Supplementary Material to the Article: When OT meets MoM: Robust estimation of Wasserstein Distance

A Technical Proofs

Current section details the proofs of the theoretical claims stated in the core article. We first recall a simple lemma on the difference between two median vectors.
Lemma 1. Let \boldsymbol{a} and \boldsymbol{b} be two vectors of \mathbb{R}^{d}. Then it holds

$$
|\operatorname{median}(\boldsymbol{a})-\operatorname{median}(\boldsymbol{b})| \leq\|\boldsymbol{a}-\boldsymbol{b}\|_{\infty}
$$

Proof. It is direct to see that:

$$
\boldsymbol{a} \preceq \boldsymbol{b} \preceq \boldsymbol{c} \Rightarrow \operatorname{median}(\boldsymbol{a}) \leq \operatorname{median}(\boldsymbol{b}) \leq \operatorname{median}(\boldsymbol{c}) .
$$

Thus, for all \boldsymbol{b} within the infinite ball of center \boldsymbol{a} and radius ϵ it holds:

$$
\operatorname{median}(\boldsymbol{a})-\epsilon=\operatorname{median}\left(\boldsymbol{a}-\epsilon \mathbf{1}_{d}\right) \leq \operatorname{median}(\boldsymbol{b}) \leq \operatorname{median}\left(\boldsymbol{a}+\epsilon \mathbf{1}_{d}\right)=\operatorname{median}(\boldsymbol{a})+\epsilon
$$

Hence the conclusion.

A. 1 Proof of Proposition 4

We first show the consistency of $\mathcal{W}_{\mathrm{MoU}}\left(\hat{\mu}_{n}, \hat{\nu}_{m}\right)$, that of $\mathcal{W}\left(\hat{\mu}_{\mathrm{MoM}}, \mu\right)$ and $\mathcal{W}_{\mathrm{MoU}-\mathrm{diag}}\left(\hat{\mu}_{n}, \hat{\nu}_{m}\right)$ being then straightforward adaptations. Assume that $\tilde{\tau}=\tau_{\mathbf{X}}+\tau_{\mathbf{Y}}-\tau_{\mathbf{X}} \tau_{\mathbf{Y}}<1 / 2$, and $K_{\mathbf{X}}, K_{\mathbf{Y}}>0$ such that $2\left(\tau_{\mathbf{X}}+\tau_{\mathbf{Y}}-\tau_{\mathbf{X}} \tau_{\mathbf{Y}}\right)<K_{\mathbf{X}} K_{\mathbf{Y}} /(n m)$. The latter condition implies that the blocks containing no outlier are in majority. Indeed, the number of contaminated blocks is upper bounded by:

$$
n_{\mathcal{O}} K_{\mathbf{Y}}+n_{\mathcal{O}} K_{\mathbf{X}}-n_{\mathcal{O}} n_{\mathcal{O}} \leq\left(\tau_{\mathbf{X}}+\tau_{\mathbf{Y}}-\tau_{\mathbf{X}} \tau_{\mathbf{Y}}\right) n m<K_{\mathbf{X}} K_{\mathbf{Y}} / 2
$$

One may choose $K_{\mathbf{X}}$ and $K_{\mathbf{Y}}$ as small as possible such that the above condition is respected. Following this, it is a natural choice to set $K_{\mathbf{X}}=\lceil\sqrt{2 \tilde{\tau}} n\rceil$ and $K_{\mathbf{Y}}=\lceil\sqrt{2 \tilde{\tau}} m\rceil$.

Let $\mathcal{I}_{\mathbf{X}}$ (respectively $\mathcal{I}_{\mathbf{Y}}$) denote the set of indices of \mathbf{X} blocks (respectively \mathbf{Y} blocks) containing no outliers. Let \mathcal{K} be a bounded subspace of \mathbb{R}^{d}, and assume that X, Y are valued in $\mathcal{X}, \mathcal{Y} \subset \mathcal{K}$. Finally, we denote by $\bar{\phi}_{\mathbf{X}, k}$ and $\bar{\phi}_{\mathbf{Y}, l}$ the quantities

$$
\bar{\phi}_{\mathbf{X}, k}=\frac{1}{B_{\mathbf{X}}} \sum_{i \in \mathcal{B}_{k}^{\mathbf{X}}} \phi\left(X_{i}\right), \quad \text { and } \quad \bar{\phi}_{\mathbf{Y}, l}=\frac{1}{B_{\mathbf{Y}}} \sum_{j \in \mathcal{B}_{l}^{\mathbf{Y}}} \phi\left(Y_{j}\right) .
$$

