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Abstract

As the use of machine learning in high impact
domains becomes widespread, the importance
of evaluating safety has increased. An impor-
tant aspect of this is evaluating how robust a
model is to changes in setting or population,
which typically requires applying the model to
multiple, independent datasets. Since the cost
of collecting such datasets is often prohibitive,
in this paper, we propose a framework for
analyzing this type of stability using the avail-
able data. We use the original evaluation data
to determine distributions under which the
algorithm performs poorly, and estimate the
algorithm’s performance on the “worst-case”
distribution. We consider shifts in user de-
fined conditional distributions, allowing some
distributions to shift while keeping other por-
tions of the data distribution fixed. For exam-
ple, in a healthcare context, this allows us to
consider shifts in clinical practice while keep-
ing the patient population fixed. To address
the challenges associated with estimation in
complex, high-dimensional distributions, we
derive a “debiased” estimator which maintains
p
N -consistency even when machine learning

methods with slower convergence rates are
used to estimate the nuisance parameters. In
experiments on a real medical risk prediction
task, we show this estimator can be used to an-
alyze stability and accounts for realistic shifts
that could not previously be expressed. The
proposed framework allows practitioners to
proactively evaluate the safety of their models
without requiring additional data collection.
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1 Introduction

A high quality evaluation of a machine learning (ML)
model must allow a user to determine if the model will
help safely and e↵ectively achieve their goals in the
deployment environment. Such an evaluation should
demonstrate whether a model will perform well in the
deployment environment, which often di↵ers from the
environment in which training data was gathered (i.e.,
the case of dataset shift (Quiñonero-Candela et al.,
2009)). Additionally, it should test whether the model
will perform well across all relevant subpopulations and
whether performance will deteriorate in unexpected
ways as the deployment environment evolves over time.
Historically, model evaluation methods have focused on
performance on new or heldout data that “looks similar”
to the training data. Existing tools, such as cross-
validation and the bootstrap, satisfy the assumption
that the training and test data are drawn from the same
distribution, but fail to capture potential di↵erences
between training and deployment environments.

To capture such di↵erences, a common practice is to
evaluate performance on multiple, independently col-
lected datasets. While this helps to address di↵erences
that can exist across environments, this approach has
limitations. If we cannot completely characterize how
the datasets di↵er, or if the datasets are not su�ciently
diverse, then a user can draw only limited conclusions
about how the model will perform in the deployment
environment. To counteract this, one could consider
targeted collection of additional datasets which di↵er
in structured ways (e.g., collecting data with di↵ering
demographics). This approach can be prohibitively
costly, or in some cases, impossible. For example, we
can not ethically collect new loan approval datasets in
which we forcibly vary customer spending habits. Thus,
to fully capture the performance of a model in real-
world environments, we need methods for analyzing
the stability of a model. Such stability analyses should
demonstrate the range of environments and subpopula-
tions in which a model performs well and which types
of changes in environment will degrade performance.

Unfortunately, we lack methodology for performing
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Figure 1: Age distribution of the worst-case subsam-
ples resulting from no shift (Unshifted), shifts in the
marginal distribution of features (Marginal), and
shifts in the way tests are ordered (Conditional) for
subsample size (1� ↵) = 0.6. The age distribution
changes substantially under covariate shift.

stability analysis, which is increasingly needed as ML
systems are being deployed across a number of indus-
tries, such as health care and personal finance, in which
system performance translates directly to real-world
outcomes (see, e.g., Subbaswamy and Saria (2020a)
for a discussion of the need for shift-stable models in
healthcare). Further, as regulations and product re-
views become more common across industries (e.g., the
United States Food and Drug Administration (FDA)
currently regulates ML systems for medical applica-
tions), system developers will be expected to produce
high quality evaluations to prove the safety of their sys-
tems (US Food and Drug Administration, 2019, 2021).
For example, consider evaluating a model trained to di-
agnose a disease Y from a set of covariates X (e.g., age,
medical history, treatments). We may wish to learn
what di↵erences across hospitals would lead to model
failures, such as changes to the patient demographics
or di↵erences in clinical treatment practices.

