A Appendix

To emphasize the underlying parameters of the NN, by some abuse of notation, we introduce

$$
\left.\begin{array}{c}
\mathcal{G}_{k}(\Theta):=\left\{g: \mathbb{R}^{d} \rightarrow \mathbb{R}: g(x)=\sum_{i=1}^{k} \beta_{i} \phi\left(w_{i} \cdot x+b_{i}\right)+b_{0},\left(\left\{\beta_{i}, w_{i}, b_{i}\right\}_{i=1}^{k}, b_{0}\right) \in \Theta\right\}, \\
\Theta_{k}(\mathbf{a}):=\left\{\left(\left\{\beta_{i}, w_{i}, b_{i}\right\}_{i=1}^{k}, b_{0}\right):\right. \tag{34b}\\
\quad w_{i} \in \mathbb{R}^{d}, b_{0}, b_{i}, \beta_{i} \in \mathbb{R}, \max _{\substack{i=1, \ldots, k \\
j=1, \ldots, d}}\left\{\left|w_{i, j}\right|,\left|b_{i}\right|\right\} \leq a_{1} \\
\quad\left|\beta_{i}\right| \leq a_{2}, \quad i=1, \ldots, k,\left|b_{0}\right| \leq a_{3}
\end{array}\right\} .
$$

Also, throughout the Appendix, we denote $g(x)=\sum_{i=1}^{k} \beta_{i} \phi\left(w_{i} \cdot x+b_{i}\right)+b_{0}$ for $\theta=\left(\left\{\beta_{i}, w_{i}, b_{i}\right\}_{i=1}^{k}, b_{0}\right)$ by g_{θ}, whenever the underlying θ needs to be emphasized.
We first state an auxiliary result which will be useful in the proofs that follow. For $b \geq 0$, an integer $l \geq 0$, consider the function class $\mathcal{S}_{l, b}\left(\mathbb{R}^{d}\right)$ defined below:

$$
\mathcal{S}_{l, b}\left(\mathbb{R}^{d}\right):=\left\{f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right): \begin{array}{ll}
& |f(0)| \leq b, D^{\boldsymbol{\alpha}} f \text { exists Lebesgue a.e. on } \mathbb{R}^{d} \forall \boldsymbol{\alpha} \text { s.t. }|\boldsymbol{\alpha}|=l, \tag{35}\\
& \left\|D^{\boldsymbol{\alpha}} f\right\|_{L^{j}\left(\mathbb{R}^{d}\right)} \leq b \text { for } j=1,2,|\boldsymbol{\alpha}| \in\{1, l\}
\end{array}\right\}
$$

The following lemma states that functions in $\mathcal{S}_{l, b}\left(\mathbb{R}^{d}\right)$ with sufficient smoothness order l belong to the Barron class. Its proof essentially follows using arguments from Barron (1993), where it was mentioned without explicit quantification. Below, we provide a proof for completeness.
Lemma 1 (Smoothness and Barron class). If $f \in \mathcal{S}_{s, b}\left(\mathbb{R}^{d}\right)$ for $s:=\left\lfloor\frac{d}{2}\right\rfloor+2$, then we have

$$
\begin{align*}
& B(f) \leq b \kappa_{d} \sqrt{d} \tag{36a}\\
& \kappa_{d}^{2}:=\left(d+d^{s}\right) \int_{\mathbb{R}^{d}}\left(1+\|\omega\|^{2(s-1)}\right)^{-1} \mathrm{~d} \omega<\infty \tag{36b}
\end{align*}
$$

Consequently, $\mathcal{S}_{s, b}\left(\mathbb{R}^{d}\right) \subseteq \mathcal{B}_{b \kappa_{d} \sqrt{d} \vee b}$.
Proof. Since $f \in L^{1}\left(\mathbb{R}^{d}\right)$, its Fourier transform \hat{f} is well-defined. Also,

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}|\hat{f}(\omega)| d \omega & \stackrel{(a)}{\leq}\left(\int_{\mathbb{R}^{d}} \frac{d \omega}{1+\|\omega\|^{2 s}}\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{d}}\left(1+\|\omega\|^{2 s}\right)|\hat{f}(\omega)|^{2} d \omega\right)^{\frac{1}{2}} \\
& \stackrel{(b)}{\leq}\left(\int_{\mathbb{R}^{d}} \frac{d \omega}{1+\|\omega\|^{2 s}}\right)^{\frac{1}{2}}\left(\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\sum_{\boldsymbol{\alpha}:|\boldsymbol{\alpha}|=s}\left\|D^{\boldsymbol{\alpha}} f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}\right)^{\frac{1}{2}}<\infty
\end{aligned}
$$

where
(a) follows from Cauchy-Schwarz inequality;
(b) is by Plancherel's theorem and definition of $\mathcal{S}_{l, b}\left(\mathbb{R}^{d}\right)$.

Hence, $\hat{f} \in L^{1}\left(\mathbb{R}^{d}\right)$ and the Fourier inversion formula holds with $\tilde{F}(d \omega)=\hat{f}(\omega) d \omega$. Then, it follows that

$$
\begin{equation*}
B(f)=\int_{\mathbb{R}^{d}} \sup _{x \in \mathcal{X}}|\omega \cdot x||\hat{f}(\omega)| d \omega \leq \sqrt{d} \int_{\mathbb{R}^{d}}\|\omega\||\hat{f}(\omega)| d \omega \tag{37}
\end{equation*}
$$

where we used $\sup _{x \in \mathcal{X}}|\omega \cdot x| \leq \sqrt{d}\|\omega\|$ which holds by Cauchy-Schwarz inequality.
Next, recall that if the partial derivatives $D^{\boldsymbol{\alpha}} f,|\boldsymbol{\alpha}|=s$, exists on \mathbb{R}^{d}, then all partial derivatives $D^{\boldsymbol{\alpha}} f, 0 \leq|\boldsymbol{\alpha}| \leq$ s, also exists. Hence, if $\left\|D^{\alpha} f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq b$ for all α with $|\alpha| \in\{1, s\}$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\|\omega\||\hat{f}(\omega)| d \omega \stackrel{(a)}{\leq}\left(\int_{\mathbb{R}^{d}} \frac{d \omega}{1+\|\omega\|^{2(s-1)}}\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{d}}\left(\|\omega\|^{2}+\|\omega\|^{2 s}\right)|\hat{f}(\omega)|^{2} d \omega\right)^{\frac{1}{2}} \tag{38}
\end{equation*}
$$

$$
\begin{align*}
& \stackrel{(b)}{\leq}\left(\int_{\mathbb{R}^{d}} \frac{d \omega}{1+\|\omega\|^{2(s-1)}}\right)^{\frac{1}{2}}\left(\sum_{\alpha:|\alpha|=1}\left\|D^{\alpha} f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\sum_{\alpha:|\alpha|=s}\left\|D^{\alpha} f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}\right)^{\frac{1}{2}} \\
& \stackrel{(c)}{\leq} \kappa_{d} b,
\end{align*}
$$

where
(a) follows from Cauchy-Schwarz inequality;
(b) is due to Plancherel's theorem;
(c) follows since $|\{\boldsymbol{\alpha}:|\boldsymbol{\alpha}|=s\}|=d^{s}$ and $\left\|D^{\boldsymbol{\alpha}} f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq b$.

Combining (37) and (39) leads to (36a). The final claim follows from (5) and 36a) by noting that $|f(0)| \leq b$ by definition.

A. 1 Proof of Theorem 2

The proof relies on arguments from Barron (1992) and Barron (1993), along with the uniform central limit theorem for uniformly bounded VC function classes. Fix an arbitrary (small) $\delta>0$, and let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be such that $\tilde{f}=\left.f\right|_{\mathcal{X}}$ and $B(f) \vee f(0) \leq c+\delta$. This is possible since $c_{B}^{\star}(\tilde{f}) \leq c$. Then, it follows from the proof of Barron (1993, Theorem 2) that

$$
f_{0}(x):=f(x)-f(0)=\int_{\omega \in \mathbb{R}^{d} \backslash\{0\}} \varrho(x, \omega) \mu(d \omega),
$$

where

$$
\begin{aligned}
& \varrho(x, \omega)=\frac{B(f)}{\sup _{x \in \mathcal{X}}|\omega \cdot x|}(\cos (\omega \cdot x+\zeta(\omega))-\cos (\zeta(\omega))) \\
& B(f):=\int_{\mathbb{R}^{d}} \sup _{x \in \mathcal{X}}|\omega \cdot x| F(d \omega) \\
& \mu(d \omega)=\frac{\sup _{x \in \mathcal{X}}|\omega \cdot x| F(d \omega)}{B(f)}
\end{aligned}
$$

and $\zeta: \mathbb{R}^{d} \rightarrow \mathbb{R}$. Note that $\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ is a probability measure.
Let $\tilde{\Theta}_{1}(k, B(f)):=\Theta_{1}(\sqrt{k} \log k, 2 B(f), 0)$ (see (34b). Then, it further follows from the proofs ${ }^{4}$ of Barron (1993, Lemma 2-Lemma 4,Theorem 3) that there exists a probability measure $\mu_{k} \in \mathcal{P}\left(\tilde{\Theta}_{1}(k, B(f))\right.$) (see Barron (1993, Eqns. (28)-(32))) such that

$$
\begin{equation*}
\left\|f_{0}-\int_{\theta \in \tilde{\Theta}_{1}(k, B(f))} g_{\theta}(\cdot) \mu_{k}(d \theta)\right\|_{\infty, P, Q} \leq \frac{2(B(f)+1)}{\sqrt{k}} \tag{40}
\end{equation*}
$$

where $g_{\theta}(x)=\beta \phi(w \cdot x+b)$ for $\theta=(\beta, w, b)$. Note that $\int_{\tilde{\Theta}_{1}(k, B(f))} \mu_{k}(d \theta)=1<\infty$.
Next, for each fixed x, let $v_{x}: \tilde{\Theta}_{1}(k, B(f)) \rightarrow \mathbb{R}$ be given by $v_{x}(\theta):=g_{\theta}(x)$, and consider the function class $\mathcal{V}_{k}\left(\tilde{\Theta}_{1}(k, B(f))\right)=\left\{v_{x}, x \in \mathbb{R}^{d}\right\}$. Note that every $v_{x} \in \mathcal{V}_{k}\left(\tilde{\Theta}_{1}(k, B(f))\right)$ is a composition of an affine function in θ with the bounded monotonic function $\beta \phi(\cdot)$. Hence, noting that $\mathcal{V}_{k}\left(\tilde{\Theta}_{1}(k, B(f))\right)$ is a VC function class

[^0](Van Der Vaart and Wellner (1996)), it follows from Van Der Vaart and Wellner (1996, Theorem 2.8.3) that it is a uniform Donsker class (in particular, μ_{k}-Donsker) for all probability measures $\mu \in \mathcal{P}\left(\tilde{\Theta}_{1}(k, B(f))\right)$. Furthermore, an application of Van Der Vaart and Wellner (1996, Corollary 2.2.8)) yields that there exists k parameter vectors, $\theta_{i}:=\left(\beta_{i}, w_{i}, b_{i}\right) \in \tilde{\Theta}_{1}(k, B(f)), 1 \leq i \leq k$, such that (see also Yukich et al. (1995, Theorem 2.1))
\[

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{d}}\left|\int_{\theta \in \tilde{\Theta}_{1}(k, B(f))} g_{\theta}(x) \mu_{k}(d \theta)-\frac{1}{k} \sum_{i=1}^{k} g_{\theta_{i}}(x)\right| \leq \hat{c}_{d} B(f) k^{-\frac{1}{2}} \tag{41}
\end{equation*}
$$

