
Supplementary Material to the Article:
When OT meets MoM: Robust estimation of Wasserstein Distance

A Technical Proofs

Current section details the proofs of the theoretical claims stated in the core article. We first recall a simple
lemma on the difference between two median vectors.

Lemma 1. Let a and b be two vectors of Rd. Then it holds∣∣median(a)−median(b)
∣∣ ≤ ‖a− b‖∞.

Proof. It is direct to see that:

a � b � c ⇒ median(a) ≤ median(b) ≤ median(c).

Thus, for all b within the infinite ball of center a and radius ε it holds:

median(a)− ε = median(a− ε1d) ≤ median(b) ≤ median(a + ε1d) = median(a) + ε.

Hence the conclusion.

A.1 Proof of Proposition 4

We first show the consistency of WMoU(µ̂n, ν̂m), that of W(µ̂MoM, µ) and WMoU-diag(µ̂n, ν̂m) being then
straightforward adaptations. Assume that τ̃ = τX + τY − τXτY < 1/2, and KX,KY > 0 such that
2(τX + τY − τXτY) < KXKY/(nm). The latter condition implies that the blocks containing no outlier are in
majority. Indeed, the number of contaminated blocks is upper bounded by:

nOKY + nOKX − nOnO ≤ (τX + τY − τXτY)nm < KXKY/2.

One may choose KX and KY as small as possible such that the above condition is respected. Following this, it is
a natural choice to set KX = d

√
2τ̃ ne and KY = d

√
2τ̃ me.

Let IX (respectively IY) denote the set of indices of X blocks (respectively Y blocks) containing no outliers. Let
K be a bounded subspace of Rd, and assume that X,Y are valued in X ,Y ⊂ K. Finally, we denote by φX,k and
φY,l the quantities

φX,k =
1

BX

∑
i∈BX

k

φ(Xi), and φY,l =
1

BY

∑
j∈BY

l

φ(Yj).

Using the shortcut notation Eµ [φ] = EX∼µ [φ(X)] and Eν [φ] = EY∼ν [φ(Y )], first notice that:

WMoU(µ̂n, ν̂m) = sup
φ∈BL

MoUXY[hφ],

= sup
φ∈BL

med
1≤k≤KX

1≤l≤KY

{
φX,k − φY,l

}
,

= sup
φ∈BL

med
1≤k≤KX

1≤l≤KY

{
φX,k − Eµ[φ] + Eµ[φ]− Eν [φ] + Eν [φ]− φY,l

}
,

≤ sup
φ∈BL

med
1≤k≤KX

1≤l≤KY

{
φX,k − Eµ[φ] + Eν [φ]− φY,l

}
+W(µ, ν). (1)



Conversely, it holds:

W(µ, ν) = sup
φ∈BL

{
Eµ [φ]− Eν [φ]

}
,

≤ sup
φ∈BL

{
Eµ[φ]− φBX

med
+ φBY

med
− Eν [φ] + φBX

med
− φBY

med

}
,

≤ sup
φ∈BL

med
1≤k≤KX

1≤l≤KY

{
Eµ[φ]− φX,k + φY,l − Eν [φ]

}
+WMoU(µ̂n, ν̂m), (2)

where BXmed and BYmed are the median blocks of φX,k − φY,l for 1 ≤ k ≤ KX and 1 ≤ l ≤ KY. From Equations (1)
and (2), we deduce that:∣∣WMoU(µ̂n, ν̂m)−W(µ, ν)

∣∣ ≤ sup
φ∈BL

med
1≤k≤KX

1≤l≤KY

{∣∣φX,k − Eµ[φ] + Eν [φ]− φY,l
∣∣}, (3)