Using the shortcut notation $\mathbb{E}_{\mu}[\phi]=\mathbb{E}_{X \sim \mu}[\phi(X)]$ and $\mathbb{E}_{\nu}[\phi]=\mathbb{E}_{Y \sim \nu}[\phi(Y)]$, first notice that:

$$
\begin{align*}
\mathcal{W}_{\mathrm{MoU}}\left(\hat{\mu}_{n}, \hat{\nu}_{m}\right) & =\sup _{\phi \in \mathcal{B}_{L}} \operatorname{MoU}_{\mathbf{X Y}}\left[h_{\phi}\right], \\
& =\sup _{\phi \in \mathcal{B}_{L}} \operatorname{med}_{1 \leq k \leq K_{\mathbf{X}}}\left\{\bar{\phi}_{\mathbf{X}, k}-\bar{\phi}_{\mathbf{Y}, l}\right\}, \\
& =\sup _{\phi \in \mathcal{B}_{L}} \operatorname{med}_{\substack{1 \leq k \leq K_{\mathbf{X}} \\
1 \leq l \leq K_{\mathbf{Y}}}}\left\{\bar{\phi}_{\mathbf{X}, k}-\mathbb{E}_{\mu}[\phi]+\mathbb{E}_{\mu}[\phi]-\mathbb{E}_{\nu}[\phi]+\mathbb{E}_{\nu}[\phi]-\bar{\phi}_{\mathbf{Y}, l}\right\}, \\
& \leq \sup _{\phi \in \mathcal{B}_{L}} \operatorname{med}_{\substack{1 \leq k \leq K_{\mathbf{X}} \\
1 \leq l \leq K_{\mathbf{Y}}}}\left\{\bar{\phi}_{\mathbf{X}, k}-\mathbb{E}_{\mu}[\phi]+\mathbb{E}_{\nu}[\phi]-\bar{\phi}_{\mathbf{Y}, l}\right\}+\mathcal{W}(\mu, \nu) . \tag{1}
\end{align*}
$$

Conversely, it holds:

$$
\begin{align*}
\mathcal{W}(\mu, \nu) & =\sup _{\phi \in \mathcal{B}_{L}}\left\{\mathbb{E}_{\mu}[\phi]-\mathbb{E}_{\nu}[\phi]\right\} \\
& \leq \sup _{\phi \in \mathcal{B}_{L}}\left\{\mathbb{E}_{\mu}[\phi]-\bar{\phi}_{\mathcal{B}_{\text {med }}^{\mathbf{X}}}+\bar{\phi}_{\mathcal{B}_{\text {med }}^{\mathbf{Y}}}-\mathbb{E}_{\nu}[\phi]+\bar{\phi}_{\mathcal{B}_{\text {med }}^{\mathbf{X}}}-\bar{\phi}_{\mathcal{B}_{\text {med }}^{\mathbf{Y}}}\right\} \\
& \leq \sup _{\phi \in \mathcal{B}_{L}} \operatorname{med}_{\substack{1 \leq k \leq K_{\mathbf{X}} \\
1 \leq l \leq K_{\mathbf{Y}}}}\left\{\mathbb{E}_{\mu}[\phi]-\bar{\phi}_{\mathbf{X}, k}+\bar{\phi}_{\mathbf{Y}, l}-\mathbb{E}_{\nu}[\phi]\right\}+\mathcal{W}_{\mathrm{MoU}}\left(\hat{\mu}_{n}, \hat{\nu}_{m}\right), \tag{2}
\end{align*}
$$

where $\mathcal{B}_{\text {med }}^{\mathbf{X}}$ and $\mathcal{B}_{\text {med }}^{\mathbf{Y}}$ are the median blocks of $\bar{\phi}_{\mathbf{X}, k}-\bar{\phi}_{\mathbf{Y}, l}$ for $1 \leq k \leq K_{\mathbf{X}}$ and $1 \leq l \leq K_{\mathbf{Y}}$. From Equations (1) and (2), we deduce that:

