
Evaluating Model Robustness and Stability to Dataset Shift

A Causally Interpreting Distribution Shifts

Under certain conditions, shifts in a conditional distribution P (W | Z) have an important interpretation as causal
policy interventions or process changes (Pearl, 2009). That is, the e↵ects of the shift corresponds to how the
distribution would change under an intervention that changes the way W is generated. Formally, we have the
following:

Proposition 2. Suppose the data (X,Y ) were generated by a structural causal model (SCM) with no unobserved
confounders, respecting a causal directed acyclic graph (DAG) G. Then, for a single variable W and set
Z = ndG(W ) (non-descendants of W in G), a policy shift in P (W | Z) can be expressed as a policy intervention
on the mechanism generating W which changes P (W | paG(W )).

Proof. Within the SCM, we have that W is generated by the structural equation W = fw(pa(W ), "w) (where " is
a W -specific exogenous noise random variable). A policy intervention on W replaces this structural equation
with a new function gw(pa(W ), "w), which has the e↵ect of changing P (W | pa(W )) to some new distribution
Q(W | pa(W ). By the local Markov property, we have that Q(W | pa(W )) = Q(W | nd(W )). Thus, a shift from
P (W | nd(W )) to Q(W | nd(W )) can be expressed as a policy intervention from fw to gw.

This result means that in order to causally interpret distribution shifts, we need to adjust for (i.e., put into Z)
variables that are relevant to the mechanism that generates W . Fortunately, we can place additional variables
into Z so long as they precede W in a causal or topological order.

This result can be extended to the case in which the SCM contains unobserved variables. This is of practical
importance because often we do not have all relevant variables recorded in the dataset (i.e., there may be
unobserved confounders). In these cases, rather than a DAG, the SCM takes the graphical form of a causal acyclic
directed mixed graph (ADMG) (Richardson et al., 2017). ADMGs have directed edges (!) which represent
direct causal influence (just like in DAGs), but also have bidirected edges ($) which represent the existence of an
unobserved confounder between the two endpoint variables.

We require one technical definition: we will define the Markov blanket of W in an ADMG to be mb(W ) =
pa(dis(W )) [ (dis(W ) \ {W}), where dis refers to the district of a variable and is the set of variables reachable
through entirely bidirected paths.

Proposition 3. Suppose the data (X,Y ) were generated by a structural causal model (SCM), respecting a causal
ADMG G. Then, for a single variable W and set Z = mbG(W ), a policy shift in P (W | Z) can be expressed as a
policy intervention on the mechanism generating W which changes P (W | mbG(W )).

Proof. The proof follows just as before, noting that the local Markov property in ADMGs states that a variable
V is independent of all variables preceding V in a topological order conditional on mb(V ) (Richardson et al.,
2017, Section 2.8.2).

B Connection to distributionally robust optimization

In distributionally robust optimization (DRO), a model is trained to minimize loss on the worst-case distribution
from within an uncertainty set of distributions. Here we show how Equation 1 of the main paper can equivalently
be thought of a the expected loss under the worst-case distribution from within just such an uncertainty set.
Formally, we define an uncertainty set or “ball” P⇢,Z,W of possible shifted distributions using a statistical
divergence D(· k ·) and radius ⇢:

P⇢,Z,W = {Q : D(Q(W ) k P (W | Z))  ⇢}. (8)

Note that this uncertainty set depends explicitly on the value of Z. We are interested in the expected loss of the
model when P (W | Z) is replaced by Q(W | Z) = QZ 2 P⇢,Z,W that maximizes expected loss, written

R⇢(M;P ) = EP

"
sup

QZ2P⇢,Z,W

EQZ [µ0(W,Z) | Z]

#
, (9)
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where, as in the main paper, µ0(W,Z) = EP [`(Y,M(X)) | W,Z] is the conditional expected loss given W and
Z. By construction of P⇢,Z,W , Q will never place positive weight on regions where P does not. Calculating R⇢

requires calculating the expected loss under various distributions Q. As in previous work on DRO and domain
adaptation, we rely on sample reweighting, which allows us to estimate expectations under Q using samples from
P . This is done by reweighting samples from P by the likelihood ratio q/p. Specifically, the expected loss under
Q can be rewritten as