≤ sup
k∈IX, l∈IY

sup
φ∈BL

∣∣φX,k − Eµ[φ] + Eν [φ]− φY,l
∣∣,

≤ sup
k∈IX

sup
φ∈BL

∣∣φX,k − Eµ[φ]
∣∣+ sup

l∈IY
sup
φ∈BL

∣∣Eν [φ]− φY,l
∣∣,

where we have used the fact that IX×IY represents a majority of blocks, and the subadditivity of the supremum.
By independence between samples X and Y, and between the blocks, it holds:

P

{∣∣WMoU(µ̂n, ν̂m)−W(µ, ν)
∣∣ −→
n→+∞
m→+∞

0

}

≥
∏
k∈IX

P

{
sup
φ∈BL

∣∣φX,k − Eµ[φ]
∣∣ −→
n→+∞

0

}
·
∏
l∈IY

P

{
sup
φ∈BL

∣∣φY,l − E[φ]
∣∣ −→
m→+∞

0

}
.

Now, the arguments to get the right-hand side equal to 1 are similar to those used in Lemma 3.1 and Proposition
3.2 in Sriperumbudur et al. (2012). We expose them explicitly for the sake of clarity.

Let N (ε,BL, L1(µ)) be the covering number of BL which is the minimal number of L1(µ) balls of radius ε needed
to cover BL. Let H(ε,BL, L1(µ)) be the entropy of BL, defined as H(ε,BL, L1(µ)) = logN (ε,BL, L1(µ)). Let F
be the minimal enveloppe function such that F (x) = supφ∈BL |φ(x)|. We need to check that

∫
Fdµ and

∫
Fdν

are finite and that (1/n)H(ε,BL, L1(µ̂n)) and (1/m)H(ε,BL, L1(ν̂m)) go to zero when n and m go to infinity.
Then, we can apply Theorem 3.7 in van de Geer (2000) which ensures the uniform (a.s.) convergence of empirical
processes. For any φ ∈ BL, one has

φ(x) ≤ sup
x∈K
|φ(x)| ≤ sup

x,y∈K
|φ(x)− φ(y)| ≤ sup

x,y∈K
‖x− y‖ = diam(K) < +∞. (4)

Therefore F (x) is finite, and following Lemma 3.1. in Kolmogorov and Tihomirov (1961) we have

H(ε,BL, ‖ · ‖∞) ≤ N (ε/4,K, ‖ · ‖2) log

(
2

⌈
2diam(K)

ε

⌉
+ 1

)
.

Since H(ε,BL, L1(µ̂n)) ≤ H(ε,BL, ‖ · ‖∞) and H(ε,BL, L1(ν̂m)) ≤ H(ε,BL, ‖ · ‖∞) then when, respectively, n and
m go to infinity, we have

1

n
H(ε,BL, L1(µ̂n))

µ−→ 0, and
1

m
H(ε,BL, L1(ν̂m))

ν−→ 0,

which leads to the desired result.

Adaptation to other estimators. The above proof can be adapted in a straightforward fashion toW(µ̂MoM, µ)
and WMoU−diag(µ̂n, ν̂m). Indeed, it holds

W(µ̂MoM, µ) = sup
φ∈BL

med
1≤k≤KX

∣∣φX,k − Eµ [φ]
∣∣ ,



and ∣∣∣WMoU−diag(µ̂n, ν̂m)−W(µ, ν)
∣∣∣ ≤ sup

φ∈BL
med

1≤k≤KX

1≤l≤KY

∣∣φX,k − Eµ [φ] + Eν [φ]− φY,k
∣∣ .

It is then direct to adapt the reasoning from Equation (3).