$$
\begin{align*}
\left|\mathcal{W}_{\mathrm{MoU}}\left(\hat{\mu}_{n}, \hat{\nu}_{m}\right)-\mathcal{W}(\mu, \nu)\right| & \leq \sup _{\phi \in \mathcal{B}_{L}} \operatorname{med}_{\substack{1 \leq k \leq K_{\mathbf{X}} \\
1 \leq l \leq K_{\mathbf{Y}}}}\left\{\left|\bar{\phi}_{\mathbf{X}, k}-\mathbb{E}_{\mu}[\phi]+\mathbb{E}_{\nu}[\phi]-\bar{\phi}_{\mathbf{Y}, l}\right|\right\} \tag{3}\\
& \leq \sup _{k \in \mathcal{I}_{\mathbf{X}}, l \in \mathcal{I}_{\mathbf{Y}}} \sup _{\phi \in \mathcal{B}_{L}}\left|\bar{\phi}_{\mathbf{X}, k}-\mathbb{E}_{\mu}[\phi]+\mathbb{E}_{\nu}[\phi]-\bar{\phi}_{\mathbf{Y}, l}\right| \\
& \leq \sup _{k \in \mathcal{I}_{\mathbf{X}}} \sup _{\phi \in \mathcal{B}_{L}}\left|\bar{\phi}_{\mathbf{X}, k}-\mathbb{E}_{\mu}[\phi]\right|+\sup _{l \in \mathcal{I}_{\mathbf{Y}}} \sup _{\phi \in \mathcal{B}_{L}}\left|\mathbb{E}_{\nu}[\phi]-\bar{\phi}_{\mathbf{Y}, l}\right|
\end{align*}
$$

where we have used the fact that $\mathcal{I}_{\mathbf{X}} \times \mathcal{I}_{\mathbf{Y}}$ represents a majority of blocks, and the subadditivity of the supremum. By independence between samples \mathbf{X} and \mathbf{Y}, and between the blocks, it holds:

$$
\begin{aligned}
& \mathbb{P}\left\{\left|\mathcal{W}_{\mathrm{MoU}}\left(\hat{\mu}_{n}, \hat{\nu}_{m}\right)-\mathcal{W}(\mu, \nu)\right| \underset{\substack{n \rightarrow+\infty \\
m \rightarrow+\infty}}{\longrightarrow} 0\right\} \\
\geq & \prod_{k \in \mathcal{I}_{\mathbf{X}}} \mathbb{P}\left\{\sup _{\phi \in \mathcal{B}_{L}}\left|\bar{\phi}_{\mathbf{X}, k}-\mathbb{E}_{\mu}[\phi]\right|_{n \rightarrow+\infty}^{\longrightarrow} 0\right\} \cdot \prod_{l \in \mathcal{I}_{\mathbf{Y}}} \mathbb{P}\left\{\sup _{\phi \in \mathcal{B}_{L}}\left|\bar{\phi}_{\mathbf{Y}, l}-\mathbb{E}[\phi]\right|_{m \rightarrow+\infty}^{\longrightarrow} 0\right\} .
\end{aligned}
$$

Now, the arguments to get the right-hand side equal to 1 are similar to those used in Lemma 3.1 and Proposition 3.2 in Sriperumbudur et al. (2012). We expose them explicitly for the sake of clarity.

Let $\mathcal{N}\left(\varepsilon, \mathcal{B}_{L}, L^{1}(\mu)\right)$ be the covering number of \mathcal{B}_{L} which is the minimal number of $L^{1}(\mu)$ balls of radius ε needed to cover \mathcal{B}_{L}. Let $\mathcal{H}\left(\varepsilon, \mathcal{B}_{L}, L^{1}(\mu)\right)$ be the entropy of \mathcal{B}_{L}, defined as $\mathcal{H}\left(\varepsilon, \mathcal{B}_{L}, L^{1}(\mu)\right)=\log \mathcal{N}\left(\varepsilon, \mathcal{B}_{L}, L^{1}(\mu)\right)$. Let F be the minimal enveloppe function such that $F(x)=\sup _{\phi \in \mathcal{B}_{L}}|\phi(x)|$. We need to check that $\int F d \mu$ and $\int F d \nu$ are finite and that $(1 / n) \mathcal{H}\left(\varepsilon, \mathcal{B}_{L}, L^{1}\left(\hat{\mu}_{n}\right)\right)$ and $(1 / m) \mathcal{H}\left(\varepsilon, \mathcal{B}_{L}, L^{1}\left(\hat{\nu}_{m}\right)\right)$ go to zero when n and m go to infinity. Then, we can apply Theorem 3.7 in van de Geer (2000) which ensures the uniform (a.s.) convergence of empirical processes. For any $\phi \in \mathcal{B}_{L}$, one has