One approach to stability analysis is through the lens
of distributionally robust optimization (DRO) (Ben-Tal
et al., 2013; Duchi et al., 2016). Instead of examining a
model’s performance only on the (empirical) test distri-
bution associated with a particular validation dataset,
DRO defines an uncertainty set of possible test dis-
tributions and considers the model’s performance on
the worst-case distribution chosen from this set. The
distributionally robust perspective allows us to identify
the types of environments which lead to poor model
performance. To establish the stability of a model un-
der the many possible ways in which environments can
change, we need to be able to evaluate worst-case per-
formance under a corresponding variety of shifts. This
requires a flexible framework for specifying how the
data distribution can change that can reflect targeted
changes in environment. Previous shift formulations
which consider, e.g., shifts in the entire joint distribu-
tion P (X,Y ) (e.g., Ben-Tal et al. (2013); Duchi et al.
(2016)) or shifts in the covariate distribution P (X)
(e.g., Duchi et al. (2020); Chen et al. (2016)), cannot

express finer-grained shifts which isolate changes in
the characteristics of a population from decisions made
based on those characteristics.

To illustrate, suppose we were interested in analyzing
the stability of a diagnosis model’s performance to
changes in the way clinicians order tests, while keeping
the underlying patient population fixed. If the model’s
predictions depend heavily on the results of a partic-
ular test and it is deployed to a hospital where that
test is not common, the model could become unsafe
to use. This requires specifying a shift in the distribu-
tion of test orders P (test order | age, patient history).
Previous formulations that do not keep the patient
population fixed (e.g., covariate shift) may identify dif-
ferent indicators of poor performance than what we
seek to evaluate. To see this (Fig 1), we evaluated a
real diagnostic model’s robustness to covariate shift,
which resulted in a worst-case age distribution (orange)
that di↵ered substantially from the observed age dis-
tribution (blue). By using the more flexible framework
described in this work, we were able to evaluate a worst-
case change in the distribution of test orders that did
not a↵ect the age distribution (green).

In this paper, we develop a method for analyzing the
stability of models to dataset shift without requiring
the collection of new datasets. To evaluate a model
under di↵erent shifts, users specify a set of immutable
variables whose distribution should remain fixed, a set
of mutable variables whose distribution is allowed to
change, and a population proportion. The method then
identifies the subpopulation of the specified proportion
with the worst average loss. This subpopulation is cho-
sen based on the values of the mutable and immutable
variables, but is constrained so that the distribution of
the immutable variables matches that of the full sam-
ple. If the model performs well on this subpopulation,
this indicates robustness to the specified type of shift.
Conversely, if the method identifies a subpopulation
with low performance, this subpopulation may be used
to guide further model development or as part of a
“warning label” for users of the model.

Contributions: First, by defining shifts in conditional
distributions, we generalize previous DRO formulations
which consider shifts in marginal or joint distributions
(Section 2). This extends our ability to analyze stability
to realistic scenarios that were not possible before.
Second, we propose the first

p
N -consistent method for

estimating the worst-case risk under these distribution
shifts (Section 3.1). Finally, on a medical prediction
task, we demonstrate that this method can be used to
compare the stability of models and identify conditions
under which a model would be unsafe to use.



Adarsh Subbaswamy, Roy Adams, Suchi Saria

2 Methods

We are interested in evaluating a prediction algorithm
M : X ! Y which has been trained to predict a target
variable Y with support set Y from a set of covariates
X with support set X . As a running example, consider
evaluating a model for diagnosing a disease (i.e., Y
is a binary label for the presence of the disease) from
a patient’s medical history. As in the case of a third
party reviewer, we will assume that M is fixed and
that we are evaluating the performance of M on a
fixed test dataset D = {(xi, yi)}Ni=1 drawn i.i.d. from
some test distribution P . Classically, to evaluate M,
we would select a loss function ` : Y ⇥ Y ! R and
estimate the expected loss under the test distribution
P as EP [`(Y,M(X))] ⇡ 1

N

P
i `(yi,M(xi)). However,

in addition to the expected loss under P , in many
practical applications we would like to know how robust
the model’s expected loss is to changes or di↵erences in
P , referred to as distribution shift. In this section, we
describe how to estimate the expected loss of M under
worst-case shifts in the distribution P . We proceed
by formally defining distribution shifts, specifying our
objective for evaluating model performance under shifts,
and, finally, deriving an estimator for this performance.