\]

where \hat{c}_{d} is a constant which depends only on d. Note that the R.H.S. of 41 is independent of μ_{k} and depends on f and \mathcal{X} only via $B(f)$.
From 40, 41 and triangle inequality, we obtain

$$
\left\|f_{0}-\frac{1}{k} \sum_{i=1}^{k} g_{\theta_{i}}\right\|_{\infty, P, Q} \leq\left(\hat{c}_{d} B(f)+2 B(f)+2\right) k^{-\frac{1}{2}} .
$$

Setting $\theta=\left\{\left\{\left(\frac{\beta_{i}}{k}, w_{i}, b_{i}\right)\right\}_{i=1}^{k}, f(0)\right\}$ and $g_{\theta}(x)=f(0)+\frac{1}{k} \sum_{i=1}^{k} g_{\theta_{i}}(x)$, we have

$$
\left\|f-g_{\theta}\right\|_{\infty, P, Q} \leq\left(\left(\hat{c}_{d}+2\right) B(f)+2\right) k^{-\frac{1}{2}} \leq\left(\left(\hat{c}_{d}+2\right)(c+\delta)+2\right) k^{-\frac{1}{2}}
$$

Next, note that $\left\|\tilde{f}-g_{\theta}\right\|_{\infty, P, Q}=\left\|f-g_{\theta}\right\|_{\infty, P, Q}$ and $g_{\theta} \in \mathcal{G}_{k}^{*}(B(f) \vee f(0)) \subseteq \mathcal{G}_{k}^{*}(c+\delta)$. Since $\delta>0$ is arbitrary, we obtain that there exists $g_{\theta} \in \mathcal{G}_{k}^{*}(c)$

$$
\begin{equation*}
\left\|\tilde{f}-g_{\theta}\right\|_{\infty, P, Q} \leq\left(\left(\hat{c}_{d}+2\right) c+2\right) k^{-\frac{1}{2}}=: \tilde{C}_{d, c} k^{-\frac{1}{2}} \tag{42}
\end{equation*}
$$

thus proving the claim in (12).
On the other hand, it follows similar to (38) in Lemma 1 that for a fixed $\epsilon>0$ and $l(\epsilon)=d / 2+1+\epsilon$, the set of functions $f \in \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $B(f) \leq c$ includes those whose Fourier transform $\hat{f}(\omega)$ satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\left(\|\omega\|^{2}+\|\omega\|^{2 l(\epsilon)}\right)|\hat{f}(\omega)|^{2} d \omega \leq c^{2} d^{-1}\left(\int_{\mathbb{R}^{d}} \frac{d \omega}{1+\|\omega\|^{2(l(\epsilon)-1)}}\right)^{-1} \tag{43}
\end{equation*}
$$

since $\int_{\mathbb{R}^{d}} \frac{d \omega}{1+\|\omega\|^{2(l(\epsilon)-1)}}<\infty$. Then, (13) follows from the proof of Barron (1992)[Theorem 3]. Note from the proof therein that the constant in (13) may in general depend on d and ϵ.

A. 2 Proof of Corollary 1

By Theorem 2, it suffices to show that there exists an extension f_{e} of f from \mathcal{U} to \mathbb{R}^{d} such that $B\left(f_{\mathrm{e}}\right) \vee f_{\mathrm{e}}(0) \leq$ $\bar{c}_{b, c, d}$. Let $\boldsymbol{\alpha}_{j}$ denote a multi-index of order j, and recall that $s:=\left\lfloor\frac{d}{2}\right\rfloor+2$. Consider an extension of $D^{\boldsymbol{\alpha}_{s}} f$ from \mathcal{U} to \mathbb{R}^{d} for each $\boldsymbol{\alpha}_{s}$ as follows:

$$
\begin{equation*}
D^{\boldsymbol{\alpha}_{s}} f(x):=\inf _{x^{\prime} \in \mathcal{U}} D^{\boldsymbol{\alpha}_{s}} f\left(x^{\prime}\right)+c\left\|x-x^{\prime}\right\|^{\delta}, x \in \mathbb{R}^{d} \backslash \mathcal{U} \tag{44}
\end{equation*}
$$

Note that $D^{\boldsymbol{\alpha}_{s}} f$ extended this way is Hölder continuous with the same constant c and exponent δ on \mathbb{R}^{d}. Fixing $D^{\boldsymbol{\alpha}_{s}} f$ on \mathbb{R}^{d} induces an extension of all lower (and also higher) order derivatives $D^{\boldsymbol{\alpha}_{j}} f, 0 \leq j<s$ to \mathbb{R}^{d}, which can be defined recursively as $D^{\boldsymbol{\alpha}_{1}} D^{\boldsymbol{\alpha}_{s-j}} f(x)=D^{\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{s-j}} f(x), x \in \mathbb{R}^{d}$, for all $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{s-j}$ and $j=1, \ldots, s$.
Let $\mathcal{U}^{\prime}:=\left\{x^{\prime} \in \mathbb{R}^{d}:\left\|x^{\prime}-x\right\|<1\right.$ for some $\left.x \in \mathcal{X}\right\}$. Suppose $\mathcal{U} \subset \mathcal{U}^{\prime}$. By the mean value theorem, we have for any $x, x^{\prime} \in \mathcal{U}^{\prime}$ and $j=1, \ldots, s$,

$$
\left|D^{\boldsymbol{\alpha}_{s-j}} f\left(x^{\prime}\right)\right| \leq\left|D^{\boldsymbol{\alpha}_{s-j}} f(x)\right|+\max _{\substack{\tilde{x} \in \mathcal{U}^{\prime}, \boldsymbol{\alpha}_{1}}}\left|D^{\boldsymbol{\alpha}_{s-j}+\boldsymbol{\alpha}_{1}} f(\tilde{x})\right|\left\|x-x^{\prime}\right\|_{1}
$$

$$
\begin{equation*}
\leq\left|D^{\boldsymbol{\alpha}_{s-j}} f(x)\right|+\max _{\substack{\tilde{x} \in \mathcal{U}^{\prime}, \alpha_{1}}}\left|D^{\boldsymbol{\alpha}_{s-j}+\boldsymbol{\alpha}_{1}} f(\tilde{x})\right| \sqrt{d}\left\|x-x^{\prime}\right\|, \tag{45}
\end{equation*}
$$

where the last step follows from $\left\|x-x^{\prime}\right\|_{1} \leq \sqrt{d}\left\|x-x^{\prime}\right\|$. Also, note from (44) that $D^{\alpha_{s}} f(x)<b+c$ for all $x \in \mathcal{U}^{\prime}$, and recall that since $f \in \mathcal{H}_{b, c}^{s, \delta}(\mathcal{U})$, we have $\left|D^{\alpha_{s-j}} f(x)\right| \leq b$ for all $x \in \mathcal{U}$. Then, for any $x^{\prime} \in \mathcal{U}^{\prime}$, taking $x \in \mathcal{X}$ satisfying $\left\|x-x^{\prime}\right\| \leq 1$ (such an x exists by definition of \mathcal{U}^{\prime}) in (45) yields

$$
\begin{equation*}
\left|D^{\boldsymbol{\alpha}_{s-1}} f\left(x^{\prime}\right)\right| \leq b+(b+c) \sqrt{d} . \tag{46}
\end{equation*}
$$

Starting from (46) and recursively applying (45), we obtain for $j=1, \ldots, s$, and $x^{\prime} \in \mathcal{U}^{\prime}$,

$$
\begin{equation*}
\left|D^{\alpha_{s-j}} f\left(x^{\prime}\right)\right| \leq b \sum_{i=1}^{j} d^{\frac{i-1}{2}}+(b+c) d^{\frac{j}{2}} \leq b \frac{1-d^{\frac{s}{2}}}{1-\sqrt{d}}+(b+c) d^{\frac{s}{2}}=: \tilde{b} . \tag{47}
\end{equation*}
$$

Thus, the extension f from \mathcal{U} to \mathbb{R}^{d} satisfies $\left.f\right|_{\mathcal{U}^{\prime}} \in \mathcal{H}_{\bar{b}, c}^{s, \delta}\left(\mathcal{U}^{\prime}\right)$. If $\mathcal{U}^{\prime} \subseteq \mathcal{U}$, then $\left.f\right|_{\mathcal{U}^{\prime}} \in \mathcal{H}_{b, c}^{s, \delta}\left(\mathcal{U}^{\prime}\right)$ by definition, and thus, in either case, $\left.f\right|_{\mathcal{U}^{\prime}} \in \mathcal{H}_{\vec{b}, c}^{s, \delta}\left(\mathcal{U}^{\prime}\right)$.
The desired final extension is $f_{\mathrm{e}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ given by $f_{\mathrm{e}}(x):=f(x) \cdot f_{\mathrm{C}}(x)$, where

$$
\begin{align*}
& f_{\mathrm{C}}(x):=\mathbb{1}_{\mathcal{X}^{\prime}} * \psi_{\frac{1}{2}}(x):=\int_{\mathbb{R}^{d}} \mathbb{1}_{\mathcal{X}^{\prime}}(y) \psi_{\frac{1}{2}}(x-y) d y, x \in \mathbb{R}^{d}, \tag{48}\\
& \mathcal{X}^{\prime}:=\left\{x^{\prime} \in \mathbb{R}^{d}:\left\|x^{\prime}-x\right\| \leq 0.5 \text { for some } x \in \mathcal{X}\right\}, \\
& \psi(x):= \begin{cases}u^{-1} e^{-\frac{1}{2}-\|x\|^{2}}, & \|x\|<\frac{1}{2}, \\
0, & \text { otherwise },\end{cases} \tag{49}
\end{align*}
$$

and u is the normalization constant such that $\int_{\mathbb{R}^{d}} \psi(x) d x=1$. Note that $\psi \in \mathrm{C}^{\infty}\left(\mathbb{R}^{d}\right)$, and consequently, $f_{\mathrm{C}} \in \mathrm{C}^{\infty}\left(\mathbb{R}^{d}\right)$ from (48) by dominated convergence theorem. Also, observe that $f_{\mathrm{C}}(x)=1$ for $x \in \mathcal{X}, f_{\mathrm{C}}(x)=0$ for $x \in \mathbb{R}^{d} \backslash \mathcal{U}^{\prime}$ and $\overline{f_{\mathrm{C}}}(x) \in(0,1)$ for $x \in \mathcal{U}^{\prime} \backslash \mathcal{X}$. Hence, $f_{\mathrm{e}}(x)=f(x)$ for $x \in \mathcal{X}, f_{\mathrm{e}}(x)=0$ for $x \in \mathbb{R}^{d} \backslash \mathcal{U}^{\prime}$ and $\left|f_{\mathrm{e}}(x)\right| \leq|f(x)|$ for $x \in \mathcal{U}^{\prime} \backslash \mathcal{X}$, thus satisfying $\left.f_{\mathrm{e}}\right|_{\mathcal{X}}=\left.f\right|_{\mathcal{X}}=\tilde{f}$ as required. Moroever, for all $j=0, \ldots, s$,

$$
\begin{gather*}
\left|D^{\alpha_{j}} f_{\mathrm{e}}(x)\right| \stackrel{(a)}{\leq} 2^{j} \tilde{b} \max _{\substack{x \in \mathcal{U}^{\prime} \leq j \\
\alpha:|\alpha| \leq j}}\left|D^{\alpha} f_{\mathrm{C}}(x)\right| \stackrel{(b)}{\leq} 2^{s} \tilde{b} \max _{\substack{x:\|x\| \leq 0.5, \alpha:|\alpha| \leq s}}\left|D^{\alpha} \psi(x)\right|=: \hat{b}, x \in \mathcal{U}^{\prime}, \tag{50a}\\
D^{\alpha_{j}} f_{\mathrm{e}}(x)=0, x \notin \mathcal{U}^{\prime}, \tag{50b}
\end{gather*}
$$

where
(a) follows using chain rule for differentiation and (47);
(b) follows from the definition in (48).