$$
\begin{equation*}
\phi(x) \leq \sup _{x \in \mathcal{K}}|\phi(x)| \leq \sup _{x, y \in \mathcal{K}}|\phi(x)-\phi(y)| \leq \sup _{x, y \in \mathcal{K}}\|x-y\|=\operatorname{diam}(\mathcal{K})<+\infty \tag{4}
\end{equation*}
$$

Therefore $F(x)$ is finite, and following Lemma 3.1. in Kolmogorov and Tihomirov (1961) we have

$$
\mathcal{H}\left(\varepsilon, \mathcal{B}_{L},\|\cdot\|_{\infty}\right) \leq \mathcal{N}\left(\varepsilon / 4, \mathcal{K},\|\cdot\|_{2}\right) \log \left(2\left\lceil\frac{2 \operatorname{diam}(\mathcal{K})}{\varepsilon}\right\rceil+1\right)
$$

Since $\mathcal{H}\left(\varepsilon, \mathcal{B}_{L}, L^{1}\left(\hat{\mu}_{n}\right)\right) \leq \mathcal{H}\left(\varepsilon, \mathcal{B}_{L},\|\cdot\|_{\infty}\right)$ and $\mathcal{H}\left(\varepsilon, \mathcal{B}_{L}, L^{1}\left(\hat{\nu}_{m}\right)\right) \leq \mathcal{H}\left(\varepsilon, \mathcal{B}_{L},\|\cdot\|_{\infty}\right)$ then when, respectively, n and m go to infinity, we have

$$
\frac{1}{n} \mathcal{H}\left(\varepsilon, \mathcal{B}_{L}, L^{1}\left(\hat{\mu}_{n}\right)\right) \xrightarrow{\mu} 0, \quad \text { and } \quad \frac{1}{m} \mathcal{H}\left(\varepsilon, \mathcal{B}_{L}, L^{1}\left(\hat{\nu}_{m}\right)\right) \xrightarrow{\nu} 0
$$

which leads to the desired result.
Adaptation to other estimators. The above proof can be adapted in a straightforward fashion to $\mathcal{W}\left(\hat{\mu}_{\mathrm{MoM}}, \mu\right)$ and $\mathcal{W}_{\text {MoU-diag }}\left(\hat{\mu}_{n}, \hat{\nu}_{m}\right)$. Indeed, it holds

$$
\mathcal{W}\left(\hat{\mu}_{\mathrm{MoM}}, \mu\right)=\sup _{\phi \in \mathcal{B}_{L}} \operatorname{med}_{1 \leq k \leq K_{\mathbf{X}}}\left|\bar{\phi}_{\mathbf{X}, k}-\mathbb{E}_{\mu}[\phi]\right|,
$$

and

$$
\left|\mathcal{W}_{\mathrm{MoU}-\operatorname{diag}}\left(\hat{\mu}_{n}, \hat{\nu}_{m}\right)-\mathcal{W}(\mu, \nu)\right| \leq \sup _{\phi \in \mathcal{B}_{L}} \operatorname{med}_{\substack{1 \leq k \leq K_{\mathbf{X}} \\ 1 \leq l \leq K_{\mathbf{Y}}}}\left|\bar{\phi}_{\mathbf{X}, k}-\mathbb{E}_{\mu}[\phi]+\mathbb{E}_{\nu}[\phi]-\bar{\phi}_{\mathbf{Y}, k}\right|
$$

It is then direct to adapt the reasoning from Equation (3).