EQ[µ0(W,Z) | Z] = EP


q(W | Z)

p(W | Z)
µ0(W,Z)

��� Z
�
. (10)

If Q is quite di↵erent from P , the variance of importance sampling can be high. This variance is naturally
governed by ⇢, which controls how di↵erent Q can be from P . In order to consider environments that look very
di↵erent from P , a large test dataset may be needed.

To see how this formulation connects to Equation 1 of the main paper, we will make use of the following lemma
which follows directly from Theorem 6 in Van Erven and Harremos (2014)

Lemma 4. For probability measures P and Q defined with respect to the same base measure µ and with
corresponding density functions p and q, supA2F

Q(A)
P (A)  c if and only if q

p  c almost everywhere.

Using this lemma, we can rewrite Equation 1 as

sup
Q

EP [EQ[µ0(X) | Z]] (11)

s.t.
q(W | Z)

p(W | Z)
 exp(⇢) a.e.

This can, in turn, be rewritten as

sup
Q

EP


q(W | Z)

p(W | Z)
µ0(X)

�
(12)

s.t.
q(W | Z)

p(W | Z)
 exp(⇢) a.e.

Define exp(⇢)h(w, z) = q(w|z)
p(w|z) and exp(⇢) = 1

1�↵ . Then, the constraint in Equation 12, combined with the fact

that p and q are both densities and thus are bounded below by zero, translates to h : X ! [0, 1]. Further, the
constraint that q must integrate to one (or, equivalently, EP [q(W | Z)/p(W | Z) | Z] = 1 almost everywhere)
translates to the constraint EP [h(W,Z) | Z] = 1� ↵ almost everywhere. Finally, we can rewrite this optimization
problem as

sup
h:W⇥Z![0,1]

1

1� ↵
EP [h(W,Z)µ0(W,Z)] (13)

s.t. EP [h(W,Z) | Z] = 1� ↵ a.e.

C Derivation of Equation 3 of the main paper

To derive Equation 3 of the main paper, we will take the Lagrange dual of Equation 1. Recall that Equation 1 is
given by

R↵,0 = sup
h:W⇥Z![0,1]

1

1� ↵
EP [h(W,Z)µ0(W,Z)] (14)

s.t. EP [h(W,Z) | Z] = 1� ↵ a.e. (15)

Then the Lagrangian is given by
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L(h, ⌫) =
1

1� ↵
EP [h(W,Z)µ0(W,Z)] +

Z
⌫(z)(1� ↵� EP [h(W,Z) | Z = z]) dz, (16)

where ⌫ : Z ! R is the function of Lagrange multipliers. By recalling that p is the density function associated
with P and by defining ⌘(z) = ⌫(z) 1�↵

p(z) we get

L(h, ⌘) =
1

1� ↵
EP [h(W,Z)µ0(W,Z)] +

Z

z
p(z)⌘(z)(1�

1

1� ↵
EP [h(W,Z) | Z = z] dz (17)

=
1

1� ↵
EP [h(W,Z)µ0(W,Z)] + EP [⌘(Z)]�

1

1� ↵
EP [h(W,Z)⌘(Z)] (18)

=
1

1� ↵
EP [h(W,Z)(µ0(W,Z)� ⌘(Z))] + EP [⌘(Z)]. (19)

The Lagrange dual is then given by min⌘:Z!R maxh:Z⇥W![0,1] L(h, ⌘). To maximize h out of this equation,
observe that the optimal solution occurs when h equals one whenever µ0 � ⌘ is positive and zero when µ0 � ⌘ is
negative or h(z, w) = I(µ0(w, z) > ⌘(z)). Then observe that I(µ0(w, z) > ⌘(z))(µ0(w, z)� ⌘(z)) can be rewritten
as (µ0(w, z)� ⌘(z))+ where (x)+ = max{x, 0}. Finally, because the original problem is a linear program, strong
duality holds and we arrive at our final expression