2.1 Defining Distribution Shifts

To define general distribution shifts, we will partition
the variables into three sets. Let Z ⇢ {X,Y } be a
set of immutable variables whose marginal distribution
should remain fixed, W ⇢ {X,Y } \Z be a set of muta-
ble variables whose distribution (given Z) we allow to
vary, and V = {X,Y } \ (W [ Z) be the remaining de-
pendent variables. Let Z, W , and V be their respective
support sets. This partition of the variables defines
a factorization of P into P (V | W,Z)P (W | Z)P (Z).
Then, we consider how model performance changes
when P (W | Z) is replaced with a new distribution
Q(W | Z), while leaving P (Z) and P (V | W,Z) un-
changed. Notably, this formulation generalizes other
commonly studied instances of distribution shift. For
example, if we let Z = ; and W = X, then this corre-
sponds to a marginal (Duchi et al., 2020) or covariate
shift (Shimodaira, 2000; Sugiyama et al., 2007).

The choice of Z and W determines the type of shift we
are interested in. Returning to our diagnosis example,
setting Z = ; and W to the set of patient demographic
and history variables allows us to evaluate what would
happen if the patient population were to change. On
the other hand, we may also wish to know how our
diagnostic algorithm will perform under changes in
treatment policies employed by hospitals when the
underlying patient population remains the same. For
example, clinicians often order tests (e.g., blood tests)

in order to inform diagnoses. By setting W to the
binary indicator for a particular test order and Z to
include patient information used by doctors to decide
on a test order, we can evaluate how performance varies
under changes in the way clinicians order this test.

Remark 1 (Shifts supported by the data). The types
of shifts that we can consider with a single dataset
are fundamentally limited by the amount of variation
observed within that dataset. While we can change
the rates at which events occur in our data, we cannot
evaluate performance in situations that we have never
seen. For example, we cannot reliably estimate how
a model will perform in an intensive care unit (ICU)
using only data from an emergency department (ED) as
there are events that can occur in an ICU that cannot
occur in an ED.

Remark 2 (Connection to casual inference). Under
certain conditions, shifts in a conditional distribution
P (W | Z) have an important interpretation as evaluat-
ing stability to causal policy interventions or process
changes (Pearl, 2009). That is, the e↵ects of the shift
correspond to how the distribution would change under
an intervention that changes the way W is generated.
Informally, such an interpretation is possible when Z

contains su�cient variables to adjust for potential con-
founding between W and its causal descendants in V .
A formal description of this condition in the context of
causal models is given in the Appendix.

2.2 Quantifying Performance Under Shifts

Our goal is to evaluate the stability of M to changes in
P (W | Z). We will do so by identifying subpopulations
(and, thus, choices of Q(W | Z)) on which the model
performs poorly. Specifically, for a user specified sam-
ple proportion (1� ↵) 2 (0, 1], our goal is to find the
subpopulation of proportion (1� ↵) with the highest
expected loss such that: (1) the subpopulation is cho-
sen based only on variables in Z and W , and (2) the
distribution of Z in the subpopulation matches that of
the full population P . We refer to this subpopulation as
the worst (1�↵)-subsample. This subpopulation is
a sample from the shifted distribution that corresponds
directly to a shift of the type described in Section 2.1.