A. 2 Proof of Proposition 5

Let $\psi \in \mathcal{B}_{L}$. From Equation (4), we know that $-\operatorname{diam}(\mathcal{K}) \leq \psi(X) \leq \operatorname{diam}(\mathcal{K})$, so that $\psi(X)$ is in particular sub-Gaussian with parameter $\lambda=\operatorname{diam}(\mathcal{K})$. A direct application of Proposition 1 in Laforgue et al. (2020) then gives that for all $\left.\delta \in] 0, e^{-4 n \sqrt{2 \tau_{\mathbf{X}}}}\right]$ and $K_{\mathbf{X}}=\left\lceil\sqrt{2 \tau_{\mathbf{X}}} n\right\rceil$, it holds with probability at least $1-\delta$:

$$
\begin{equation*}
\left|\operatorname{MoM}_{\mathbf{X}}[\psi]-\mathbb{E}_{\mu}[\psi]\right| \leq 4 \operatorname{diam}(\mathcal{K}) \Gamma\left(\tau_{\mathbf{X}}\right) \sqrt{\frac{\log (1 / \delta)}{n}} \tag{5}
\end{equation*}
$$

with $\Gamma: \tau_{\mathbf{X}} \mapsto \sqrt{1+\sqrt{2 \tau_{\mathbf{X}}}} / \sqrt{1-2 \tau_{\mathbf{X}}}$. Using Lemma 1 , observe also that $\forall(\phi, \psi) \in \mathcal{B}_{L}^{2}$ it holds:

$$
\begin{align*}
\left|\operatorname{MoM}_{\mathbf{X}}[\phi]-\mathbb{E}_{\mu}[\phi]\right| & \leq\left|\operatorname{MoM}_{\mathbf{X}}[\phi]-\operatorname{MoM}_{\mathbf{X}}[\psi]\right|+\left|\mathbb{E}_{\mu}[\phi]-\mathbb{E}_{\mu}[\psi]\right|+\left|\operatorname{MoM}_{\mathbf{X}}[\psi]-\mathbb{E}_{\mu}[\psi]\right| \\
& \leq 2\|\phi-\psi\|_{\infty}+\left|\operatorname{MoM}_{\mathbf{X}}[\psi]-\mathbb{E}_{\mu}[\psi]\right| \tag{6}
\end{align*}
$$

Now, let $\zeta>0$, and $\psi_{1}, \ldots, \psi_{\mathcal{N}\left(\zeta, \mathcal{B}_{L},\|\cdot\|_{\infty}\right)}$ be a ζ-coverage of \mathcal{B}_{L} with respect to $\|\cdot\|_{\infty}$. We know from Sriperumbudur et al. (2012) that there exists $C_{L}>0$ such that for all $\zeta>0$ it holds:

$$
\begin{equation*}
\log \left(\mathcal{N}\left(\zeta, \mathcal{B}_{L},\|\cdot\|_{\infty}\right)\right) \leq C_{L}^{2}(1 / \zeta)^{d} \tag{7}
\end{equation*}
$$

From now on, we use $\mathcal{N}=\mathcal{N}\left(\zeta, \mathcal{B}_{L},\|\cdot\|_{\infty}\right)$ for notation simplicity. Let ϕ be an arbitrary element of \mathcal{B}_{L}. By definition, there exists $i \leq \mathcal{N}$ such that $\left\|\phi-\psi_{i}\right\|_{\infty} \leq \zeta$. Equation (6) then gives:

$$
\begin{equation*}
\left|\operatorname{MoM}_{\mathbf{X}}[\phi]-\mathbb{E}_{\mu}[\phi]\right| \leq 2 \zeta+\left|\operatorname{MoM}_{\mathbf{X}}\left[\psi_{i}\right]-\mathbb{E}_{\mu}\left[\psi_{i}\right]\right| \tag{8}
\end{equation*}
$$

Applying Equation (5) to every ψ_{i}, the union bound gives that with probability at least $1-\delta$ it holds:

$$
\sup _{i \leq \mathcal{N}}\left|\operatorname{MoM}_{\mathbf{X}}\left[\psi_{i}\right]-\mathbb{E}_{\mu}\left[\psi_{i}\right]\right| \leq 4 \operatorname{diam}(\mathcal{K}) \Gamma\left(\tau_{\mathbf{X}}\right) \sqrt{\frac{\log (\mathcal{N} / \delta)}{n}}
$$

Taking the supremum in both sides of Equation (8), it holds with probability at least $1-\delta$:

$$
\sup _{\phi \in \mathcal{B}_{L}}\left|\operatorname{MoM}_{\mathbf{X}}[\phi]-\mathbb{E}_{\mu}[\phi]\right| \leq 2 \zeta+4 \operatorname{diam}(\mathcal{K}) \Gamma\left(\tau_{\mathbf{X}}\right) \sqrt{\frac{C_{L}^{2} \zeta^{-d}+\log (1 / \delta)}{n}}
$$