Then, we have for $j=0, \ldots, s$ and $i=1,2$,

$$
\begin{align*}
\left\|D^{\alpha_{j}} f_{e}\right\|_{L^{i}\left(\mathbb{R}^{d}\right)}^{i} & =\int_{\mathbb{R}^{d}}\left(D^{\alpha_{j}} f_{e}\right)^{i}(x) d x \\
& =\int_{\mathcal{U}^{\prime}}\left(D^{\alpha_{j}} f_{\mathrm{e}}\right)^{i}(x) d x \leq \hat{b}^{i} \operatorname{Vol}_{d}(0.5 \sqrt{d}+1) \\
& =\hat{b}^{i} \frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}+1\right)}(0.5 \sqrt{d}+1)^{d}, \tag{51}
\end{align*}
$$

where $\mathrm{Vol}_{d}(r)$ denotes the volume of a Euclidean ball in \mathbb{R}^{d} with radius r and Γ denotes the gamma function. Defining $b^{\prime}:=\hat{b} \pi^{\frac{d}{2}} \Gamma^{-1}\left(\frac{d}{2}+1\right)(0.5 \sqrt{d}+1)^{d}$ and noting that $b^{\prime} \geq \hat{b}$, we have from (50) and (51) that $f_{\mathrm{e}}(x) \in$ $\tilde{\mathcal{S}}_{s, b^{\prime}}\left(\mathbb{R}^{d}\right)$, where

$$
\tilde{\mathcal{S}}_{s, b^{\prime}}\left(\mathbb{R}^{d}\right):=\left\{f \in L^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right): \begin{array}{l}
|f(0)| \leq b^{\prime}, D^{\boldsymbol{\alpha}} f \text { exists Lebesgue a.e. on } \mathbb{R}^{d} \forall \boldsymbol{\alpha} \text { s.t. }|\boldsymbol{\alpha}|=s, \tag{52}\\
\left\|D^{\alpha} f\right\|_{L^{i}\left(\mathbb{R}^{d}\right)} \leq b^{\prime} \text { for } i=1,2,|\boldsymbol{\alpha}|=1, \ldots, s
\end{array}\right\},
$$

Observe that $\tilde{\mathcal{S}}_{s, b^{\prime}}\left(\mathbb{R}^{d}\right) \subseteq \mathcal{S}_{s, b^{\prime}}\left(\mathbb{R}^{d}\right)$ (see 35$)$. This implies via Lemma 1 that $B\left(f_{\mathrm{e}}\right) \leq c^{\prime}:=\kappa_{d} \sqrt{d} b^{\prime}$ and

$$
\begin{equation*}
f_{\mathrm{e}} \in \mathcal{B}_{b^{\prime} \vee c^{\prime}} \cap \tilde{\mathcal{S}}_{s, b^{\prime}}\left(\mathbb{R}^{d}\right) \subseteq \mathcal{B}_{b^{\prime} \vee c^{\prime}} \cap \mathcal{S}_{s, b^{\prime}}\left(\mathbb{R}^{d}\right) \tag{53}
\end{equation*}
$$

Then, by defining

$$
\begin{equation*}
\bar{c}_{b, c, d}:=b^{\prime} \vee c^{\prime} \tag{54}
\end{equation*}
$$

where

$$
\begin{align*}
& \left.b^{\prime}=\pi^{\frac{d}{2}} \Gamma^{-1}(0.5 d+1)(0.5 \sqrt{d}+1)^{d} 2^{s}\left(b \frac{1-d^{\frac{s}{2}}}{1-\sqrt{d}}+(b+c) d^{\frac{s}{2}}\right) \max _{x:\|x\| \leq 0.5,}^{\boldsymbol{\alpha}:|\boldsymbol{\alpha}| \leq s}\right\} \tag{55}\\
& c^{\prime}=\sqrt{d} \kappa_{d} b^{\prime} \tag{56}\\
& \kappa_{d}^{2}=\left(d+d^{s}\right) \int_{\mathbb{R}^{d}}\left(1+\|\omega\|^{2(s-1)}\right)^{-1} d \omega
\end{align*}
$$

it follows from Theorem 2 (see 42p) that there exists $g \in \mathcal{G}_{k}^{*}\left(\bar{c}_{b, c, d}\right)$ such that

$$
\begin{equation*}
\|\tilde{f}-g\|_{\infty, P, Q} \leq \tilde{C}_{d, \bar{c}_{b, c, d}} k^{-\frac{1}{2}} \tag{57}
\end{equation*}
$$

This completes the proof.

A. 3 Proof of Theorem 3

We will show that Theorem 3 holds with

$$
\begin{align*}
& V_{k, \mathbf{a}, \gamma}:=4 C a_{2}^{2} k R_{k, \mathbf{a}, \gamma}^{2} \tag{58}\\
& E_{k, \mathbf{a}, n, \gamma}:=2 \sqrt{2} n^{-\frac{1}{2}} k a_{2} R_{k, \mathbf{a}, \gamma}=4 \sqrt{2} n^{-\frac{1}{2}} k^{3 / 2} a_{2}\left(\bar{\gamma}_{\mathcal{G}_{k}(\mathbf{a})}^{\prime}+1\right) \tag{59}
\end{align*}
$$

where

$$
\begin{equation*}
R_{k, \mathbf{a}, \gamma}:=2\left(\bar{\gamma}_{\mathcal{G}_{k}(\mathbf{a})}^{\prime}+1\right) \sqrt{k} \tag{60}
\end{equation*}
$$

and $\bar{\gamma}_{\mathcal{G}_{k}(\mathbf{a})}^{\prime}$ is defined in (16). We have

$$
\begin{align*}
& \hat{\mathrm{H}}_{\gamma, \mathcal{G}_{k}(\mathbf{a})}\left(x^{n}, y^{n}\right)-\mathrm{H}_{\gamma, \mathcal{G}_{k}(\mathbf{a})}(P, Q) \\
& =\sup _{g_{\theta} \in \mathcal{G}_{k}(\mathbf{a})} \frac{1}{n} \sum_{i=1}^{n} g_{\theta}\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \gamma\left(g_{\theta}\left(y_{i}\right)\right)-\left(\sup _{g_{\theta} \in \mathcal{G}_{k}(\mathbf{a})} \mathbb{E}_{P}\left[g_{\theta}(X)\right]-\mathbb{E}_{Q}\left[\gamma\left(g_{\theta}(Y)\right)\right]\right) \\
& \leq \sup _{g_{\theta} \in \mathcal{G}_{k}(\mathbf{a})} \frac{1}{n} \sum_{i=1}^{n} g_{\theta}\left(x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \gamma\left(g_{\theta}\left(y_{i}\right)\right)-\mathbb{E}_{P}\left[g_{\theta}(X)\right]+\mathbb{E}_{Q}\left[\gamma\left(g_{\theta}(Y)\right)\right] . \tag{61}
\end{align*}
$$

Let

$$
\begin{equation*}
Z_{\theta}:=\frac{1}{n} \sum_{i=1}^{n} g_{\theta}\left(X_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \gamma\left(g_{\theta}\left(Y_{i}\right)\right)-\mathbb{E}_{P}\left[g_{\theta}(X)\right]+\mathbb{E}_{Q}\left[\gamma\left(g_{\theta}(Y)\right)\right] \tag{62}
\end{equation*}
$$

We have

$$
\begin{align*}
\left|Z_{\theta}-Z_{\theta^{\prime}}\right| \leq \sum_{i=1}^{n} \frac{1}{n} & \left|g_{\theta}\left(X_{i}\right)-g_{\theta^{\prime}}\left(X_{i}\right)-\mathbb{E}_{P}\left[g_{\theta}(X)-g_{\theta^{\prime}}(X)\right]\right| \\
& +\frac{1}{n}\left|\gamma\left(g_{\theta}\left(Y_{i}\right)\right)-\gamma\left(g_{\theta^{\prime}}\left(Y_{i}\right)\right)-\mathbb{E}_{Q}\left[\gamma\left(g_{\theta}(Y)\right)-\gamma\left(g_{\theta^{\prime}}(Y)\right)\right]\right| \tag{63}
\end{align*}
$$

Since $0 \leq \phi(x) \leq 1$ for all $x \in \mathbb{R}^{d}$, for any $x, x^{\prime} \in \mathcal{X}$ and $\theta=\left(\left\{\beta_{i}, w_{i}, b_{i}\right\}_{i=1}^{k}, b_{0}\right), \theta^{\prime}=\left(\left\{\beta_{i}^{\prime}, w_{i}^{\prime}, b_{i}^{\prime}\right\}_{i=1}^{k}, b_{0}^{\prime}\right) \in \Theta_{k}(\mathbf{a})$,

$$
\begin{equation*}
\left|g_{\theta}(x)-g_{\theta^{\prime}}\left(x^{\prime}\right)\right| \leq \sum_{i=1}^{k}\left|\beta_{i}-\beta_{i}^{\prime}\right| \leq\left\|\boldsymbol{\beta}(\theta)-\boldsymbol{\beta}\left(\theta^{\prime}\right)\right\|_{1} \tag{64}
\end{equation*}
$$

where $\boldsymbol{\beta}(\theta):=\left(\beta_{1}, \ldots, \beta_{k}\right)$. Moreover, an application of the mean value theorem yields that for all $\theta, \theta^{\prime} \in \Theta_{k}(\mathbf{a})$,

$$
\begin{equation*}
\left|\gamma\left(g_{\theta}(x)\right)-\gamma\left(g_{\theta^{\prime}}\left(x^{\prime}\right)\right)\right| \leq \bar{\gamma}_{\mathcal{G}_{k}(\mathbf{a})}^{\prime}\left|g_{\theta}(x)-g_{\theta^{\prime}}\left(x^{\prime}\right)\right| \leq \bar{\gamma}_{\mathcal{G}_{k}(\mathbf{a})}^{\prime}\left\|\boldsymbol{\beta}(\theta)-\boldsymbol{\beta}\left(\theta^{\prime}\right)\right\|_{1}, \tag{65}
\end{equation*}
$$

where $\bar{\gamma}_{\mathcal{G}_{k}(\mathbf{a})}^{\prime}$ is defined in (16). Hence, with probability one

