Q)− χ̂2

G∗k(mk)(X
n, Y n)

∣∣∣]
(b)

≤ 2Dd,M,mk
− 1

2 +
D2
d,M,m

4k
+
Dd,M,mM

2
√
k

+O
(
m2
k

√
k n−

1
2

)
, (105)

(c)
= Od,M

(
m̄(M,m)k−

1
2

)
+O

(
m2
k

√
k n−

1
2

)
,

where

(a) is due to triangle inequality;

(b) follows from (102) and (104);

(c) is by the definition of Dd,M,m in (89) and since m̄(M,m) ≥ 1.

Setting m = {0.5 log k}k∈N in (105) yields (26), thus completing the proof.
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C.1.1 Proof of Lemma 3

For γχ2(x) = x+ x2

4 , we have

γ̄′Gk(ak) = sup
x∈X ,

gθ∈Gk(ak)

γ′χ2(gθ(x)) ≤ 0.5(ka2,k + a3,k) + 1,

Rk,ak,γ ≤ 2
√
k (0.5(ka2,k + a3,k) + 2) , (106)

where γ′χ2(·) denotes the derivative of γχ2 . Since

0 ≤ Ek,ak,n,γ ≤ 4
√

2n−
1
2 k

3
2 a2,k (0.5(ka2,k + a3,k) + 2) −−−−→

n→∞
0, (107)

for k,ak such that k
5
2 a2

2,k + k
3
2 a2,ka3,k = O

(
n

1−α
2

)
, it follows from (17) that for any k ∈ N, δ > 0, and n

sufficiently large,

P
(∣∣∣χ̂2

Gk(ak)(X
n, Y n)− χ2

Gk(ak)(P,Q)
∣∣∣ ≥ δ) ≤ 2Ce

−
n(δ−CEk,ak,n,γ

)2

16Ca2
2,k

k2(0.5(ka2,k+a3,k)+2)
2

. (108)

Then, (101) and (102) follows using similar steps used to prove (77) (see (97)) and (78) (see (98)) in Theorem 4,
respectively. This completes the proof.

C.2 Proof of Proposition 2

It follows from (53) that there exists extensions f
(e)
p , f

(e)
q ∈ Bb′∨c′ ∩ S̃s,b′

(
Rd
)

of f, f̄ ∈ Hs,δb,c (U), respectively,

where S̃s,b′
(
Rd
)

is defined in (52). Let f
(e)
χ2 = 2

(
f

(e)
p · f (e)

q − 1
)

. Recall the notation αj for a multi-index of

order j. We have from the chain rule for differentiation that Dαjf
(e)
χ2 (x) is the sum of 2j terms of the form

Dαj1 f
(e)
p (x) ·Dαj2 f

(e)
q (x), where αj1 + αj2 = αj . Also, note from (50) and (51) that for j = 0, . . . , s, f

(e)
p , f

(e)
q

satisfies ∣∣∣Dαjf (e)
p (x)

∣∣∣ ∨ ∣∣∣Dαjf (e)
q (x)

∣∣∣ ≤ b̂ ≤ b′, ∀ x ∈ Rd, (109a)

∥∥∥Dαjf (e)
p

∥∥∥
Li(Rd)

∨
∥∥∥Dαjf (e)

q

∥∥∥
Li(Rd)

≤ b′, i = 1, 2. (109b)

Then, it follows that for j = 0, . . . , s and i = 1, 2,

∥∥∥Dαjf
(e)
χ2

∥∥∥
Li(Rd)

≤ 2 + 2

∥∥∥∥∥∥∥∥
∑

αj1 ,αj2 :
αj1+αj2=αj

Dαj1 f (e)
p ·Dαj2 f (e)

q

∥∥∥∥∥∥∥∥
Li(Rd)

≤ 2 + 2j+1b′max
αj2

∥∥∥Dαj2 f (e)
q

∥∥∥
Li(Rd)

≤ 2 + 2j+1b′2. (110)