R↵,0 = min
⌘:Z!R

1

1� ↵
EP [(µ0(W,Z)� ⌘(Z))+] + EP [⌘(Z)] (20)

D Proof of Theorem 1

In this section, we provide a proof of Theorem 1 in the main paper. This proof draws heavily on results from
Chernozhukov et al. (2018) and Jeong and Namkoong (2020). For notational simplicity and consistency between
our work and theirs, let ✓0 = R↵,0 be the target parameter. Algorithm 1 in the main paper is an instance of the
DML2 algorithm from Chernozhukov et al. (2018) where the score function  is given by

 (O; ✓, �) =  
b(O; �)� ✓, (21)

where

 
b(O; �) =

1

↵
(µ(W,Z)� ⌘(Z))+ + ⌘(Z) +

1

↵
h(W,Z)(`(Y,M(X))� µ(W,Z)), (22)

and where O = (W,Z, V ), � = (µ, ⌘), and h = [µ > ⌘]. In this proof, we will show that Assumptions 3.1 and
3.2 of Chernozhukov et al. (2018) are nearly satisfied and will fill in the gaps where they are not. We restate
these assumptions here with some of the notation changed to match the notation used in this paper. First, some
definitions: Let c0 > 0, c1 > 0, s > 0, q > 2 be some finite constants such that c0  c and let {�N}N�1 and
{�N}N�1 be some positive constants converging to zero such that �N � N

�1/2. Also, let K � 2 be some fixed
integer, and let {PN}N�1 be some sequence of sets of probability distributions P of O on O = W ⇥ Z ⇥ V. Let
T be a convex subset of some normed vector space repressenting the set of possible nuissance parameters (i.e.,
� 2 T ). Finally, let a . b denote that there exists a constant C such that a  Cb.

Assumption 2. (Assumption 3.1 from Chernozhukov et al. (2018)) For all N � 3 and P 2 PN , the following
conditions hold. (a) The true parameter value ✓0 obeys EP [ (O; ✓0, �0)] = 0. (b) The score  can be written as
 (O; ✓, �) =  

a(O; �)✓ +  
b(O; �). (c) The map � 7! EP [ (O; ✓, �)] is twice continuously Gateaux-di↵erentiable

on T . (d) The score  obeys Neyman orthogonality. (e) The singular values of the matrix J0 = EP [ a(O; �0)]
are between c0 and c1.

Assumption 3. (Assumption 3.2 from Chernozhukov et al. (2018)) For all N � 3 and P 2 PN , the following
conditions hold. (a) Given a random subset I of [N ] of size n = N/K, the nuisance paramter estimator
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�̂ = �̂((Oi)i2Ic) belongs to the realization set TN with probability at least 1��N , where TN contains �0 and is
constrained by the next conditions. (b) The following moment conditions hold:

mN = sup
�2TN

(EP [k (O; ✓0, �)k
q])1/q  c1

m
0
N = sup

�2TN

(EP [k 
a(O; �)kq])1/q  c1.

(c) The following conditions on the statiestical rates rN , r0N , and �0N hold:

rN = sup
�2TN

kEP [ 
a(O; �)]� EP [ 

a(O; �0)]k  �N ,

r
0
N = sup

�2TN

(EP [k (O; ✓, �)� EP [ (O; ✓0, �0)k
2])1/2  �N ,

�
0
N = sup

r2(0,1),�2TN

k@
2
rEP [ (O; ✓0, �0 + r(� � �0))]k  �N/

p

N.

(d) The variance of the score  is non-degenerate: All eigenvalues of the matix EP [ (O; ✓0, �0) (O; ✓0, �0)0] are
bounded from below by c0.