$$
\begin{align*}
& \frac{1}{n}\left|g_{\theta}\left(X_{i}\right)-g_{\theta^{\prime}}\left(X_{i}\right)-\mathbb{E}_{P}\left[g_{\theta}\left(X_{i}\right)-g_{\theta^{\prime}}\left(X_{i}\right)\right]\right|+\frac{1}{n}\left|\gamma\left(g_{\theta}\left(Y_{i}\right)\right)-\gamma\left(g_{\theta^{\prime}}\left(Y_{i}\right)\right)-\mathbb{E}_{Q}\left[\gamma\left(g_{\theta}\left(Y_{i}\right)\right)-\gamma\left(g_{\theta^{\prime}}\left(Y_{i}\right)\right)\right]\right| \\
& \left.\leq \frac{1}{n}\left[\left|g_{\theta}\left(X_{i}\right)-g_{\theta^{\prime}}\left(X_{i}\right)\right|+\left|\mathbb{E}_{P}\left[g_{\theta}\left(X_{i}\right)-g_{\theta^{\prime}}\left(X_{i}\right)\right]\right|+\left|\gamma\left(g_{\theta}\left(Y_{i}\right)\right)-\gamma\left(g_{\theta^{\prime}}\left(Y_{i}\right)\right)\right|+\mid \mathbb{E}_{Q}\left[\gamma\left(g_{\theta}\left(Y_{i}\right)\right)-\gamma\left(g_{\theta^{\prime}}\left(Y_{i}\right)\right)\right]\right]\right] \\
& \leq \frac{1}{n} s_{k, \mathbf{a}, \gamma}\left\|\boldsymbol{\beta}(\theta)-\boldsymbol{\beta}\left(\theta^{\prime}\right)\right\|_{1}, \tag{66}
\end{align*}
$$

where $s_{k, \mathbf{a}, \gamma}:=2\left(\bar{\gamma}_{\mathcal{G}_{k}(\mathbf{a})}^{\prime}+1\right)$. Note that $\mathbb{E}\left[Z_{\theta}\right]=0$ for all $\theta \in \Theta_{k}(\mathbf{a})$. Then, using the fact that $\left\|\boldsymbol{\beta}(\theta)-\boldsymbol{\beta}\left(\theta^{\prime}\right)\right\|_{1} \leq \sqrt{k}\left\|\boldsymbol{\beta}(\theta)-\boldsymbol{\beta}\left(\theta^{\prime}\right)\right\|$, it follows from (63) and (66) via Hoeffding's lemma that

$$
\begin{equation*}
\mathbb{E}\left[e^{t\left(Z_{\theta}-Z_{\theta^{\prime}}\right)}\right] \leq e^{\frac{1}{2} 2^{2} \mathrm{~d}_{k, \mathbf{a}, n, \gamma}\left(\theta, \theta^{\prime}\right)^{2}}, \tag{67}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{d}_{k, \mathbf{a}, n, \gamma}\left(\theta, \theta^{\prime}\right):=\frac{s_{k, \mathbf{a}, \gamma} \sqrt{k}\left\|\boldsymbol{\beta}(\theta)-\boldsymbol{\beta}\left(\theta^{\prime}\right)\right\|}{\sqrt{n}}:=\frac{R_{k, \mathbf{a}, \gamma}}{\sqrt{n}}\left\|\boldsymbol{\beta}(\theta)-\boldsymbol{\beta}\left(\theta^{\prime}\right)\right\| . \tag{68}
\end{equation*}
$$

It follows that $\left\{Z_{\theta}\right\}_{\theta \in \Theta_{k}(\mathbf{a})}$ is a separable subgaussian process on the metric space $\left(\Theta_{k}(\mathbf{a}), \mathrm{d}_{k, \mathbf{a}, n, \gamma}\left(\theta, \theta^{\prime}\right)\right)$. Next, note that $N\left(\Theta_{k}(\mathbf{a}), \mathrm{d}_{k, \mathbf{a}, n, \gamma}(\cdot, \cdot), \epsilon\right)=N\left(\left[-a_{2}, a_{2}\right]^{k}, n^{-\frac{1}{2}} R_{k, \mathbf{a}, \gamma}\|\cdot\|, \epsilon\right)$. Also, $\left[-a_{2}, a_{2}\right]^{k} \subseteq B^{k}\left(\sqrt{k} a_{2}\right)$. Hence, we have

$$
\begin{align*}
N\left(\Theta_{k}(\mathbf{a}), \mathrm{d}_{k, \mathbf{a}, n, \gamma}(\cdot, \cdot), \epsilon\right) & \leq N\left(B^{k}\left(\sqrt{k} a_{2}\right), n^{-\frac{1}{2}} R_{k, \mathbf{a}, \gamma}\|\cdot\|, \epsilon\right) \\
& =N\left(B^{k}\left(\sqrt{k} a_{2}\right),\|\cdot\|, \sqrt{n} R_{k, \mathbf{a}, \gamma}^{-1} \epsilon\right) \\
& \leq \frac{\left(\sqrt{k} a_{2}+\sqrt{n} R_{k, \mathbf{a}, \gamma}^{-1} \epsilon\right)^{k}}{\left(\sqrt{n} R_{k, \mathbf{a}, \gamma}^{-1} \epsilon\right)^{k}} \tag{69}\\
& =\left(1+\frac{\sqrt{k} a_{2} R_{k, \mathbf{a}, \gamma}}{\sqrt{n} \epsilon}\right)^{k}
\end{align*}
$$

where, in 69), we used that the covering number of Euclidean ball $B^{d}(r)$ w.r.t. Euclidean norm satisfies

$$
\begin{equation*}
N\left(B^{d}(r),\|\cdot\|, \epsilon\right) \leq\left(\frac{r+\epsilon}{\epsilon}\right)^{d} . \tag{70}
\end{equation*}
$$

Also, for $\epsilon \geq \operatorname{diam}\left(\Theta_{k}(\mathbf{a}), \mathrm{d}_{k, \mathbf{a}, n, \gamma}\right):=\max _{\theta, \theta^{\prime} \in \Theta_{k}(\mathbf{a})} \mathrm{d}_{k, \mathbf{a}, n, \gamma}\left(\theta, \theta^{\prime}\right)=2 \sqrt{k} a_{2} R_{k, \mathbf{a}, \gamma} n^{-\frac{1}{2}}$, we have that $N\left(\Theta_{k}(\mathbf{a}), \mathrm{d}_{k, \mathbf{a}, n, \gamma}(\cdot, \cdot), \epsilon\right)=1$. Then,

$$
\begin{align*}
E_{k, \mathbf{a}, n, \gamma} & :=\int_{0}^{\infty} \sqrt{\log N\left(\Theta_{k}(\mathbf{a}), \mathrm{d}_{k, \mathbf{a}, n, \gamma}(\cdot, \cdot), \epsilon\right)} d \epsilon \\
& =\int_{0}^{\operatorname{diam}\left(\Theta_{k}(\mathbf{a}), \mathrm{d}_{k, \mathbf{a}, n, \gamma}\right)} \sqrt{\log N\left(\Theta_{k}(\mathbf{a}), \mathrm{d}_{k, \mathbf{a}, n, \gamma}(\cdot, \cdot), \epsilon\right)} d \epsilon \\
& \leq \sqrt{k} \int_{0}^{\operatorname{diam}\left(\Theta_{k}(\mathbf{a}), \mathrm{d}_{k, \mathbf{a}, n, \gamma}\right)} \sqrt{\log \left(1+\frac{a_{2} \sqrt{k} R_{k, \mathbf{a}, \gamma}}{\sqrt{n} \epsilon}\right)} d \epsilon \\
& \leq n^{-\frac{1}{4}} k^{\frac{3}{4}} \sqrt{a_{2} R_{k, \mathbf{a}, \gamma}} \int_{0}^{\operatorname{diam}\left(\Theta_{k}(\mathbf{a}), \mathrm{d}_{k, \mathbf{a}, n, \gamma}\right)} \epsilon^{-\frac{1}{2}} d \epsilon \tag{71}
\end{align*}
$$

$$
\begin{equation*}
=2 k^{\frac{3}{4}} n^{-\frac{1}{4}} \sqrt{a_{2} R_{k, \mathbf{a}, \gamma} \operatorname{diam}\left(\Theta_{k}(\mathbf{a}), \mathrm{d}_{k, \mathbf{a}, n, \gamma}\right)} \tag{72}
\end{equation*}
$$

where, we used the inequality $\log (1+x) \leq x$ (for $x \geq-1)$ in 71 . It follows from Theorem 1 that there exists a constant C such that for $\delta>0$,

$$
\begin{align*}
& \mathbb{P}\left(\sup _{g_{\theta} \in \mathcal{G}_{k}(\mathbf{a})} Z_{\theta} \geq C E_{k, \mathbf{a}, n, \gamma}+\delta\right)=\mathbb{P}\left(\sup _{g_{\theta} \in \mathcal{G}_{k}(\mathbf{a})} Z_{\theta}-Z_{\mathbf{0}} \geq C E_{k, \mathbf{a}, n, \gamma}+\delta\right) \\
& \leq C e^{-\frac{\delta^{2}}{C \operatorname{diam}\left(\Theta_{k}(\mathbf{a}), \mathrm{d} k, \mathbf{a}, n, \gamma\right)^{2}}}=C e^{-\frac{n \delta^{2}}{4 C a_{2}^{2} R_{k, \mathbf{a}, \gamma^{k}}^{2}}} \tag{73}
\end{align*}
$$

where $Z_{\mathbf{0}}=0$. It follows similarly that for $\delta>0$,

$$
\begin{equation*}
\mathbb{P}\left(\sup _{g_{\theta} \in \mathcal{G}_{k}(\mathbf{a})}-Z_{\theta} \geq \delta+C E_{k, \mathbf{a}, n, \gamma}\right) \leq C e^{-\frac{n \delta^{2}}{4 C a_{2}^{2} R_{k, \mathbf{a}, \gamma^{k}}}} \tag{74}
\end{equation*}
$$

Combining $\sqrt[73]{ }$ and 74 yields

$$
\begin{equation*}
\mathbb{P}\left(\sup _{g_{\theta} \in \mathcal{G}_{k}(\mathbf{a})}\left|Z_{\theta}\right| \geq \delta+C E_{k, \mathbf{a}, n, \gamma}\right) \leq 2 C e^{-\frac{n \delta^{2}}{4 C a_{2}^{2} R_{k, \mathbf{a}, \gamma}{ }^{k}}} \tag{75}
\end{equation*}
$$

From (61), 62 and 67 , we obtain that for $\delta>0$,

$$
\begin{align*}
& \mathbb{P}\left(\left|\mathrm{H}_{\gamma, \mathcal{G}_{k}(\mathbf{a})}(P, Q)-\hat{\mathrm{H}}_{\gamma, \mathcal{G}_{k}(\mathbf{a})}\left(X^{n}, Y^{n}\right)\right| \geq \delta+C E_{k, \mathbf{a}, n, \gamma}\right) \\
& \leq \mathbb{P}\left(\sup _{g_{\theta} \in \mathcal{G}_{k}(\mathbf{a})}\left|Z_{\theta}\right| \geq \delta+C E_{k, \mathbf{a}, n, \gamma}\right) \leq 2 C e^{-\frac{n \delta^{2}}{4 C a_{2}^{2} R_{k, \mathbf{a}, \gamma}^{2}}} \tag{76}
\end{align*}
$$

B Appendix: KL divergence

B. 1 Proof of Theorem 4

Let $D_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}(P, Q):=\mathrm{H}_{\gamma_{\mathrm{KL}}, \mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}(P, Q)$. The proof of Theorem 4 relies on the following lemma, whose proof is given in Appendix B.1.1.
Lemma 2. Let $P, Q \in \mathcal{P}_{\mathrm{KL}}(\mathcal{X})$. Then, for $X^{n} \sim P^{\otimes n}$ and $Y^{n} \sim Q^{\otimes n}$, the following holds for any $\alpha>0$:
(i) For $n, k_{n}, \mathbf{a}_{k_{n}}=\left(a_{1, k_{n}}, a_{2, k_{n}}, a_{3, k_{n}}\right)$ such that $k_{n}^{\frac{3}{2}} a_{2, k_{n}} e^{k_{n} a_{2, k_{n}}+a_{3, k_{n}}}=O\left(n^{\frac{1-\alpha}{2}}\right)$,

$$
\begin{equation*}
\hat{D}_{\mathcal{G}_{k_{n}}\left(\mathbf{a}_{k_{n}}\right)}\left(X^{n}, Y^{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} D_{\mathcal{G}_{k_{n}}\left(\mathbf{a}_{k_{n}}\right)}(P, Q), \quad \mathbb{P}-\text { a.s.. } \tag{77}
\end{equation*}
$$