Formally, let h : W ⇥ Z ! [0, 1] be the function that
selects data points as being in or out of the worst (1�↵)-
subsample based on Z andW . The expected loss in this
subpopulation is given by 1

1�↵EP [h(W,Z)µ0(W,Z)],
where µ0(W,Z) ⌘ EP [`(Y,M(X)) | W,Z] is the condi-
tional expected loss given W and Z. We will further
constrain h so that EP [h(W,Z) | Z] = 1 � ↵ almost
everywhere, which fixes the distribution of Z in the
subpopulation defined by h. Then, we are interested
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in the expected loss given by the worst-case h or

R↵,0 ⌘ sup
h:W⇥Z![0,1]

1

1� ↵
EP [h(W,Z)µ0(W,Z)] (1)

s.t. EP [h(W,Z) | Z] = 1� ↵ a.e. (2)

We refer to R↵,0 as the worst-case risk and it repre-
sents the expected loss on the worst (1�↵)-subsample.

To illustrate, consider a simple data generating mech-
anism: X1, X2 ⇠ N (0, 1), Y = [X1 > sin(2X2)]. Sam-
ples from this distribution are shown in Fig 2a. Suppose
that we want to evaluate the stability of a pre-trained
linear classifier (also shown in Fig 2a) under distribu-
tion shifts using binary cross-entropy as our loss func-
tion. Under a shift in the distribution P (X1, X2) (i.e.,
W = {X1, X2} and Z = ;), Equation 1 simply selects
the 1� ↵ fraction of points that yield the highest con-
ditional loss (i.e., incorrectly classified points furthest
from the decision boundary) as shown in Fig 2b. By
contrast, under a shift in the distribution P (X2 | X1)
(i.e., W = {X2} and Z = {X1}), points producing
high conditional loss are chosen subject to the addi-
tional constraint of keeping the marginal P (X1) fixed,
as shown in Fig 2c. This is a direct consequence of the
constraint in Equation 2 and is the primary di↵erence
between the two shifts.

Remark 3 (Connection to DRO). In distributionally
robust optimization (DRO), a model is trained to min-
imize the expected loss under the worst-case distribu-
tion within an uncertainty set of possible distributions.
In Duchi and Namkoong (2018), this uncertainty set
was defined by specifying a statistical divergence and
placing a fixed radius divergence ball around the data
distribution. The worst-case risk defined in Equation
1 can equivalently be thought of as maximizing over
distributions in such an uncertainty set defined by the
divergence D1(Q k P ) = log supA2F

Q(A)
P (A) where F is

the event space for P and Q (Van Erven and Harremos,
2014).1 A similar connection was previously described
in Duchi et al. (2020).

2.3 Estimating the Worst-Case Risk

Having defined the worst-case risk R↵,0 in Equation 1,
we now turn to the problem of estimating this risk in
finite samples. While previous work on distributionally
robust optimization has considered how to train mod-
els that minimize (upper bounds on) worst-case risk
(e.g., Duchi and Namkoong (2018)), to the best of our
knowledge the problem of accurately estimating the
worst-case risk itself has not received much attention.
Thus, in this section we present a consistent estimator

1We give a full mapping between the sample proportion
and the radius of the divergence ball in the Appendix.

for R↵,0 to address this problem. In Section 3.1, we will
show that this estimator has central limit properties,
allowing us to easily estimate confidence intervals in
settings with high-dimensional or continuous features.

Our estimator relies heavily on the dual formulation for
Equation 1. Defining µ0 to be the conditional expected
loss as before, and following Duchi et al. (2020) and
Duchi and Namkoong (2018), the dual is given by

R↵,0 = EP


1

1� ↵
(µ0(W,Z)� ⌘0(Z))+ + ⌘0(Z)

�

(3)

where (x)+ = max{x, 0} is the ramp function and the
function ⌘0 : Z ! R is given by

⌘0 = arginf
⌘:Z!R

EP


1

1� ↵
(µ0(W,Z)� ⌘(Z))+ + ⌘(Z)

�

(4)

A full derivation of Equation 3 can be found in the
Appendix. Note that the objective for ⌘0 is equivalent
to the mean absolute deviation objective used in quan-
tile regression. Indeed, ⌘0 is the conditional quantile
function of the conditional expected loss µ0. Thus,
estimating ⌘0 given µ0 is exactly quantile regression.2