Here, we will show that all of these conditions are satisfied except for Assumption 2 (c) and, by extension the
bound on �0N in Assumption 3. These two conditions are used in Chernozhukov et al. (2018) to prove that, for
any sequence {PN}N�1 such that PN 2 PN , the following holds for all PN 2 PN

kRN,2k = OPN (�N/

p

N), (23)

where

RN,2 =
1

K

X

k

En,k[ (O; ✓0, �̂k)]�
1

N

NX

i=1

 (Wi; ✓0, �0), (24)

and where En,k[·] =
1
n

P
i2Ik

(·) is the empirical expectation w.r.t. the k’th cross-validation fold. We will prove
this using other means. First, we establish that all other conditions in Assumptions 2 and 3 hold for all PN 2 PN .
For notational simplicity, we will drop the dependence of `, �, and h on O throughout. Additionally, denote by
EN the event that �k 2 TN .

Proof of Assumption 2 (a) This holds trivially via the definitions of ✓0 and µ0.

EPN [ (O; ✓0, �0)] = EPN


1

↵
(µ0 � ⌘0)+ + ⌘0 +

1

↵
h0(`� µ0)�

1

↵
(µ0 � ⌘0)+ � ⌘0

�
(25)

= EPN


1

↵
h0(`� µ0)

�
= EPN


1

↵
h0(µ0 � µ0)

�
= 0 (26)

Proof of Assumption 2 (b) This holds trivially with  a = �1.

Proof of Assumption 2 (d) To show Neyman orthogonality of  , we must show that, for PN 2 PN , T the
set of possible nuissance parameter values, and T̃ = {� � �0 : � 2 T}, the Gateaux derivative map Dr : T̃ ! R
exists for all r 2 [0, 1) where

Dr[� � �0] = @r {EPN [ (O; ✓0, �0 + r(� � �0))]} , � 2 T,

and that Dr[���0] vanishes for r = 0. For notational simplicity, let µr = µ0�r(µ�µ0), with analgous definitions
for ⌘r and hr. Then, using Danskin’s theorem, Dr[� � �0] exists for r 2 [0, 1) and is given by

Dr[� � �0] =EPN


1

↵
[µr � ⌘r]((µ� µ0)� (⌘ � ⌘0)) + (⌘ � ⌘0)

+
1

↵
(h� h0)(l � µr)�

1

↵
hr(µ� µ0)

�
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Finally, we have

Dr[� � �0]|r=0 = EPN


1

↵
[µ0 � ⌘0]((µ� µ0)� (⌘ � ⌘0)) + (⌘ � ⌘0) +

1

↵
(h� h0)(l � µ0)�

1

↵
(h0)(µ� µ0)

�

= EPN [⌘ � ⌘0]�
1

↵
EPN [h0(⌘ � ⌘0)]

= EPN [⌘ � ⌘0]�
1

↵
EPN [EPN [h0 | Z](⌘ � ⌘0)]

= EPN [⌘ � ⌘0]�
1

↵
EPN [↵(⌘ � ⌘0)] = 0

The second line follows from the definitions of h0 = [µ0 � ⌘0] and µ0 = E[` | W,Z]. The final line follows from
the constraint that EPN [h0 | Z] = ↵ almost everywhere.

Proof of Assumption 2 (e) This hold trivially since J0 = EPN [ a(O; �0)] = �1.

Proof of Assumption 3 (a) This holds by construction of TN and Assumption 1.

Proof of Assumption 3 (b) The bound on m
0
N holds trivially as  a(O; �) = �1. To bound mN on the event

EN , we begin by decomposing it using the triangle inequality as

k (O; ✓0, �)kPN ,q =

����
1

↵
(µ� ⌘)+ + ⌘ +

1

↵
h(`� µ)

����
PN ,q

(27)


1

↵
k(µ� ⌘)+ + ↵⌘kPN ,q +

1

↵
kh(`� µ)kPN ,q (28)

Since 0  h  1, and by the triangle inequality and Assumption 1, we have

kh(`� µ)kPN ,q  k`� µkPN ,q (29)