(ii) For $n, k, \mathbf{a}_{k}=\left(a_{1, k}, a_{2, k}, a_{3, k}\right)$ such that $k^{\frac{3}{2}} a_{2, k} e^{k a_{2, k}+a_{3, k}}=O\left(n^{\frac{1-\alpha}{2}}\right)$

$$
\begin{equation*}
\mathbb{E}\left[\left|\hat{D}_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}\left(X^{n}, Y^{n}\right)-D_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}(P, Q)\right|\right]=O\left(n^{-\frac{1}{2}} k^{\frac{3}{2}} a_{2, k} e^{k a_{2, k}+a_{3, k}}\right) \tag{78}
\end{equation*}
$$

We proceed to prove (20). Since $f_{\mathrm{KL}} \in \mathrm{C}(\mathcal{X})$ for a compact set \mathcal{X}, it follows from Stinchcombe and White (1990, Theorem 2.8) that for any $\epsilon>0$ and $k \geq k_{0}(\epsilon)$, there exists a $g_{\tilde{\theta}} \in \mathcal{G}_{k}(\mathbf{1})$ such that

$$
\begin{equation*}
\sup _{x \in \mathcal{X}}\left|f_{\mathrm{KL}}(x)-g_{\tilde{\theta}}(x)\right| \leq \epsilon \tag{79}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} D_{\mathcal{G}_{k}(\mathbf{1})}(P, Q)=\mathrm{D}_{\mathrm{KL}}(P \| Q) \tag{80}
\end{equation*}
$$

To see this, note that

$$
\begin{equation*}
D_{\mathcal{G}_{k}(\mathbf{1})}(P, Q) \leq \mathrm{D}_{\mathrm{KL}}(P \| Q), \forall k \in \mathbb{N}, \tag{81}
\end{equation*}
$$

by (18) since g_{θ} is continuous and bounded $\left(\left|g_{\theta}\right| \leq k+1\right)$. Moreover, the left hand side (L.H.S.) of (81) is monotonically increasing in k, and being bounded, has a limit point. Then, 80 will follow if we show that the limit point is $\mathrm{D}_{\mathrm{KL}}(P \| Q)$. Assume otherwise that $\lim _{k \rightarrow \infty} D_{\mathcal{G}_{k}(\mathbf{1})}(P, Q)<\mathrm{D}_{\mathrm{KL}}(P \| Q)$. Note that $\mathcal{G}_{k}(\mathbf{1})$ is a closed set and hence the supremum in the variational form of the L.H.S. of 81 is a maximum. Then, defining

$$
\begin{equation*}
D(g):=1+\mathbb{E}_{P}[g(X)]-\mathbb{E}_{Q}\left[e^{g(Y)}\right] \tag{82}
\end{equation*}
$$

this implies that there exists $\delta>0$ and

$$
\begin{equation*}
g_{\theta_{k}^{*}}:=\underset{g_{\theta} \in \mathcal{G}_{k}(\mathbf{1})}{\arg \max } D\left(g_{\theta}\right), \tag{83}
\end{equation*}
$$

such that for all k,

$$
\begin{equation*}
\mathrm{D}_{\mathrm{KL}}(P \| Q)-D\left(g_{\theta_{k}^{*}}\right) \geq \delta \tag{84}
\end{equation*}
$$

However, it follows from $\sqrt[79]{ }$ that for all $k \geq k_{0}(\epsilon)$,

$$
\begin{align*}
\mathrm{D}_{\mathrm{KL}}(P \| Q)-D\left(g_{\theta_{k}^{*}}\right) & \leq \mathrm{D}_{\mathrm{KL}}(P \| Q)-D\left(g_{\tilde{\theta}}\right) \\
& \leq \mathbb{E}_{P}\left[\left|f_{\mathrm{KL}}(X)-g_{\tilde{\theta}}(X)\right|\right]+\mathbb{E}_{Q}\left[\left|e^{f_{\mathrm{KL}}(Y)}-e^{g_{\tilde{\theta}}(Y)}\right|\right] \\
& \leq \mathbb{E}_{P}\left[\left|f_{\mathrm{KL}}(X)-g_{\tilde{\theta}}(X)\right|\right]+L_{P, Q} \mathbb{E}_{Q}\left[\left|1-e^{g_{\tilde{\theta}}(Y)-f_{\mathrm{KL}}(Y)}\right|\right] \tag{85}\\
& \leq \epsilon+L_{P, Q}\left(e^{\epsilon}-1\right), \tag{86}
\end{align*}
$$

where (86) follows from (79). Note that

$$
\begin{equation*}
0 \leq L_{P, Q}:=\left\|\frac{\mathrm{d} P}{\mathrm{~d} Q}\right\|_{\infty}<\infty \tag{87}
\end{equation*}
$$

since $e^{f_{\mathrm{KL}}}$ is a continuous function and hence bounded over a compact support \mathcal{X}. Taking ϵ sufficiently small in (86) contradicts (84), thus proving (80). Next, for $a_{3, k}=a_{2, k}=a_{1, k}=1$ and any $\eta>0, k^{\frac{3}{2}} a_{2, k} e^{k a_{2, k}+a_{3, k}}<$ $e^{k(1+\eta)}$ provided k is sufficiently large. Then, (20) follows from (77) and 80) by letting $k=k_{n} \rightarrow \infty$ (subject to constraint in Lemma $2(i)$), and noting that $\eta>0$ is arbitrary.

Next, we prove (21). Note that since $f_{\mathrm{KL}} \in \mathcal{I}(M)$, we have from 42) that for k such that $m_{k} \geq M$, there exists $g_{\theta} \in \mathcal{G}_{k}^{*}\left(m_{k}\right)$ satisfying

$$
\left\|f_{\mathrm{KL}}-g_{\theta}\right\|_{\infty, P, Q} \leq \tilde{C}_{d, M} k^{-\frac{1}{2}}=\left(\left(\hat{c}_{d}+2\right) M+2\right) k^{-\frac{1}{2}}
$$

On the other hand, for k such that $m_{k}<M$, taking $g_{\mathbf{0}}=0$ yields $\left\|f_{\mathrm{KL}}-g_{\mathbf{0}}\right\|_{\infty, P, Q} \leq M$. Hence, for all k, there exists $g_{\theta_{k}^{*}} \in \mathcal{G}_{k}^{*}\left(m_{k}\right)$ such that

$$
\begin{equation*}
\left\|f_{\mathrm{KL}}-g_{\theta_{k}^{*}}\right\|_{\infty, P, Q} \leq D_{d, M, \mathbf{m}} k^{-\frac{1}{2}} \tag{88}
\end{equation*}
$$

where $\mathbf{m}=\left\{m_{k}\right\}_{k \in \mathbb{N}}$,

$$
\begin{align*}
& D_{d, M, \mathbf{m}}:=\tilde{C}_{d, M} \vee \sqrt{\bar{m}(M, \mathbf{m})} M \tag{89}\\
& \bar{m}(M, \mathbf{m}):=\min \left\{k \in \mathbb{N}: m_{k} \geq M\right\} \tag{90}
\end{align*}
$$

Also, observe that $\mathrm{D}_{\mathrm{KL}}(P \| Q) \geq D_{\mathcal{G}_{k}^{*}\left(m_{k}\right)}(P, Q)$ since $g_{\theta_{k}^{*}} \in \mathcal{G}_{k}^{*}\left(m_{k}\right)$ is bounded. Then, the following chain of inequalities hold:

$$
\left|\mathrm{D}_{\mathrm{KL}}(P \| Q)-D_{\mathcal{G}_{k}^{*}\left(m_{k}\right)}(P, Q)\right|
$$

$=\mathrm{D}_{\mathrm{KL}}(P \| Q)-D_{\mathcal{G}_{k}^{*}\left(m_{k}\right)}(P, Q)$
$\stackrel{(a)}{\leq} \mathbb{E}_{P}\left[\left|f_{\mathrm{KL}}(X)-g_{\theta_{k}^{*}}(X)\right|\right]+L_{P, Q} \mathbb{E}_{Q}\left[\left|1-e^{g_{\theta_{k}^{*}}(Y)-f_{\mathrm{KL}}(Y)}\right|\right]$
$\stackrel{(b)}{\leq} D_{d, M, \mathbf{m}} k^{-\frac{1}{2}}+e^{M}\left(e^{D_{d, M, \mathbf{m}} k^{-\frac{1}{2}}}-1\right)$,
where
(a) follows similar to 85);
(b) is due to 88) and $L_{P, Q} \leq e^{M}$ since $f_{\mathrm{KL}} \in \mathcal{I}(M)$.

On the other hand, taking $a_{1, k}=\sqrt{k} \log k, k a_{2, k}=a_{3, k}=m_{k}$, and k satisfying $\sqrt{k} e^{2 m_{k}}=O\left(n^{\frac{1-\alpha}{2}}\right)$ for some $\alpha>0$, we have
$\mathbb{E}\left[\left|\hat{D}_{\mathcal{G}_{k}^{*}\left(m_{k}\right)}\left(X^{n}, Y^{n}\right)-\mathrm{D}_{\mathrm{KL}}(P \| Q)\right|\right]$
$\stackrel{(a)}{\leq}\left|D_{\mathcal{G}_{k}^{*}\left(m_{k}\right)}(P, Q)-\mathrm{D}_{\mathrm{KL}}(P \| Q)\right|+\mathbb{E}\left[\left|D_{\mathcal{G}_{k}^{*}\left(m_{k}\right)}(P, Q)-\hat{D}_{\mathcal{G}_{k}^{*}(M)}\left(X^{n}, Y^{n}\right)\right|\right]$
$\stackrel{(b)}{\leq} D_{d, M, \mathbf{m}} k^{-\frac{1}{2}}+e^{M}\left(e^{D_{d, M, \mathbf{m}} k^{-\frac{1}{2}}}-1\right)+O\left(e^{2 m_{k}} \sqrt{k} n^{-\frac{1}{2}}\right)$
$\stackrel{(c)}{=} O_{M}\left(e^{D_{d, M, \mathbf{m}} k^{-\frac{1}{2}}}-1\right)+O\left(e^{2 m_{k}} \sqrt{k} n^{-\frac{1}{2}}\right)$,
where
(a) is due to triangle inequality;
(b) follows from (78) and 91).

Choosing $m_{k}=0.5 \log k$ in (93) yields
$\mathbb{E}\left[\left|\hat{D}_{\mathcal{G}_{k}^{*}(0.5 \log k)}\left(X^{n}, Y^{n}\right)-\mathrm{D}_{\mathrm{KL}}(P \| Q)\right|\right]=O\left(k^{-\frac{1}{2}}\right)+O\left(k^{\frac{3}{2}} n^{-\frac{1}{2}}\right)$,
since for k sufficiently large,

$$
e^{D_{d, M, \mathbf{m}} k^{-\frac{1}{2}}}-1=\sum_{j=1}^{\infty} \frac{\left(D_{d, M, \mathbf{m}} k^{-\frac{1}{2}}\right)^{j}}{j!} \leq \sum_{j=1}^{\infty}\left(D_{d, M, \mathbf{m}} k^{-\frac{1}{2}}\right)^{j}=O\left(k^{-\frac{1}{2}}\right) .
$$

This completes the proof.
Remark 10. Setting $m_{k}=M$ in (93) and via steps leading to (94), we obtain (22).