Estimating R↵,0 requires first estimating the two (po-
tentially infinite dimensional) nuisance parameters µ0

and ⌘0. The dual formulation for R↵,0 suggests a poten-
tial naive estimation procedure: (1) Estimate µ̂ ⇡ µ0,
(2) estimate ⌘̂ ⇡ ⌘0 by plugging µ̂ into Equation 4, and
(3) estimate R̂↵ ⇡ R↵,0 by plugging µ̂ and ⌘̂ into Equa-
tion 3. When Z and W are low-cardinality discrete
variables and �0 = (µ0, ⌘0) is a low-dimensional vector,
this simple procedure is

p
N -consistent, as shown in

Proposition 1 of Duchi et al. (2020) for the case of
Z = ;. In most practical scenarios, Z or W may be
continuous or high-dimensional and we will instead
want to use flexible machine learning (ML)-based esti-
mators (e.g., random forests or deep neural nets) for
�0. However, Chernozhukov et al. (2018) showed that,
due to the slow convergence rates and common practice
of regularization in flexible ML methods, their use in
plugin procedures like this can lead to substantial bias
and poor convergence rates.

To avoid these issues, following Chernozhukov et al.
(2018) and Jeong and Namkoong (2020), we propose a
so-called “debiased” machine learning (DML) estima-
tor for R↵,0. Among other conditions we will prove in
Section 3.1, this estimator maintains

p
N -consistency

without assuming
p
N convergence rates for the estima-

tors used for µ0 and ⌘0. The Worst-case Sampler,

2When Z = ;, the di�culty of the estimation problem
is significantly reduced because ⌘0 is a scalar.
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Figure 2: (a) Samples from the data distribution described in Section 2.2 along with the decision boundary for
a linear classifier fit to this data. (b) The worst (1� ↵)-subsample under a shift in P (X1, X2). (c) The worst
(1� ↵)-subsample under a shift in P (X2|X1). The marginal distributions P (X2) and P (X1) are shown on
the right and top. The shift in (c) keeps the marginal P (X1) roughly the same as in (a). Results for ↵ = 0.9

Algorithm 1: Worst-case Sampler

Input: Model M, Dataset D = {(wi, zi, vi)}ni=1,
and K cross-validation folds
Ik ⇢ {1, . . . , n} and I

c
k = {1, . . . , n} \ Ik

for k = 1, . . . ,K do
Estimate µ̂k ⇡ µ0 using data in I

c
k

Estimate ⌘̂k ⇡ ⌘0 according to Eq. 4 using µ̂k

and data in I
c
k

for i 2 Ik do
Let µ̂i = µ̂k(wi, zi)
Let ⌘̂i = ⌘̂k(zi)
Let ĥi = [µ̂i > ⌘̂i]

end
end

Let R̂↵ = 1
K

P
k

1
|Ik|

P
i2Ik

1
1�↵ (µ̂i � ⌘̂i)+ + ⌘̂i

+ 1
1�↵ ĥi(`(yi,M(xi))� µ̂i)

Result: R̂↵, {ĥi}
n
i=1

detailed in Algorithm 1,3 splits the data into K folds,
estimates µ0 and ⌘0 on each fold using ML, and then
combines these estimates in a way that adjusts for
the slower convergence rates of the estimators for µ0

and ⌘0. Within the algorithm, Ik represents the k’th
fold, µ̂i ⇡ µ0(wi, zi) and ⌘̂i ⇡ ⌘0(zi) are the nuisance
parameter estimates for instance i and ĥi = [µ̂i > ⌘̂i]
implements the indicator function that selects the worst
(1�↵)-subsample. Given these, we estimate R̂↵ ⇡ R↵,0,
the risk on the worst (1� ↵)-subsample, as

R̂↵ =
1

K

X

k

1

|Ik|

X

i2Ik

1

1� ↵
((µ̂i � ⌘̂i)+

+[µ̂i � ⌘̂i](`(yi,M(xi))� µ̂i)) + ⌘̂i.

(5)

Next, we establish the correctness of this estimator
before applying it to analyze the stability of models on
a real clinical diagnosis problem.

3Code available at https://github.com/asubbaswamy/
stability-analysis.