= k`� µ0 + µ0 � µkPN ,q (30)

 k`� µ0kPN ,q + kµ0 � µkPN ,q (31)

 2C, (32)

where the fourth line follows from Assumption 1 (a). Next, we can bound k(µ� ⌘)+ + ↵⌘kPN ,q as

k(µ� ⌘)+ + ↵⌘kPN ,q  k(µ� ⌘)+kPN ,q + k↵⌘kPN ,q (33)

 kµ� ⌘kPN ,q + k↵⌘kPN ,q (34)

 kµ0kPN ,q + kµ0 � µkPN ,q + (1 + ↵)(k⌘0kPN ,q + k⌘0 � ⌘kPN ,q) (35)

 (4 + 2↵)C (36)

where the fourth line follows from Jensen’s inequality and Assumption 1 (a). Thus, k (O; ✓0, �)kPN ,q < 1 and
Assumption 3 (b) holds.

Proof of Assumption 3 (c) The bound on rN is trivially satisfied. Further,

k (O; ✓0, �)�  (O; ✓0, �0)kPN ,2 =
1

↵
k↵(⌘ � ⌘0) + `(h� h0) + h0⌘0 � h⌘kPN ,2 (37)


1

↵
(↵k⌘ � ⌘0kPN ,2 + k`(h� h0)kPN ,2 + kh0⌘0 � h⌘kPN ,2) (38)


1

↵
(↵�N + C�N + kh0⌘0 � h⌘kPN ,2) (39)

where the first line follows from the definition of  and h, the second line follows from the triangle inequality, and
the third line follows from the Assumption 1. Then, to bound kh0⌘0 � h⌘kPN ,2, first observe that kh0 � hkPN ,2 =
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k[h0 = 1, h = 0] + [h0 = 0, h = 1]kPN ,2 where [·] is the Iverson bracket. Then, we have

kh0⌘0 � h⌘kPN ,2 = k[h0 = 1, h = 0]⌘0 � [h0 = 0, h = 1]⌘ + [h0 = 1, h = 0](⌘0 � ⌘)kPN ,2 (40)

 k([h0 = 1, h = 0]� [h0 = 0, h = 1])⌘0 � [h0 = 0, h = 1](⌘ � ⌘0) + [h0 = 1, h = 0](⌘0 � ⌘)kPN ,2

(41)

 k([h0 = 1, h = 0]� [h0 = 0, h = 1])⌘0kPN ,2 + k[h0 = 0, h = 1](⌘ � ⌘0)kPN ,2 (42)

+ k[h0 = 1, h = 0](⌘0 � ⌘)kPN ,2 (43)

 Ckh0 � hkPN ,2 + C�N + �N (44)

. �N , (45)

where the third line follows from the triangle inequality and the fourth line follows from Lemma 14 of Jeong and
Namkoong (2020) and Assumption 1 (d) - (f). Finally, we have

k (O; ✓0, �)�  (O; ✓0, �0)kPN ,2 
1

↵
(↵+ 3C + 1)�N (46)

and thus the bound on r
0
N . As discussed above the bound on �0N = supr2(0,1),�2TN

k@
2
rEPN [ (O; ✓0, �0+r(���0))]k

does not hold because  is not twice di↵erentiable.

Proof of Equation A.6 from Chernozhukov et al. (2018) We have now shown that all parts of Assumptions
2 and 3 hold except for assumptions involving the second derivative of  . The assumptions regarding the second
derivative of  are used by Chernozhukov et al. (2018) to show that, for all PN 2 PN

RN,2 =
1

K

X

k

En,k[ (O; ✓0, �̂k)]�
1

N

NX

i=1

 (Oi; ✓0, �0) = OPN (�N/

p

N). (47)

We will show this using similar arguments to those in Step 3 of the proof of Theorem 3.1 in Chernozhukov et al.
(2018), but without relying on the second derivative of  . As in Chernozhukov et al. (2018), because the number
of cross-validation folds K is a fixed integer, we need only show that