A.2 Proof of Proposition 5

Let ψ ∈ BL. From Equation (4), we know that −diam(K) ≤ ψ(X) ≤ diam(K), so that ψ(X) is in particular
sub-Gaussian with parameter λ = diam(K). A direct application of Proposition 1 in Laforgue et al. (2020) then
gives that for all δ ∈]0, e−4n

√
2τX ] and KX = d

√
2τXne , it holds with probability at least 1− δ:

∣∣∣MoMX[ψ]− Eµ [ψ]
∣∣∣ ≤ 4 diam(K) Γ(τX)

√
log(1/δ)

n
, (5)

with Γ: τX 7→
√

1 +
√

2τX/
√

1− 2τX. Using Lemma 1, observe also that ∀(φ, ψ) ∈ B2L it holds:∣∣MoMX[φ]− Eµ [φ]
∣∣ ≤ ∣∣MoMX[φ]−MoMX[ψ]

∣∣+
∣∣Eµ [φ]− Eµ [ψ]

∣∣+
∣∣MoMX[ψ]− Eµ [ψ]

∣∣,
≤ 2‖φ− ψ‖∞ +

∣∣MoMX[ψ]− Eµ [ψ]
∣∣. (6)

Now, let ζ > 0, and ψ1, . . . , ψN (ζ,BL,‖·‖∞) be a ζ-coverage of BL with respect to ‖ · ‖∞. We know from
Sriperumbudur et al. (2012) that there exists CL > 0 such that for all ζ > 0 it holds:

log(N (ζ,BL, ‖ · ‖∞)) ≤ C2
L(1/ζ)d (7)

From now on, we use N = N (ζ,BL, ‖ · ‖∞) for notation simplicity. Let φ be an arbitrary element of BL. By
definition, there exists i ≤ N such that ‖φ− ψi‖∞ ≤ ζ. Equation (6) then gives:∣∣∣MoMX[φ]− Eµ [φ]

∣∣∣ ≤ 2ζ +
∣∣∣MoMX[ψi]− Eµ [ψi]

∣∣∣. (8)

Applying Equation (5) to every ψi, the union bound gives that with probability at least 1− δ it holds:

sup
i≤N

∣∣∣MoMX[ψi]− Eµ [ψi]
∣∣∣ ≤ 4 diam(K) Γ(τX)

√
log(N/δ)

n
.

Taking the supremum in both sides of Equation (8), it holds with probability at least 1− δ:

sup
φ∈BL

∣∣∣MoMX[φ]− Eµ [φ]
∣∣∣ ≤ 2ζ + 4 diam(K) Γ(τX)

√
C2
Lζ
−d + log(1/δ)

n
.

Choosing ζ ∼ 1/n1/(d+2) and breaking the square root finally gives that it holds with probability at least 1− δ:

sup
φ∈BL

∣∣∣MoMX[φ]− Eµ [φ]
∣∣∣ ≤ C1(τX)

n1/(d+2)
+ C2(τX)

√
log(1/δ)

n
,

with C1(τX) = 2 + CLC2(τX), and C2(τX) = 4 diam(K) Γ(τX).

Adaptation to MoU. From Equation (4), we get that the kernel hφ : (X,Y ) 7→ φ(X)− φ(Y ) has finite essential
supremum ‖hφ(X,Y )‖∞ ≤ diam(K). Using Proposition 4 in Laforgue et al. (2020) with the same reasoning as
above leads to the desired result, multiplying constants by factor 2.



A.3 Proof of Theorem 7

Since n
1
d+2+

1−β
2 ≥ C1(τX)/(2C2(τX)(2τX)

1
4 ), then for all δ ∈]0, e−4n

√
2τX ], it holds:

C1(τX)

n1/(d+2)
≤ C2(τX)

√
4n
√

2τX
nβ

≤ C2(τX)

√
log(1/δ)

nβ
.

One then has:

W(µ̂MoM, µ) ≥ 0 ≥ C1(τX)

n1/(d+2)
− C2(τX)

√
log(1/δ)

nβ
.

Combining with the first results of Proposition 4, for all δ ∈]0, e−4n
√
2τX ], it holds with probability at least 1− δ:∣∣∣∣W(µ̂MoM, µ)− C1(τX)

n1/(d+2)

∣∣∣∣ ≤ C2(τX)

√
log(1/δ)

nβ
.