3 Results

In this section, we present three main results: First,
we prove that the proposed estimation method has
properties that allow it to reliably estimate the worst-
case expected loss under distributional shift (Section
3.1). We also discuss confidence interval estimation,
sample size considerations, and the method’s limita-
tions. Second, in the context of a practical domain, we
validate that the worst-case performance estimated by
the method provides meaningful information about the
performance in an actual new environment (Section
3.2.2). Third, we demonstrate that our method can be
used to determine settings in which prediction models
may be unsafe to use due to poor performance (Section
3.2.3). The proposed method fills the gap created by
the lack of tools for performing stability analyses to the
many types of shifts that we can encounter in practice.

3.1 Theoretical Results

In order to reliably use our method to evaluate model
robustness and safety, it is important that (i) our es-
timator converges to the true worst-case loss (consis-
tency) at reasonable rates, and (ii) we are able to
account for statistical uncertainty via, for example,
confidence interval estimates. We show this by prov-
ing that, despite our use of regularized ML methods,
our estimator converges to the true worst-case loss at
the same asymptotic rate as had we known the true
nuisance parameter values (

p
N -consistency). Further,

we show that the estimator is asymptotically normal,
allowing for easy construction of valid confidence in-
tervals. This represents the first such estimator for
worst-case expected loss under distributional shift in
non-trivial settings.

We make the following assumptions, where k · kP,q =
(EP [| · |q])1/q, ⌘(µ) is the true conditional quantile func-
tion for µ (e.g., ⌘(µ0) = ⌘0), and, for parsimony, we
drop the dependence of �̂, �0, and ` on W , Z, and V .

https://github.com/asubbaswamy/stability-analysis
https://github.com/asubbaswamy/stability-analysis
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Assumption 1. Let (�N )1n=1 and (�N )1n=1 be se-
quences of positive constants approaching 0, let c, C,
and q, be strictly positive constants such that q > 2,
and let K � 2 be a fixed integer. Also, let �̂k = (µ̂k, ⌘̂k)
be the estimates of �0 = (µ0, ⌘0) on the k’th cross-
validation fold. Then, we assume that (a) k`kP,q  C

and with probability � 1��N : (b) k�̂k � �0kP,q  C,
(c) k�̂k � �0kP,2  �N , (d) kµ̂k � µ0kP,1  �NN

�1/3,
(e) k⌘(µ̂k)� ⌘̂kkP,1  �NN

�1/3, and (f) for r 2 [0, 1]
and µr,k = µ0 + r(µ̂k � µ0), there exists a positive
density at ⌘(µr,k)(Z) almost everywhere.

Remark 4 (Interpreting Assumption 1). The assump-
tions of most concern here are (b) and (c), which guar-
antee consistency of the nuisance parameter estimators,
as well as (d) and (e), which bound the convergence
rates of said estimators. If (b) or (c) are violated, pos-
sibly due to model misspecification, then R̂↵ will not
be consistent. If (d) or (e) are violated, then R̂↵ may
remain consistent, but the estimator variance given in
Equation 7, and, by extension, any confidence inter-
vals, may be incorrect. Importantly, the N

�3 rates
in (d) and (e) are slower than the

p
N rate we desire.

This admits the use of various ML estimators for µ0

and ⌘0, such as ReLU neural networks.4 Assumption
1 (a) ensures that there are no substantial regions of
the feature space with infinite expected loss. Finally,
Assumption 1 (f) is a standard requirement for esti-
mating quantiles which ensures that the conditional
quantiles of µ̂k converge to the conditional quantiles of
µ0 (Van der Vaart, 2000; Jeong and Namkoong, 2020).