B.1.1 Proof of Lemma 2

Note that for $\gamma_{\mathrm{KL}}(x)=e^{x}-1$,

$$
\begin{aligned}
& \bar{\gamma}_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}^{\prime}=\sup _{\substack{x \in \mathcal{X}, g_{\theta} \in \mathcal{G}_{\mathcal{k}}\left(\mathbf{a}_{k}\right)}} \gamma_{\text {KL }}^{\prime}\left(g_{\theta}(x)\right) \leq e^{k a_{2, k}+a_{3, k}}, \\
& R_{k, \mathbf{a}_{k}, \gamma} \leq 2 \sqrt{k}\left(e^{k a_{2, k}+a_{3, k}}+1\right),
\end{aligned}
$$

where $\gamma_{\mathrm{KL}}^{\prime}$ denotes the derivative of γ_{KL}. Since

$$
\begin{equation*}
E_{k, \mathbf{a}_{k}, n, \gamma} \leq 4 \sqrt{2} n^{-\frac{1}{2}} k^{\frac{3}{2}} a_{2, k}\left(e^{k a_{2, k}+a_{3, k}}+1\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \tag{95}
\end{equation*}
$$

for k, \mathbf{a}_{k} such that $k^{\frac{3}{2}} a_{2, k} e^{k a_{2, k}+a_{3, k}}=O\left(n^{\frac{1-\alpha}{2}}\right)$ for $\alpha>0$, it follows from (17) that for any $k \in \mathbb{N}, \delta>0$, and n sufficiently large,

$$
\begin{equation*}
\mathbb{P}\left(\left|D_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}(P, Q)-\hat{D}_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}\left(X^{n}, Y^{n}\right)\right| \geq \delta\right) \leq 2 C e^{-\frac{n\left(\delta-C E_{\left.k, \mathbf{a}_{k}, n, \gamma\right)^{2}}^{16 C a_{2, k}^{2} k^{2}\left(e^{k a_{2, k}+a_{3, k}+1}\right)^{2}}\right.}{} . . . \frac{r^{2}}{}} \tag{96}
\end{equation*}
$$

Hence, for $k_{n}, \mathbf{a}_{k_{n}}$ such that $k_{n}^{\frac{3}{2}} a_{2, k_{n}} e^{k_{n} a_{2, k_{n}}+a_{1, k_{n}}}=O\left(n^{\frac{1-\alpha}{2}}\right)$,
where the final inequality in (97) can be established via integral test for sum of series. This implies (77) via the first Borel-Cantelli lemma. To prove 78 , note that

$$
\begin{align*}
& \mathbb{E}\left[\left|D_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}(P, Q)-\hat{D}_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}\left(X^{n}, Y^{n}\right)\right|\right] \\
& =\int_{0}^{\infty} \mathbb{P}\left(\left|D_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}(P, Q)-\hat{D}_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}\left(X^{n}, Y^{n}\right)\right| \geq \delta\right) d \delta \\
& \leq C E_{k, \mathbf{a}_{k}, n, \gamma}+\int_{C E_{k, \mathbf{a}_{k}, n, \gamma}}^{\infty} 2 C e^{-\frac{n\left(\delta-C E_{k, \mathbf{a}_{k}, n, \gamma}\right)^{2}}{16 C a_{2, k}^{2} k^{2}\left(e^{k a_{2, k}+a_{3, k}+1}\right)^{2}}} d \delta \\
& =O\left(n^{-\frac{1}{2}} k^{\frac{3}{2}} a_{2, k} e^{k a_{2, k}+a_{3, k}}\right) . \tag{98}
\end{align*}
$$

B. 2 Proof of Proposition 1

From proof of Corollary 1 (see (53)), there exists extensions $f_{p}^{(\mathrm{e})}, f_{q}^{(\mathrm{e})} \in \mathcal{B}_{b^{\prime} \vee c^{\prime}} \cap \mathcal{S}_{s, b^{\prime}}\left(\mathbb{R}^{d}\right)$ of f, \bar{f}, respectively (see (55) and (56) for definitions of b^{\prime} and c^{\prime}). Define $f_{\mathrm{KL}}^{(\mathrm{e})}:=f_{p}^{(\mathrm{e})}-f_{q}^{(\mathrm{e})}$. Since $f_{p}^{(\mathrm{e})}, f_{q}^{(\mathrm{e})} \in \mathcal{S}_{s, b^{\prime}}\left(\mathbb{R}^{d}\right)$, their Fourier transforms exists such that corresponding Fourier inversion formulas hold. Also, we have

$$
\begin{align*}
& B\left(f_{\mathrm{KL}}^{(\mathrm{e})}\right) \stackrel{(a)}{\leq} B\left(f_{p}^{(\mathrm{e})}\right)+B\left(f_{q}^{(\mathrm{e})}\right) \stackrel{(b)}{\leq} 2\left(b^{\prime} \vee c^{\prime}\right) \tag{99}\\
& \max _{x \in \mathcal{X}}\left|f_{\mathrm{KL}}^{(\mathrm{e})}(x)\right| \leq \max _{x \in \mathcal{X}}\left|f_{p}^{(\mathrm{e})}(x)\right|+\max _{x \in \mathcal{X}}\left|f_{q}^{(\mathrm{e})}(x)\right| \stackrel{(d)}{\leq} 2 b, \tag{100}
\end{align*}
$$

where
(a) follows from the definition in (4) and linearity of the Fourier transform;
(b) (c) is since $f_{p}^{(\mathrm{e})}, f_{q}^{(\mathrm{e})} \in \mathcal{B}_{b^{\prime} \vee c^{\prime}}$;
(d) is due to $(P, Q) \in \mathcal{L}_{\mathrm{KL}}(b, c)$.

Hence, it follows from (99-100) that $f_{\mathrm{KL}}^{(\mathrm{e})} \mid \mathcal{X} \in \mathcal{I}(M)$ with $M=2 \bar{c}_{b, c, d}$ (since $b \leq b^{\prime}$), where $\bar{c}_{b, c, d}$ is given in (54). The claim then follows from Theorem 4 since $f_{\mathrm{KL}}=f_{\mathrm{KL}}^{(\mathrm{e})} \mid \mathcal{X}$.

C Appendix: χ^{2} divergence

C. 1 Proof of Theorem 5

Let $\chi_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}^{2}(P, Q):=\mathrm{H}_{\gamma_{\chi^{2}}, \mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}(P, Q)$. The proof of Theorem 5 is based on the lemma below (see Appendix C.1.1 for proof).

Lemma 3. Let $P, Q \in \mathcal{P}_{\chi^{2}}(\mathcal{X})$. For $X^{n} \sim P^{\otimes n}$ and $Y^{n} \sim Q^{\otimes n}$, the following holds for any $\alpha>0$:
(i) For $n, k_{n}, \mathbf{a}_{k_{n}}$ such that $k_{n}^{\frac{5}{2}} a_{2, k_{n}}^{2}+k_{n}^{\frac{3}{2}} a_{2, k_{n}} a_{3, k_{n}}=O\left(n^{\frac{1-\alpha}{2}}\right)$,

$$
\begin{equation*}
\hat{\chi}_{\mathcal{G}_{k}\left(\mathbf{a}_{k_{n}}\right)}\left(X^{n}, Y^{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} \chi_{\mathcal{G}_{k_{n}}\left(\mathbf{a}_{\left.k_{n}\right)}\right)}^{2}(P, Q), \quad \mathbb{P}-\text { a.s. } \tag{101}
\end{equation*}
$$

(ii) For n, k, \mathbf{a}_{k} such that $k^{\frac{5}{2}} a_{2, k}^{2}+k^{\frac{3}{2}} a_{2, k} a_{3, k}=O\left(n^{\frac{1-\alpha}{2}}\right)$,

$$
\begin{equation*}
\mathbb{E}\left[\left|\hat{\chi}_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}\left(X^{n}, Y^{n}\right)-\chi_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}^{2}(P, Q)\right|\right]=O\left(n^{-\frac{1}{2}}\left(k^{\frac{5}{2}} a_{2, k}^{2}+k^{\frac{3}{2}} a_{2, k} a_{3, k}\right)\right) \tag{102}
\end{equation*}
$$

The proof of (25) follows from (101), using similar arguments used to establish (20) and steps leading to 104 below. The details are omitted.

We proceed to prove (26). Since $f_{\chi^{2}} \in \mathcal{I}(M)$, we have similar to that there exists $g_{\theta_{k}^{*}} \in \mathcal{G}_{k}^{*}\left(m_{k}\right)$

$$
\begin{equation*}
\left\|f_{\chi^{2}}-g_{\theta_{k}^{*}}\right\|_{\infty, P, Q}=D_{d, M, \mathbf{m}} k^{-\frac{1}{2}} \tag{103}
\end{equation*}
$$

where $D_{d, M, \mathbf{m}}$ is defined in 89. Also, $\chi^{2}(P \| Q) \geq \chi_{\mathcal{G}_{k}^{*}\left(m_{k}\right)}^{2}(P, Q)$ since $g_{\theta} \in \mathcal{G}_{k}^{*}\left(m_{k}\right)$ is bounded. Then, we have

$$
\begin{align*}
& \left|\chi^{2}(P \| Q)-\chi_{\mathcal{G}_{k}^{*}\left(m_{k}\right)}^{2}(P, Q)\right| \\
& =\chi^{2}(P \| Q)-\chi_{\mathcal{G}_{k}^{*}\left(m_{k}\right)}^{2}(P, Q) \\
& \leq \chi^{2}(P \| Q)-\mathbb{E}_{P}\left[g_{\theta_{k}^{*}}(X)\right]-\mathbb{E}_{Q}\left[g_{\theta_{k}^{*}}(Y)+\frac{g_{\theta_{k}^{*}}^{2}(Y)}{4}\right] \\
& \leq \mathbb{E}_{P}\left[\left|f_{\chi^{2}}(X)-g_{\theta_{k}^{*}}(X)\right|\right]+\mathbb{E}_{Q}\left[\left|f_{\chi^{2}}(Y)-g_{\theta_{k}^{*}}(Y)\right|+\frac{1}{4}\left|f_{\chi^{2}}^{2}(Y)-g_{\theta_{k}^{*}}^{2}(Y)\right|\right] \\
& \leq 2 D_{d, M, \mathbf{m}} k^{-\frac{1}{2}}+\mathbb{E}_{Q}\left[\frac{1}{4}\left|f_{\chi^{2}}(Y)-g_{\theta_{k}^{*}}(Y)\right|\left|f_{\chi^{2}}(Y)+g_{\theta_{k}^{*}}(Y)\right|\right] \\
& \leq 2 D_{d, M, \mathbf{m}} k^{-\frac{1}{2}}+\mathbb{E}_{Q}\left[\frac{1}{4}\left|f_{\chi^{2}}(Y)-g_{\theta_{k}^{*}}(Y)\right|\left|g_{\theta_{k}^{*}}(Y)-f_{\chi^{2}}(Y)\right|+\frac{1}{2}\left|f_{\chi^{2}}(Y)-g_{\theta_{k}^{*}}(Y)\right|\left|f_{\chi^{2}}(Y)\right|\right] \\
& \leq 2 D_{d, M, \mathbf{m}} k^{-\frac{1}{2}}+\frac{D_{d, M, \mathbf{m}}^{2}}{4 k}+\frac{D_{d, M, \mathbf{m}} M}{2 \sqrt{k}} \tag{104}
\end{align*}
$$