En,k[ (O; ✓0, �̂k)]�
1

n

nX

i=1

 (Oi; ✓0, �0) = OPN (�N/

p

N) (48)

where n = N/K. Following Chernozhukov et al. (2018) this quantity can be bounded as

�����En,k[ (O; ✓0, �̂k)]�
1

n

nX

i=1

 (Oi; ✓0, �0)

����� 
I3,k + I4,k

p
n

, (49)

where

I3,k = kGn,k[ (O; ✓0, �̂k)]�Gn,k[ (O; ✓0, �0)]k (50)

I4,k =
p
nkEPN [ (O; ✓0, �̂k)] | (Oi)i2Ik � EPN [ (O; ✓0, �0)]k, (51)

and where

Gn,k[�(O)] =
1
p
n

X

i2Ik

✓
�(Oi)�

Z
�(w)dPN

◆
. (52)

Chernozhukov et al. (2018) showed that I3,k = OPN (r0N ) (using only assumptions satisfied by Assumption 1) and
thus, what remains to be shown is that I4,k  �N/

p
N which we do drawing on proofs in Jeong and Namkoong

(2020). Define

fk(r) = EPN [ (O; ✓0, �0 + r(�̂k � �0)) | (Oi)i2Ic
k
]� EPN [ (O; ✓0, �0)]. (53)
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Note that |fk(1)| is the quantity that we want to bound and fk(0) = 0. Then, using the mean value theorem, for
some r

⇤
2 (0, 1), we have |fk(1)| = |fk(0) + f

0
k(r

⇤)| = |f
0
k(r

⇤)|  supr |f
0
k(r)|. Define µ̂r = µ0 + r(µ̂k � µ0) with

analogous definitions for ⌘̂r and ĥr. Then, for arbitrary r 2 (0, 1), we bound |f
0
k(r)| as

|f
0
k(r)| = |@rEPN [ (O; ✓0, �0 + r(�̂k � �0)) | (Oi)i2Ic

k
]| (54)


1

↵

⇣
|EPN [([µ̂r > ⌘̂r]� h0)(µ̂k � µ0)]|+ |EPN [(↵� [µ̂r > ⌘̂r])(⌘̂k � ⌘0)]|+ 2

���EPN [(ĥk � h0)(µ̂k � µ0)]
���
⌘

(55)


1

↵

⇣
|EPN [(↵� [µ̂r > ⌘̂r])(⌘̂k � ⌘0)]|+ 3

���EPN [(ĥk � h0)(µ̂k � µ0)]
���
⌘

(56)


1

↵

⇣
kĥk � h0kPN ,1k⌘̂k � ⌘0kPN ,1 + 3kĥk � h0kPN ,1kµ̂k � µ0kPN ,1

⌘
(57)


1

↵
kĥk � h0kPN ,1 (k⌘̂k � ⌘0kPN ,1 + 3kµ̂k � µ0kPN ,1) (58)

where the second line follows from the triangle inequality, the third line follows from the obsrevation that
|[µ̂r < ⌘̂r] � h0|  |ĥk � h0|, and the fourth line follows from this observation and applications of Jensen’s
inequality followed by Hölder’s inequality. By Lemmas 13 and 14 of Jeong and Namkoong (2020) and Assumption
1 (f), we have k⌘̂ � ⌘0kPN ,1 = O(kµ̂k � µ0kPN ,1) and kĥk � h0kPN ,1 = O(�NN

�1/6). Further, by Assumption 1
we have kµ̂k � µ0kPN ,1 = O(�NN

�1/3). Thus, we have |f
0
k(r)| = O(�NN

�1/2) and our proof is concluded.