Hence, f
(e)
χ2 ∈ S̃s,2+2s+1b′2

(
Rd
)
. From Lemma 1, it follows that B

(
f

(e)
χ2

)
≤ (2 + 2s+1b′2)κd

√
d. Moreover, we

have

sup
x∈X

∣∣∣f (e)
χ2

∣∣∣ ≤ 2 + 2 sup
x∈X

p(x)

q(x)
≤ 2 + 2b2. (111)

This implies that f
(e)
χ2 |X ∈ I

(
(2 + 2s+1b′2) (κd

√
d ∨ 1)

)
since b′ ≥ b. The claim then follows from Theorem 5 by

noting that fχ2 = f
(e)
χ2 |X and b′2 ≤ c̄2b,c,d.
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D Appendix: Squared Hellinger distance

D.1 Proof of Theorem 6

Let H2
G̃k(ak,t)

(P,Q) := HγH2 ,G̃k(ak,t)
(P,Q). The proof of Theorem 6 hinges on the following lemma, whose proof

is given in Appendix D.1.1.

Lemma 4. Let P,Q ∈ PH2(X ). For Xn ∼ P⊗n and Y n ∼ Q⊗n, the following holds for any α > 0:

(i) For n, kn,akn such that k
3
2
n a2,knt

−2
kn

= O
(
n

1−α
2

)
,

Ĥ2
G̃kn (akn ,tkn )(X

n, Y n) −−−−→
n→∞

H2
G̃kn (akn ,tkn )

(P,Q), P− a.s. (112)

(ii) For n, k,ak such that k
3
2 a2,kt

−2
k = O

(
n

1−α
2

)
,

E
[∣∣∣Ĥ2

G̃k(ak,tk)(X
n, Y n)−H2

G̃k(ak,tk)
(P,Q)

∣∣∣] = O
(
n−

1
2 k

3
2 a2,kt

−2
k

)
. (113)

We first prove (31). Since fH2 ∈ C (X ) for a compact set X , its supremum is achieved at some x∗ ∈ X . Also,

since
∥∥∥ dPdQ∥∥∥∞ < ∞ by definition of the Radon-Nikodym derivative, we have supx∈X fH2(x) = fH2(x∗) < 1.

Moreover, tk ≤ 1 − fH2(x∗) for sufficiently large k since tk → 0. Then, it follows from Stinchcombe and White

(1990, Theorem 2.8) that for any ε > 0 and k ≥ k0(ε) (some integer), there exists a gθ∗ ∈ G̃(1)
k,tk

such that

sup
x∈X
|fH2(x)− gθ∗(x)| ≤ ε. (114)

This implies similar to (80) in Theorem 4 that

lim
k→∞

H2

G̃(1)
k,tk

(P,Q) = H2(P,Q). (115)

Then, (31) follows from (112) and (115).

Next, we prove (32). Since fH2 ∈ IH2(M), 1− fH2(x) ≥ 1
M for all x ∈ X . Using tk → 0, we have from (12) that

for k such that tk ≤ 1
M and mk ≥M , there exists gθ ∈ G̃(2)

k,mk,tk
such that

‖fH2 − gθ‖∞,P,Q ≤ C̃d,Mk
− 1

2 . (116)

On the other hand, for k such that tk > 1
M or mk < M , taking g0 = 0 yields ‖fH2 − g0‖∞,P,Q ≤ M as

fH2 ∈ I(M). Then, denoting t = {tk}k∈N, it follows similar to (88) that for all k, there exists gθ∗k ∈ G̃
(2)
k,mk,tk

such that ∥∥fH2 − gθ∗k
∥∥
∞,P,Q ≤ C̃d,Mk

− 1
2 ∨

(√
t̄ (M−1, t) ∨

√
m̄(M,m)

)
Mk−

1
2 =: D̄d,M,t,mk

− 1
2 , (117)

where t̄
(
M−1, t

)
:= inf{k : tk ≤ M−1}. Moreover, note that by definition, H2(P,Q) ≥ H2

G̃(2)
k,mk,tk

(P,Q). Then,

we have∣∣∣∣H2(P,Q)−H2

G̃(2)
k,mk,tk

(P,Q)