Choosing $\zeta \sim 1 / n^{1 /(d+2)}$ and breaking the square root finally gives that it holds with probability at least $1-\delta$:

$$
\sup _{\phi \in \mathcal{B}_{L}}\left|\operatorname{MoM}_{\mathbf{X}}[\phi]-\mathbb{E}_{\mu}[\phi]\right| \leq \frac{C_{1}\left(\tau_{\mathbf{X}}\right)}{n^{1 /(d+2)}}+C_{2}\left(\tau_{\mathbf{X}}\right) \sqrt{\frac{\log (1 / \delta)}{n}}
$$

with $C_{1}\left(\tau_{\mathbf{X}}\right)=2+C_{L} C_{2}\left(\tau_{\mathbf{X}}\right)$, and $C_{2}\left(\tau_{\mathbf{X}}\right)=4 \operatorname{diam}(\mathcal{K}) \Gamma\left(\tau_{\mathbf{X}}\right)$.

Adaptation to MoU. From Equation (4), we get that the kernel $h_{\phi}:(X, Y) \mapsto \phi(X)-\phi(Y)$ has finite essential supremum $\left\|h_{\phi}(X, Y)\right\|_{\infty} \leq \operatorname{diam}(\mathcal{K})$. Using Proposition 4 in Laforgue et al. (2020) with the same reasoning as above leads to the desired result, multiplying constants by factor 2 .

A. 3 Proof of Theorem 7

Since $n^{\frac{1}{d+2}+\frac{1-\beta}{2}} \geq C_{1}\left(\tau_{\mathbf{X}}\right) /\left(2 C_{2}\left(\tau_{\mathbf{X}}\right)\left(2 \tau_{\mathbf{X}}\right)^{\frac{1}{4}}\right)$, then for all $\left.\left.\delta \in\right] 0, e^{-4 n \sqrt{2 \tau_{\mathbf{X}}}}\right]$, it holds:

$$
\frac{C_{1}\left(\tau_{\mathbf{X}}\right)}{n^{1 /(d+2)}} \leq C_{2}\left(\tau_{\mathbf{X}}\right) \sqrt{\frac{4 n \sqrt{2 \tau_{\mathbf{X}}}}{n^{\beta}}} \leq C_{2}\left(\tau_{\mathbf{X}}\right) \sqrt{\frac{\log (1 / \delta)}{n^{\beta}}}
$$

One then has:

$$
\mathcal{W}\left(\hat{\mu}_{\mathrm{MoM}}, \mu\right) \geq 0 \geq \frac{C_{1}\left(\tau_{\mathbf{X}}\right)}{n^{1 /(d+2)}}-C_{2}\left(\tau_{\mathbf{X}}\right) \sqrt{\frac{\log (1 / \delta)}{n^{\beta}}}
$$

Combining with the first results of Proposition 4 , for all $\left.\delta \in] 0, e^{-4 n \sqrt{2 \tau} \mathbf{x}}\right]$, it holds with probability at least $1-\delta$:

$$
\left|\mathcal{W}\left(\hat{\mu}_{\mathrm{MoM}}, \mu\right)-\frac{C_{1}\left(\tau_{\mathbf{X}}\right)}{n^{1 /(d+2)}}\right| \leq C_{2}\left(\tau_{\mathbf{X}}\right) \sqrt{\frac{\log (1 / \delta)}{n^{\beta}}}
$$

Reverting the inequation gives that it holds

$$
\begin{equation*}
\mathbb{P}\left\{\left|\mathcal{W}\left(\hat{\mu}_{\mathrm{MoM}}, \mu\right)-\frac{C_{1}\left(\tau_{\mathbf{X}}\right)}{n^{1 /(d+2)}}\right|>t\right\} \leq e^{-n^{\beta} t^{2} / C_{2}^{2}\left(\tau_{\mathbf{x}}\right)} \tag{9}
\end{equation*}
$$

for all t such that

$$
\begin{equation*}
t \geq\left(32 \tau_{\mathbf{X}}\right)^{1 / 4} C_{2}\left(\tau_{\mathbf{X}}\right) \sqrt{n^{1-\beta}}=\frac{\left(32 \tau_{\mathbf{X}}\right)^{1 / 4}}{\sqrt{\tau_{\mathbf{X}}}} C_{2}\left(\tau_{\mathbf{X}}\right) \sqrt{n^{1-\beta} \frac{n_{\mathcal{O}}}{n}} \tag{10}
\end{equation*}
$$