Reverting the inequation gives that it holds

P
{∣∣∣∣W(µ̂MoM, µ)− C1(τX)

n1/(d+2)

∣∣∣∣ > t

}
≤ e−n

βt2/C2
2(τX), (9)

for all t such that

t ≥ (32 τX)1/4C2(τX)
√
n1−β =

(32 τX)1/4
√
τX

C2(τX)

√
n1−β

nO
n
. (10)

One may finally use that for a nonnegative random variable it holds:

E
∣∣∣∣W(µ̂MoM, µ)− C1(τX)

n1/(d+2)

∣∣∣∣ =

∫ ∞
0

P
{∣∣∣∣W(µ̂MoM, µ)− C1(τX)

n1/(d+2)

∣∣∣∣ > t

}
dt,

≤
∫ (32 τX)1/4

√
τX

COC2(τX)
√
nαO−β

0

1dt+

∫ ∞
0

e−n
βt2/C2

2(τX)dt,

≤ (32 τX)1/4
√
τX

COC2(τX)

n(β−αO)/2
+

√
π C2(τX)

2 nβ/2
.

= 2 (2/τX)1/4
COC2(τX)

n(β−αO)/2
+

√
π C2(τX)

2 nβ/2
. (11)

Where the second line holds thanks to Assumption 6.

Adaptation to MoU. The adaptation is straightforward, up to Equation (10), that now writes:

t ≥ 2× (32(τX + τY))1/4C2(τX + τY)
√
n1−β ,

= 2× (32(τX + τY))1/4√
τX + τY

C2(τX + τY)

√
n1−β

(nO
n

+
mO
m

)
.

Using Assumption 6 on both samples X and Y, it leads to the desired results.



B Additional material of the numerical part

In this part, we introduce algorithms and additional experiments that could not be contained in the paper due to
space constraints.

B.1 Additional algorithms

Here, algorithms to compute WMoU-diag(µn, νn) and WMoU(µn, νn) are displayed.

Algorithm 1 Computation of WMoU-diag(µn, νn).
Initialization: η, the learning rate. c, the clipping parameter. w0 the initial weigths.
1: for t = 0, . . . , niter do
2: Sample K = KX ∧KY disjoint blocks BXY

1,1 ,BXY
2,2 , . . . ,BXY

k,k , . . .BXY
K,K from a sampling scheme

3: Find the median blocks BXY
med

4:

Gw ←−
⌊
K/n

⌋ ∑
(i,j)∈BXY

med

∇w [φw(Xi)− φw(Yj)]

5: 7.1 w ← w + η × RMSProp(w,Gw)
6: 7.2 w ← clip(w,−c, c)
7: end for
8: Output: w, W̃MoU-diag, φw.

Algorithm 2 Computation of WMoU(µn, νn).
Initialization: η, the learning rate. c, the clipping parameter. w0 the initial weigths.
1: for t = 0, . . . , niter do
2: Sample KX ×KY disjoint blocks BXY

1,1 , . . . ,BXY
k,l , . . .BXY

KX,KY
from a sampling scheme

3: Find the median blocks BXY
med

4:

Gw ←−
⌊
KX/n

⌋
×
⌊
KY/m

⌋ ∑
(i,j)∈BXY

med

∇w [φw(Xi)− φw(Yj)]

5: 7.1 w ← w + η × RMSProp(w,Gw)
6: 7.2 w ← clip(w,−c, c)
7: end for
8: Output: w, W̃MoU, φw.

B.2 Additional experiments

In this part, numerical results for W̃MoU and W̃MoM, related to the Section 4.2 of the paper, are displayed.
Results of both experiments, depicted in Figures 1 and 2, are quite similar, which can be explained by the relative
simplicity of the problem.
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Figure 1: W̃MoU (top) and W̃MoM (bottom) over KX for different fractions of anomalies τX on D1 (left) and D2

(right).
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Figure 2: Convergence of W̃MoU (top) and W̃MoM (bottom) without anomalies (left) and with 5% anomalies
(right) for different KX.
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