where 104 is due to $f_{\chi^{2}} \in \mathcal{I}(M)$. Taking $a_{1, k}=\sqrt{k} \log k, k a_{2, k}=a_{3, k}=m_{k}$, and k, m_{k} satisfying $m_{k}^{2} \sqrt{k}=$ $O\left(n^{(1-\alpha) / 2}\right)$, we have
$\mathbb{E}\left[\left|\hat{\chi}_{\mathcal{G}_{k}^{*}\left(m_{k}\right)}\left(X^{n}, Y^{n}\right)-\chi^{2}(P \| Q)\right|\right]$
$\stackrel{(a)}{\leq}\left|\chi_{\mathcal{G}_{k}^{*}\left(m_{k}\right)}^{2}(P, Q)-\chi^{2}(P \| Q)\right|+\mathbb{E}\left[\left|\chi_{\mathcal{G}_{k}^{*}\left(m_{k}\right)}^{2}(P, Q)-\hat{\chi^{2}}{ }_{\mathcal{G}_{k}^{*}\left(m_{k}\right)}\left(X^{n}, Y^{n}\right)\right|\right]$
$\stackrel{(b)}{\leq} 2 D_{d, M, \mathbf{m}} k^{-\frac{1}{2}}+\frac{D_{d, M, \mathbf{m}}^{2}}{4 k}+\frac{D_{d, M, \mathbf{m}} M}{2 \sqrt{k}}+O\left(m_{k}^{2} \sqrt{k} n^{-\frac{1}{2}}\right)$,
$\stackrel{(c)}{=} O_{d, M}\left(\bar{m}(M, \mathbf{m}) k^{-\frac{1}{2}}\right)+O\left(m_{k}^{2} \sqrt{k} n^{-\frac{1}{2}}\right)$,
where
(a) is due to triangle inequality;
(b) follows from 102 and 104 ;
(c) is by the definition of $D_{d, M, \mathbf{m}}$ in 89 and since $\bar{m}(M, \mathbf{m}) \geq 1$.

Setting $\mathbf{m}=\{0.5 \log k\}_{k \in \mathbb{N}}$ in 105 yields (26), thus completing the proof.

C.1.1 Proof of Lemma 3

For $\gamma_{\chi^{2}}(x)=x+\frac{x^{2}}{4}$, we have

$$
\begin{align*}
& \bar{\gamma}_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}^{\prime}=\sup _{\substack{x \in \mathcal{X}, g_{\theta} \in \mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}} \gamma_{\chi^{2}}^{\prime}\left(g_{\theta}(x)\right) \leq 0.5\left(k a_{2, k}+a_{3, k}\right)+1 \\
& R_{k, \mathbf{a}_{k}, \gamma} \leq 2 \sqrt{k}\left(0.5\left(k a_{2, k}+a_{3, k}\right)+2\right) \tag{106}
\end{align*}
$$

where $\gamma_{\chi^{2}}^{\prime}(\cdot)$ denotes the derivative of $\gamma_{\chi^{2}}$. Since

$$
\begin{equation*}
0 \leq E_{k, \mathbf{a}_{k}, n, \gamma} \leq 4 \sqrt{2} n^{-\frac{1}{2}} k^{\frac{3}{2}} a_{2, k}\left(0.5\left(k a_{2, k}+a_{3, k}\right)+2\right) \xrightarrow[n \rightarrow \infty]{ } 0 \tag{107}
\end{equation*}
$$

for k, \mathbf{a}_{k} such that $k^{\frac{5}{2}} a_{2, k}^{2}+k^{\frac{3}{2}} a_{2, k} a_{3, k}=O\left(n^{\frac{1-\alpha}{2}}\right)$, it follows from (17) that for any $k \in \mathbb{N}, \delta>0$, and n sufficiently large,

$$
\begin{equation*}
\mathbb{P}\left(\left|\hat{\chi}_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}\left(X^{n}, Y^{n}\right)-\chi_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}^{2}(P, Q)\right| \geq \delta\right) \leq 2 C e^{-\frac{n\left(\delta-C E_{k, \mathbf{a}_{k}, n, \gamma}\right)^{2}}{16 C a_{2, k}^{2} k^{2}\left(0.5\left(k a_{2, k}+a_{3, k}\right)+2\right)^{2}}} \tag{108}
\end{equation*}
$$

Then, (101) and 102) follows using similar steps used to prove (77) (see (97)) and 78) (see (98)) in Theorem 4, respectively. This completes the proof.

C. 2 Proof of Proposition 2

It follows from (53) that there exists extensions $f_{p}^{(\mathrm{e})}, f_{q}^{(\mathrm{e})} \in \mathcal{B}_{b^{\prime} \vee c^{\prime}} \cap \tilde{\mathcal{S}}_{s, b^{\prime}}\left(\mathbb{R}^{d}\right)$ of $f, \bar{f} \in \mathcal{H}_{b, c}^{s, \delta}(\mathcal{U})$, respectively, where $\tilde{\mathcal{S}}_{s, b^{\prime}}\left(\mathbb{R}^{d}\right)$ is defined in 52 . Let $f_{\chi^{2}}^{(\mathrm{e})}=2\left(f_{p}^{(\mathrm{e})} \cdot f_{q}^{(\mathrm{e})}-1\right)$. Recall the notation $\boldsymbol{\alpha}_{j}$ for a multi-index of order j. We have from the chain rule for differentiation that $D^{\alpha_{j}} f_{\chi^{2}}^{(\mathrm{e})}(x)$ is the sum of 2^{j} terms of the form $D^{\boldsymbol{\alpha}_{j_{1}}} f_{p}^{(\mathrm{e})}(x) \cdot D^{\boldsymbol{\alpha}_{j_{2}}} f_{q}^{(\mathrm{e})}(x)$, where $\boldsymbol{\alpha}_{j_{1}}+\boldsymbol{\alpha}_{j_{2}}=\boldsymbol{\alpha}_{j}$. Also, note from 50 and 51 that for $j=0, \ldots, s, f_{p}^{(\mathrm{e})}, f_{q}^{(\mathrm{e})}$ satisfies

$$
\begin{align*}
& \left|D^{\boldsymbol{\alpha}_{j}} f_{p}^{(\mathrm{e})}(x)\right| \vee\left|D^{\boldsymbol{\alpha}_{j}} f_{q}^{(\mathrm{e})}(x)\right| \leq \hat{b} \leq b^{\prime}, \forall x \in \mathbb{R}^{d} \tag{109a}\\
& \left\|D^{\boldsymbol{\alpha}_{j}} f_{p}^{(\mathrm{e})}\right\|_{L^{i}\left(\mathbb{R}^{d}\right)} \vee\left\|D^{\boldsymbol{\alpha}_{j}} f_{q}^{(\mathrm{e})}\right\|_{L^{i}\left(\mathbb{R}^{d}\right)} \leq b^{\prime}, i=1,2 \tag{109b}
\end{align*}
$$

Then, it follows that for $j=0, \ldots, s$ and $i=1,2$,

$$
\begin{align*}
\left\|D^{\boldsymbol{\alpha}_{j}} f_{\chi^{2}}^{(\mathrm{e})}\right\|_{L^{i}\left(\mathbb{R}^{d}\right)} & \leq 2+2\left\|\sum_{\substack{\boldsymbol{\alpha}_{j_{1}}, \boldsymbol{\alpha}_{j_{2}}: \\
\boldsymbol{\alpha}_{j_{1}}+\boldsymbol{\alpha}_{j_{2}}=\boldsymbol{\alpha}_{j}}} D^{\boldsymbol{\alpha}_{j_{1}}} f_{p}^{(\mathrm{e})} \cdot D^{\boldsymbol{\alpha}_{j_{2}}} f_{q}^{(\mathrm{e})}\right\|_{L^{i}\left(\mathbb{R}^{d}\right)} \\
& \leq 2+2^{j+1} b^{\prime} \max _{\boldsymbol{\alpha}_{j_{2}}}\left\|D^{\boldsymbol{\alpha}_{j_{2}}} f_{q}^{(\mathrm{e})}\right\|_{L^{i}\left(\mathbb{R}^{d}\right)} \\
& \leq 2+2^{j+1} b^{\prime 2} \tag{110}
\end{align*}
$$

Hence, $f_{\chi^{2}}^{(\mathrm{e})} \in \tilde{\mathcal{S}}_{s, 2+2^{s+1} b^{\prime 2}}\left(\mathbb{R}^{d}\right)$. From Lemma 1. it follows that $B\left(f_{\chi^{2}}^{(\mathrm{e})}\right) \leq\left(2+2^{s+1} b^{\prime 2}\right) \kappa_{d} \sqrt{d}$. Moreover, we have

$$
\begin{equation*}
\sup _{x \in \mathcal{X}}\left|f_{\chi^{2}}^{(e)}\right| \leq 2+2 \sup _{x \in \mathcal{X}} \frac{p(x)}{q(x)} \leq 2+2 b^{2} \tag{111}
\end{equation*}
$$

This implies that $f_{\chi^{2}}^{(\mathrm{e})} \mid \mathcal{X} \in \mathcal{I}\left(\left(2+2^{s+1} b^{\prime 2}\right)\left(\kappa_{d} \sqrt{d} \vee 1\right)\right)$ since $b^{\prime} \geq b$. The claim then follows from Theorem 5 by noting that $f_{\chi^{2}}=f_{\chi^{2}}^{(\mathrm{e})} \mid \mathcal{X}$ and $b^{\prime 2} \leq \bar{c}_{b, c, d}^{2}$.

D Appendix: Squared Hellinger distance

D. 1 Proof of Theorem 6

Let $H_{\tilde{\mathcal{G}}_{k}\left(\mathbf{a}_{k}, t\right)}^{2}(P, Q):=\mathrm{H}_{\gamma_{H^{2}}, \tilde{\mathcal{G}}_{k}\left(\mathbf{a}_{k}, t\right)}(P, Q)$. The proof of Theorem 6 hinges on the following lemma, whose proof is given in Appendix D.1.1.
Lemma 4. Let $P, Q \in \mathcal{P}_{H^{2}}(\mathcal{X})$. For $X^{n} \sim P^{\otimes n}$ and $Y^{n} \sim Q^{\otimes n}$, the following holds for any $\alpha>0$:
(i) For $n, k_{n}, \mathbf{a}_{k_{n}}$ such that $k_{n}^{\frac{3}{2}} a_{2, k_{n}} t_{k_{n}}^{-2}=O\left(n^{\frac{1-\alpha}{2}}\right)$,

$$
\begin{equation*}
\hat{H}^{2} \tilde{\mathcal{G}}_{k_{n}\left(\mathbf{a}_{k_{n}}, t_{k_{n}}\right)}\left(X^{n}, Y^{n}\right) \xrightarrow[n \rightarrow \infty]{ } H_{\tilde{\mathcal{G}}_{k_{n}}\left(\mathbf{a}_{k_{n}}, t_{k_{n}}\right)}^{2}(P, Q), \quad \mathbb{P}-\text { a.s. } \tag{112}
\end{equation*}
$$

(ii) For n, k, \mathbf{a}_{k} such that $k^{\frac{3}{2}} a_{2, k} t_{k}^{-2}=O\left(n^{\frac{1-\alpha}{2}}\right)$,

$$
\begin{equation*}
\mathbb{E}\left[\left|\hat{H}_{\tilde{\mathcal{G}}_{k}\left(\mathbf{a}_{k}, t_{k}\right)}\left(X^{n}, Y^{n}\right)-H_{\tilde{\mathcal{G}}_{k}\left(\mathbf{a}_{k}, t_{k}\right)}^{2}(P, Q)\right|\right]=O\left(n^{-\frac{1}{2}} k^{\frac{3}{2}} a_{2, k} t_{k}^{-2}\right) \tag{113}
\end{equation*}
$$