∣∣∣∣
= H2(P,Q)−H2

G̃(2)
k,mk,tk

(P,Q)

≤ EP [fH2(X)]− EQ
[

fH2(Y )

1− fH2(Y )

]
− EP

[
gθ∗k(X)

]
+ EQ

[
gθ∗k(Y )

1− gθ∗k(Y )

]
≤ EP

[∣∣fH2(X)− gθ∗k(X)
∣∣]+ EQ

[∣∣∣∣ fH2(Y )

1− fH2(Y )
−

gθ∗k(Y )

1− gθ∗k(Y )

∣∣∣∣]
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≤ D̄d,M,t,mk
− 1

2 + EQ
[∣∣∣∣ fH2(Y )− gθ∗k(Y )

(1− fH2(Y ))(1− gθ∗k(Y ))

∣∣∣∣]
≤ D̄d,M,t,mk

− 1
2 +M t−1

k D̄d,M,t,mk
− 1

2 , (118)

where (118) is due to 1− gθ∗(x) ≥ tk, (1− fH2(x))
−1 ≤M for all x ∈ X , and (117).

Then, it follows from (113) and (118) that by taking a1,k =
√
k log k, ka2,k = a3,k = mk, and

√
kmkt

−2
k =

O
(
n(1−α)/2

)
for some α > 0, we have

E
[∣∣∣∣Ĥ2

G̃(2)
k,mk,tk

(Xn, Y n)−H2(P,Q)

∣∣∣∣]
≤
∣∣∣∣H2(P,Q)−H2

G̃(2)
k,mk,tk

(P,Q)

∣∣∣∣+ E
[∣∣∣∣Ĥ2

G̃(2)
k,mk,tk

(Xn, Y n)−H2

G̃(2)
k,mk,tk

(P,Q)

∣∣∣∣]
≤ D̄d,M,t,mk

− 1
2 +M t−1

k D̄d,M,t,mk
− 1

2 +O
(
mk

√
kt−2
k n−

1
2

)
(119)

= Od,M

(√
t̄ (M−1, t) ∨

√
m̄(M,m) t−1

k k−
1
2

)
+O

(
mk

√
kt−2
k n−

1
2

)
.

Setting mk = 0.5 log k and tk = log−1 k in (119) yields (32), thus completing the proof.

D.1.1 Proof of Lemma 4

Note that Theorem 3 continues to hold with Gk(a) in (16) and (17) replaced with G̃k(a, t), since for γH2(x) = x
1−x ,

γ̄′G̃k(ak,tk)
= sup

x∈X ,
gθ∈G̃k(ak,tk)

γ′H2(gθ(x)) = sup
x∈X ,

gθ∈G̃k(ak,tk)

1

(1− gθ)2
≤ 1

t2k
,

where γ′H2(·) denotes the derivative of γH2 . This implies that Rk,ak,γ ≤ 2
√
k
(
t−2
k + 1

)
, and

0 ≤ Ek,ak,n,γ ≤ 4
√

2n−
1
2 k

3
2 a2,k

(
t−2
k + 1

)
−−−−→
n→∞

0,

for k,ak, tk such that k
3
2 a2,kt

−2
k = O

(
n

1−α
2

)
. It then follows from (17) that for any k ∈ N, δ > 0, and n

sufficiently large,

P
(∣∣∣Ĥ2

Gk(ak)(X
n, Y n)−H2

Gk(ak)(P,Q)
∣∣∣ ≥ δ) ≤ 2Ce

−
n(δ−CEk,ak,n,γ

)2

16Ca2
2,k

k2(t−2
k

+1)
2

.

Then, (112) and (113) follows using similar steps used to prove (77) (see (97)) and (78) (see (98)) in Theorem 4,
respectively. This completes the proof.
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