One may finally use that for a nonnegative random variable it holds:

$$
\begin{align*}
& \mathbb{E}\left|\mathcal{W}\left(\hat{\mu}_{\mathrm{MoM}}, \mu\right)-\frac{C_{1}\left(\tau_{\mathbf{X}}\right)}{n^{1 /(d+2)}}\right|=\int_{0}^{\infty} \mathbb{P}\left\{\left|\mathcal{W}\left(\hat{\mu}_{\mathrm{MoM}}, \mu\right)-\frac{C_{1}\left(\tau_{\mathbf{X}}\right)}{n^{1 /(d+2)}}\right|>t\right\} d t \\
& \leq \int_{0}^{\frac{\left(32 \tau_{\mathbf{X}}\right)^{1 / 4}}{{ }^{\tau} \mathbf{X}}} C_{\mathcal{O}} C_{2}\left(\tau_{\mathbf{X}}\right) \sqrt{n^{\alpha} \mathcal{O}^{-\beta}} \\
& 1 d t+\int_{0}^{\infty} e^{-n^{\beta} t^{2} / C_{2}{ }^{2}\left(\tau_{\mathbf{x}}\right)} d t \\
& \leq \frac{\left(32 \tau_{\mathbf{X}}\right)^{1 / 4}}{\sqrt{\tau_{\mathbf{X}}}} \frac{C_{\mathcal{O}} C_{2}\left(\tau_{\mathbf{X}}\right)}{n^{\left(\beta-\alpha_{\mathcal{O}}\right) / 2}}+\frac{\sqrt{\pi} C_{2}\left(\tau_{\mathbf{X}}\right)}{2 n^{\beta / 2}} \tag{11}\\
&=2\left(2 / \tau_{\mathbf{X}}\right)^{1 / 4} \frac{C_{\mathcal{O}} C_{2}\left(\tau_{\mathbf{X}}\right)}{n^{\left(\beta-\alpha_{\mathcal{O}}\right) / 2}}+\frac{\sqrt{\pi} C_{2}\left(\tau_{\mathbf{X}}\right)}{2 n^{\beta / 2}}
\end{align*}
$$

Where the second line holds thanks to Assumption 6.

Adaptation to MoU. The adaptation is straightforward, up to Equation (10), that now writes:

$$
\begin{aligned}
t & \geq 2 \times\left(32\left(\tau_{\mathbf{X}}+\tau_{\mathbf{Y}}\right)\right)^{1 / 4} C_{2}\left(\tau_{\mathbf{X}}+\tau_{\mathbf{Y}}\right) \sqrt{n^{1-\beta}} \\
& =2 \times \frac{\left(32\left(\tau_{\mathbf{X}}+\tau_{\mathbf{Y}}\right)\right)^{1 / 4}}{\sqrt{\tau_{\mathbf{X}}+\tau_{\mathbf{Y}}}} C_{2}\left(\tau_{\mathbf{X}}+\tau_{\mathbf{Y}}\right) \sqrt{n^{1-\beta}\left(\frac{n_{\mathcal{O}}}{n}+\frac{m_{\mathcal{O}}}{m}\right)}
\end{aligned}
$$

Using Assumption 6 on both samples \mathbf{X} and \mathbf{Y}, it leads to the desired results.

B Additional material of the numerical part

In this part, we introduce algorithms and additional experiments that could not be contained in the paper due to space constraints.