We first prove (31). Since $f_{H^{2}} \in \mathrm{C}(\mathcal{X})$ for a compact set \mathcal{X}, its supremum is achieved at some $x^{*} \in \mathcal{X}$. Also, since $\left\|\frac{d P}{d Q}\right\|_{\infty}<\infty$ by definition of the Radon-Nikodym derivative, we have $\sup _{x \in \mathcal{X}} f_{H^{2}}(x)=f_{H^{2}}\left(x^{*}\right)<1$. Moreover, $t_{k} \leq 1-f_{H^{2}}\left(x^{*}\right)$ for sufficiently large k since $t_{k} \rightarrow 0$. Then, it follows from Stinchcombe and White (1990, Theorem 2.8) that for any $\epsilon>0$ and $k \geq k_{0}(\epsilon)$ (some integer), there exists a $g_{\theta^{*}} \in \tilde{\mathcal{G}}_{k, t_{k}}^{(1)}$ such that

$$
\begin{equation*}
\sup _{x \in \mathcal{X}}\left|f_{H^{2}}(x)-g_{\theta^{*}}(x)\right| \leq \epsilon \tag{114}
\end{equation*}
$$

This implies similar to 80 in Theorem 4 that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} H_{\tilde{\mathcal{G}}_{k, t_{k}}^{(1)}}^{2}(P, Q)=H^{2}(P, Q) \tag{115}
\end{equation*}
$$

Then, (31) follows from 112 and 115 .
Next, we prove (32). Since $f_{H^{2}} \in \mathcal{I}_{H^{2}}(M), 1-f_{H^{2}}(x) \geq \frac{1}{M}$ for all $x \in \mathcal{X}$. Using $t_{k} \rightarrow 0$, we have from (12) that for k such that $t_{k} \leq \frac{1}{M}$ and $m_{k} \geq M$, there exists $g_{\theta} \in \tilde{\mathcal{G}}_{k, m_{k}, t_{k}}^{(2)}$ such that

$$
\begin{equation*}
\left\|f_{H^{2}}-g_{\theta}\right\|_{\infty, P, Q} \leq \tilde{C}_{d, M} k^{-\frac{1}{2}} \tag{116}
\end{equation*}
$$

On the other hand, for k such that $t_{k}>\frac{1}{M}$ or $m_{k}<M$, taking $g_{\mathbf{0}}=0$ yields $\left\|f_{H^{2}}-g_{0}\right\|_{\infty, P, Q} \leq M$ as $f_{H^{2}} \in \mathcal{I}(M)$. Then, denoting $\mathbf{t}=\left\{t_{k}\right\}_{k \in \mathbb{N}}$, it follows similar to 88 that for all k, there exists $g_{\theta_{k}^{*}} \in \tilde{\mathcal{G}}_{k, m_{k}, t_{k}}^{(2)}$ such that

$$
\begin{equation*}
\left\|f_{H^{2}}-g_{\theta_{k}^{*}}\right\|_{\infty, P, Q} \leq \tilde{C}_{d, M} k^{-\frac{1}{2}} \vee\left(\sqrt{\bar{t}\left(M^{-1}, \mathbf{t}\right)} \vee \sqrt{\bar{m}(M, \mathbf{m})}\right) M k^{-\frac{1}{2}}=: \bar{D}_{d, M, \mathbf{t}, \mathbf{m}} k^{-\frac{1}{2}} \tag{117}
\end{equation*}
$$

where $\bar{t}\left(M^{-1}, \mathbf{t}\right):=\inf \left\{k: t_{k} \leq M^{-1}\right\}$. Moreover, note that by definition, $H^{2}(P, Q) \geq H_{\tilde{\mathcal{G}}_{k, m_{k}, t_{k}}^{(2)}}^{2}(P, Q)$. Then, we have

$$
\begin{aligned}
& \left|H^{2}(P, Q)-H_{\tilde{\mathcal{G}}_{k, m_{k}, t_{k}}^{2(2)}}^{2}(P, Q)\right| \\
& =H^{2}(P, Q)-H_{\tilde{\mathcal{G}}_{k, m_{k}, t_{k}}^{2}}^{2}(P, Q) \\
& \leq \mathbb{E}_{P}\left[f_{H^{2}}(X)\right]-\mathbb{E}_{Q}\left[\frac{f_{H^{2}}(Y)}{1-f_{H^{2}}(Y)}\right]-\mathbb{E}_{P}\left[g_{\theta_{k}^{*}}(X)\right]+\mathbb{E}_{Q}\left[\frac{g_{\theta_{k}^{*}}(Y)}{1-g_{\theta_{k}^{*}}(Y)}\right] \\
& \leq \mathbb{E}_{P}\left[\left|f_{H^{2}}(X)-g_{\theta_{k}^{*}}(X)\right|\right]+\mathbb{E}_{Q}\left[\left|\frac{f_{H^{2}}(Y)}{1-f_{H^{2}}(Y)}-\frac{g_{\theta_{k}^{*}}(Y)}{1-g_{\theta_{k}^{*}}(Y)}\right|\right]
\end{aligned}
$$

$$
\begin{align*}
& \leq \bar{D}_{d, M, \mathbf{t}, \mathbf{m}} k^{-\frac{1}{2}}+\mathbb{E}_{Q}\left[\left|\frac{f_{H^{2}}(Y)-g_{\theta_{k}^{*}}(Y)}{\left(1-f_{H^{2}}(Y)\right)\left(1-g_{\theta_{k}^{*}}(Y)\right)}\right|\right] \\
& \leq \bar{D}_{d, M, \mathbf{t}, \mathbf{m}} k^{-\frac{1}{2}}+M t_{k}^{-1} \bar{D}_{d, M, \mathbf{t}, \mathbf{m}} k^{-\frac{1}{2}}, \tag{118}
\end{align*}
$$

where 118 is due to $1-g_{\theta^{*}}(x) \geq t_{k},\left(1-f_{H^{2}}(x)\right)^{-1} \leq M$ for all $x \in \mathcal{X}$, and 117).
Then, it follows from (113) and 118 that by taking $a_{1, k}=\sqrt{k} \log k, k a_{2, k}=a_{3, k}=m_{k}$, and $\sqrt{k} m_{k} t_{k}^{-2}=$ $O\left(n^{(1-\alpha) / 2}\right)$ for some $\alpha>0$, we have
$\mathbb{E}\left[\left|\hat{H}_{\tilde{\mathcal{G}}_{k, m_{k}, t_{k}}^{2(2)}}^{2}\left(X^{n}, Y^{n}\right)-H^{2}(P, Q)\right|\right]$
$\leq\left|H^{2}(P, Q)-H_{\tilde{\mathcal{G}}_{k, m_{k}, t_{k}}^{(2)}}^{2}(P, Q)\right|+\mathbb{E}\left[\left|\hat{H}_{\tilde{\mathcal{G}}_{k, m_{k}, t_{k}}^{(2)}}^{2}\left(X^{n}, Y^{n}\right)-H_{\tilde{\mathcal{G}}_{k, m_{k}, t_{k}}^{(2)}}^{2}(P, Q)\right|\right]$
$\leq \bar{D}_{d, M, \mathbf{t}, \mathbf{m}} k^{-\frac{1}{2}}+M t_{k}^{-1} \bar{D}_{d, M, \mathbf{t}, \mathbf{m}} k^{-\frac{1}{2}}+O\left(m_{k} \sqrt{k} t_{k}^{-2} n^{-\frac{1}{2}}\right)$
$=O_{d, M}\left(\sqrt{\bar{t}\left(M^{-1}, \mathbf{t}\right)} \vee \sqrt{\bar{m}(M, \mathbf{m})} t_{k}^{-1} k^{-\frac{1}{2}}\right)+O\left(m_{k} \sqrt{k} t_{k}^{-2} n^{-\frac{1}{2}}\right)$.
Setting $m_{k}=0.5 \log k$ and $t_{k}=\log ^{-1} k$ in (119) yields (32), thus completing the proof.

D.1. 1 Proof of Lemma 4

Note that Theorem 3 continues to hold with $\mathcal{G}_{k}(\mathbf{a})$ in (16) and (17) replaced with $\tilde{\mathcal{G}}_{k}(\mathbf{a}, t)$, since for $\gamma_{H^{2}}(x)=\frac{x}{1-x}$,

$$
\bar{\gamma}_{\tilde{\mathcal{G}}_{k}\left(\mathbf{a}_{k}, t_{k}\right)}^{\prime}=\sup _{\substack{x \in \mathcal{X}, g_{\theta} \in \tilde{\mathcal{G}}_{k}\left(\mathbf{a}_{k}, t_{k}\right)}} \gamma_{H^{2}}^{\prime}\left(g_{\theta}(x)\right)=\sup _{\substack{x \in \mathcal{X}, g_{\theta} \in \tilde{\mathcal{G}}_{k}\left(\mathbf{a}_{k}, t_{k}\right)}} \frac{1}{\left(1-g_{\theta}\right)^{2}} \leq \frac{1}{t_{k}^{2}},
$$

where $\gamma_{H^{2}}^{\prime}(\cdot)$ denotes the derivative of $\gamma_{H^{2}}$. This implies that $R_{k, \mathbf{a}_{k}, \gamma} \leq 2 \sqrt{k}\left(t_{k}^{-2}+1\right)$, and

$$
0 \leq E_{k, \mathbf{a}_{k}, n, \gamma} \leq 4 \sqrt{2} n^{-\frac{1}{2}} k^{\frac{3}{2}} a_{2, k}\left(t_{k}^{-2}+1\right) \xrightarrow[n \rightarrow \infty]{ } 0
$$

for k, \mathbf{a}_{k}, t_{k} such that $k^{\frac{3}{2}} a_{2, k} t_{k}^{-2}=O\left(n^{\frac{1-\alpha}{2}}\right)$. It then follows from (17) that for any $k \in \mathbb{N}, \delta>0$, and n sufficiently large,

$$
\mathbb{P}\left(\left|\hat{H}_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}\left(X^{n}, Y^{n}\right)-H_{\mathcal{G}_{k}\left(\mathbf{a}_{k}\right)}^{2}(P, Q)\right| \geq \delta\right) \leq 2 C e^{-\frac{n\left(\delta-C E_{k, \mathbf{a}_{k}, n, \gamma}\right)^{2}}{16 C a_{2, k}^{2} k^{2}\left(t_{k}^{-2}+1\right)^{2}}}
$$

Then, 112) and 113) follows using similar steps used to prove 77 (see (97) and (78) (see (98)) in Theorem 4, respectively. This completes the proof.

[^0]: ${ }^{4}$ The claims in Barron (1993, Lemma 2- Lemma 4, Theorem 3) are stated for L^{2} norm, but it is not hard to see from the proof therein that the same also holds for L^{∞} norm, apart from the following subtlety. In the proof of Lemma 3, it is shown that $\varrho(x, \omega), \omega \in \mathbb{R}^{d}$, lies in the convex closure of a certain class of step functions, whose discontinuity points are adjusted to coincide with the continuity points of the underlying measure μ. Similarly, here, the step discontinuities needs to be adjusted to coincide with the continuity points of both P and Q. Nevertheless, the same arguments hold since the common continuity points of P and Q form a dense set.