E Handling discrete W

Algorithm 2: Discrete Worst-case Sampler

Input: Model M, Dataset D = {(wi, zi, vi)}ni=1, noise parameter ✏, and K cross-validation folds
Ik ⇢ {1, . . . , n} and I

c
k = {1, . . . , n} \ Ik

for k = 1, . . . ,K do
Estimate µ̂k ⇡ µ0 using data in I

c
k

Estimate ⌘̂k ⇡ ⌘0 according to Eq. 4 using µ̂k + ui and data in I
c
k

for i 2 Ik do
Let µ̂i = µ̂k(wi, zi)
Let ⌘̂i = ⌘̂k(zi)
Let ĥi = [µ̂i + ui > ⌘̂i]

end
end

Let R̂↵,✏ =
1
K

P
k

1
|Ik|

P
i2Ik

1
1�↵ (µ̂i + ui � ⌘̂i)+ + ⌘̂i

+ 1
1�↵ ĥi(`(yi,M(xi))� µ̂i)

Result: R̂↵

When W contains only discrete variables, Assumption 1 (f) no longer holds. In such cases, we can retain the
desirable theoretical properties of Theorem 1 at the cost of an arbitrarily small, user-controlled amount of bias,
using a simple augmentation to the Worst-case Sampler in Algorithm 1 of the main paper. This augmentation
works by adding a small amount of user-controlled noise to the µ0 thereby smoothing the conditional distribution
of µ0 given Z. To derive this augmentation, first let U ⇠ Unif(0, ✏) be a uniform random variable with support
on [0, ✏] such that U ?? {W,Z, V }. Then, we can choose h to maximize the expected loss plus this extra noise
term as

R↵,✏,0 = sup
h:[0,✏]⇥W⇥Z![0,1]

1

1� ↵
EP [h(U,W,Z)µ✏,0(U,W,Z)] (59)

s.t. EP [h(U,W,Z) | Z] = 1� ↵ a.e., (60)

where µ✏,0(U,W,Z) = µ0(W,Z)+U . The corresponding change to the estimation algorithm is shown in Algorithm
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2. This algorithm returns a consistent estimate for R↵,✏,0 as µ✏,0 satisfies the conditions of Assumption 1 (f). In
the following proposition, we show that the di↵erence between R↵,0 and R↵,✏,0 is bounded by ✏.

Proposition 5. |R↵,✏,0 �R↵,0|  ✏

Proof. First, since U has support in the non-negatives, we have R↵,✏,0 � R↵,0. Next, let S = {W ⇥ Z ! [0, 1] :
EP [h | Z] = 1� ↵ a.e.} and S̃ = {[0, ✏]⇥W ⇥ Z ! [0, 1] : EP [h | Z] = 1� ↵ a.e.}. Then,

R↵,✏,0 = max
h̃2S̃

1

1� ↵
EP [h̃(µ0 + U)] (61)

 max
h̃2S̃

1

1� ↵
EP [h̃(µ0 + ✏)] (62)

=

✓
max
h̃2S̃

1

1� ↵
EP [h̃µ0]

◆
+ ✏ (63)

=

✓
max
h2S

1

1� ↵
EP [hµ0]

◆
+ ✏ (64)

= R↵,0 + ✏. (65)

F Experimental Details

F.1 Dataset

We loosely follow the setup of Giannini et al. (2019) in deriving the dataset for training sepsis diagnosis models.
The dataset contains electronic health record data collected over four years at our institution’s hospital (Hospital
A). The dataset consists of 278,947 emergency department patient encounters. The prevalence of the target disease,
sepsis (S), is 2.1%. 17 features pertaining to vital signs (V) (heart rate, respiratory rate, temperature), lab tests
(L) (white blood cell count [wbc], lactate), and demographics (D) (age, gender) were extracted. For encounters
that resulted in sepsis (i.e., positive encounters), physiologic data available up until sepsis onset time was used.
For non-sepsis encounters, all data available until discharge was used. For each of the time-series physiologic
features (V and L), min, max, and median summary features were derived. Unlike vitals, lab measurements
are not always ordered (O) and are subject to missingness (lactate 89%, wbc 27%). To model lab missingness,
missingness indicators (O) for the lab features were added. The evaluation dataset was created using a held-out
sample of 10,000 patients. The remaining data was used to train the two models. As per its definition, qSOFA
was computed from respiratory rate, systolic blood pressure, and glasgow coma score (gcs) (gcs and blood pressure
were separately extracted for these patients) (Singer et al., 2016). Using existing standards, we remapped gcs to
the Alert, Voice, Pain, Unresponsive (AVPU) score which is required to compute qSOFA (Gardner-Thorpe et al.,
2006).