B. 1 Additional algorithms

Here, algorithms to compute $\mathcal{W}_{\text {MoU-diag }}\left(\mu_{n}, \nu_{n}\right)$ and $\mathcal{W}_{\mathrm{MoU}}\left(\mu_{n}, \nu_{n}\right)$ are displayed.

```
Algorithm 1 Computation of \(\mathcal{W}_{\text {MoU-diag }}\left(\mu_{n}, \nu_{n}\right)\).
Initialization: \(\eta\), the learning rate. \(c\), the clipping parameter. \(w_{0}\) the initial weigths.
    for \(t=0, \ldots, n_{\text {iter }}\) do
        Sample \(K=K_{\mathbf{X}} \wedge K_{\mathbf{Y}}\) disjoint blocks \(\mathcal{B}_{1,1}^{\mathbf{X Y}}, \mathcal{B}_{2,2}^{\mathbf{X Y}}, \ldots, \mathcal{B}_{k, k}^{\mathbf{X Y}}, \ldots \mathcal{B}_{K, K}^{\mathbf{X Y}}\) from a sampling scheme
        Find the median blocks \(\mathcal{B}_{\text {med }}^{\text {XY }}\)
            \(G_{w} \longleftarrow\lfloor K / n\rfloor \sum_{(i, j) \in \mathcal{B}_{\text {med }}^{\text {XY }}} \nabla_{w}\left[\phi_{w}\left(X_{i}\right)-\phi_{w}\left(Y_{j}\right)\right]\)
        \(7.1 w \leftarrow w+\eta \times \operatorname{RMSProp}\left(w, G_{w}\right)\)
        \(7.2 w \leftarrow \operatorname{clip}(w,-c, c)\)
    end for
    Output: \(w, \widetilde{\mathcal{W}}_{\text {MoU-diag }}, \phi_{w}\).
```

```
Algorithm 2 Computation of \(\mathcal{W}_{\mathrm{MoU}}\left(\mu_{n}, \nu_{n}\right)\).
Initialization: \(\eta\), the learning rate. \(c\), the clipping parameter. \(w_{0}\) the initial weigths.
    for \(t=0, \ldots, n_{\text {iter }}\) do
        Sample \(K_{\mathbf{X}} \times K_{\mathbf{Y}}\) disjoint blocks \(\mathcal{B}_{1,1}^{\mathbf{X Y}}, \ldots, \mathcal{B}_{k, l}^{\mathbf{X Y}}, \ldots \mathcal{B}_{K_{\mathbf{X}}, K_{\mathbf{Y}}}^{\mathbf{X Y}}\) from a sampling scheme
        Find the median blocks \(\mathcal{B}_{\text {med }}^{\mathbf{X Y}}\)
            \(G_{w} \longleftarrow\left\lfloor K_{\mathbf{X}} / n\right\rfloor \times\left\lfloor K_{\mathbf{Y}} / m\right\rfloor \sum_{(i, j) \in \mathcal{B}_{\text {med }}^{\mathbf{X Y}}} \nabla_{w}\left[\phi_{w}\left(X_{i}\right)-\phi_{w}\left(Y_{j}\right)\right]\)
            \(7.1 w \leftarrow w+\eta \times \operatorname{RMSProp}\left(w, G_{w}\right)\)
            \(7.2 w \leftarrow \operatorname{clip}(w,-c, c)\)
    end for
    Output: \(w, \widetilde{\mathcal{W}}_{\mathrm{MoU}}, \phi_{w}\).
```


B. 2 Additional experiments

In this part, numerical results for $\widetilde{\mathcal{W}}_{\mathrm{MoU}}$ and $\widetilde{\mathcal{W}}_{\mathrm{MoM}}$, related to the Section 4.2 of the paper, are displayed. Results of both experiments, depicted in Figures 1 and 2, are quite similar, which can be explained by the relative simplicity of the problem.

Figure 1: $\widetilde{\mathcal{W}}_{\mathrm{MoU}}($ top $)$ and $\widetilde{\mathcal{W}}_{\mathrm{MoM}}($ bottom $)$ over $K_{\mathbf{X}}$ for different fractions of anomalies τ_{X} on \mathcal{D}_{1} (left) and \mathcal{D}_{2} (right).

Figure 2: Convergence of $\widetilde{\mathcal{W}}_{\mathrm{MoU}}$ (top) and $\widetilde{\mathcal{W}}_{\mathrm{MoM}}$ (bottom) without anomalies (left) and with 5% anomalies (right) for different $K_{\mathbf{X}}$.

References

Kolmogorov, A. N. and Tihomirov, V. M. (1961). On the empirical estimation of integral probability metrics. American Mathematical Society Translations 2, 17:277-364.
Laforgue, P., Staerman, G., and Clémençon, S. (2020). How robust is the median-of-means? concentration bounds in presence of outliers. arxiv.org/abs/2006.05240.
Sriperumbudur, B. K., Fukumizu, K., Gretton, A., Schölkopf, B., and Lanckriet, G. R. G. (2012). On the empirical estimation of integral probability metrics. Electron. J. Statist., 6:1550-1599.
van de Geer, S. (2000). Empirical Processes in M-Estimation. Cambridge University Press.