Figure 5: Age distributions at the two hospitals are very similar.

In Section 3.2.3 we use data from another Hospital B (within the same network as Hospital A used in the prior
experiments). This dataset contains 96,574 patient encounters and has a sepsis prevalence of 2.8% (vs 2.1% at
Hospital A). Turning to demographics, the population at Hospital A is 42% female while at Hospital B it is 39%
female. Finally, Kernel Density Estimates (Fig 5) of the age distributions at the two hospitals were very similar.
The missingness rates for lab orders were 28% wbc missingness (unchanged from Hospital A) and 77% lactate
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missingness (12% decrease in missingness). Thus, there is a sizeable increase in (lactate) test ordering patterns
from Hospital A to Hospital B.

F.2 Models

D

S O

V L

Figure 6: Posited DAG of the data generating process used to train the robust model. The robust model was
trained to be stable to shifts in the policy for ordering lab tests (O).

The classical model was a Random Forest Classifier trained using the implementation in scikit-learn (Pedregosa
et al., 2011). The hyperparameters were tuned via grid search 5-fold cross-validation (CV) on the training dataset.
The resulting tuned parameters were: number of trees 1000, min samples in a leaf 1, max depth 15, and min
samples per split 2.

The robust model was an implementation of the surgery estimator (Subbaswamy et al., 2019), a causal method
for training models which make predictions that are stable to pre-specified shifts. Using the DAG in Fig 6, lab
test ordering patterns are defined by the distribution P (O|S,D). As opposed to the classical model, which models
P (S|V,D,O,L), the robust model models the interventional distribution P (S|V,D, do(O), L) which considers a
hypothetical intervention on test ordering patterns. The robust model was fit by inverse probability weighting
(IPW). First, we fit a logistic regression model of P (O|S,D) using the training data. Then, a Random Forest
model with the full feature set was trained using sample weights 1

P (oi|si,di)
. These weights create a training

dataset in which lab orders are approximately randomized w.r.t. S and D. The tuned hyperparameters from the
classical model were used as the hyperparameters for the robust model.

F.3 Estimating Worst-Case Risk

Estimating the Worst-Case risk using Algorithm 1 requires specifying the variable sets W and Z and fitting
the models for the nuisance parameters µ0 (the conditional expected loss) and ⌘0 (the conditional quantile of
µ0). To measure model robustness to changes in test ordering patterns we define W = {O} and Z = {S,D} (so
that P (W |Z) corresponds to test ordering policies). Since classification accuracy was the performance metric of
interest, we chose 0� 1 loss as the loss function. Within Algorithm 1, 10-fold CV was used (i.e., K = 10).

To fit the conditional expected loss µ̂k, we used the scikit-learn Kernel Ridge Regression implementation with the
RBF kernel which minimizes `2 regularized mean squared error (MSE). Because W contained all discrete variables,
we applied Algorithm 2 with noise U ⇠ Unif(0, 1⇥ 10�5). The bandwidth and regularization parameters were
tuned using a nested 5-fold CV on each estimation fold k to which Algorithm 2 was applied. As µ̂k does not
depend on ↵, it was not refit for di↵erent ↵ values.

To model the conditional quantile function ⌘̂k, we used `2 regularized quantile regression with a b-spline basis
expansion. We used a quantile b-spline basis expansion for Age and added an interaction term between S and
all other variables in Z (Age expansion and Gender). The regularization constant �k was chosen separately for
each estimation fold k using a nested 5-fold cross-validation and grid search to produce the lowest mean absolute
deviation.
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