We can now guarantee the
p
N -consistency and central

limit properties of R̂↵ using a version of Theorem 3.1
from Chernozhukov et al. (2018):

Theorem 1. Under Assumption 1, let {�N}N be a
sequence of positive integers converging to zero such
that �N � N

�1/2 for all N � 1. Then we have that R̂↵

concentrates in a 1/
p
N neighborhood of R↵,0 and is

approximately linear and centered Gaussian:

p

N�
�1(R̂↵ �R↵,0) =

1
p
N
�
�1

X

i

 (Oi;R↵,0, �0)

+OP (�N ) N (0, 1)
(6)

where Oi = (Wi, Zi, Vi), �0 = (µ0, ⌘0),

 (·;R↵,0, �0) =
1

1� ↵
((µ0 � ⌘0)+ + [µ0 � ⌘0](`� µ0))

+ ⌘0 �R↵,0,

and �2 = EP [ 2(O;R↵,0, �0)].

4We refer readers to the Appendix of Jeong and
Namkoong (2020) for a discussion of other estimators.

An important consequence of this result is that we can
further estimate the variance of

p
N(R̂↵ �R↵) as

�̂
2 =

1

K

X

k

1

|Ik|

X

i2Ik

 
2(Oi; R̂↵, �̂k), (7)

and this estimate can be used to construct valid 100(1�
a)% confidence intervals as (R̂↵±��1(1�a/2)

p
�̂2/N)

(Chernozhukov et al., 2018).

Remark 5 (Bias and variance for ↵! 1). Note that
the variance estimate �̂2 scales with 1/(1� ↵)2, high-
lighting that a large dataset may be needed to estimate
R↵,0 for ↵ close to 1. Additionally, if regularization
is used when estimating µ0 and ⌘0, this may smooth
over low-probability regions with high loss, resulting
in potential underestimation of the worst-case risk for
↵ close to 1 unless a similarly large dataset is used.

Remark 6 (Discrete W ). When W contains only dis-
crete random variables, Assumption 1 (f) is not satisfied.
In such cases, inspired by Machado and Silva (2005),
we augment the Worst-case Sampler (Alg 1) by
adding small amounts of independent uniform noise to
each µ̂k before fitting ⌘̂k and using a slightly augmented
version of Equation 5. This augmented procedure sat-
isfies Assumption 1 (f) at the cost of an arbitrarily
small, user-controlled amount of bias. Full details and
theoretical results are described in the Appendix.

With a reliable estimator in hand, we now demonstrate
its utility on a real clinical prediction problem.

3.2 Experimental Results

In the context of a practical domain, we now demon-
strate that: (a) the proposed method correctly esti-
mates the performance of a model under adversarial
distribution shifts and (b) the proposed method can be
used to compare the stability of multiple models and
determine shifted settings in which a model may be
unsafe to use. Suppose we are third-party reviewers,
such as the FDA, who wish to evaluate the safety of
a machine learning-based clinical diagnostic model to
changes in clinician lab test ordering patterns. Our
goal is to determine test ordering patterns under which
the model is likely to have poor performance. This
may serve to guide further model refinement or provide
a basis for determining “warning labels” about the
indications for model use.

3.2.1 Dataset and Models

We demonstrate our approach on machine learning mod-
els for diagnosing sepsis, a life-threatening response to
infection. We follow the setup of Giannini et al. (2019)
who developed a clinically validated sepsis diagnosis al-
gorithm. Our dataset contains electronic health record
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data collected over four years at Hospital A in our insti-
tution’s health network. The dataset consists of 278,947
emergency department patient encounters. The preva-
lence of the target disease, sepsis, is 2.1%. 17 features
pertaining to vital signs, lab tests, and demographics
were extracted. A full characterization of the dataset
and features can be found in the Appendix. We eval-
uate the robustness of the models to changes in test
ordering patterns using a held-out sample of 10,000
patients which serves as the evaluation dataset.

We consider two sepsis prediction models: The classi-
cal model was trained using classical supervised learn-
ing methods, while the robust model was trained us-
ing the “surgery estimator” (Subbaswamy et al., 2019).
While both models are random forest classifiers and
were trained using the same data, the robust model was
trained with the goal of being stable to shifts in test
ordering patterns. Because our focus is on evaluating
models rather than training them, we refer readers to
the Appendix for details about the training procedures.

Setup: To analyze stability to changes in test ordering
patterns, we estimate how the classification accuracy5

of the classical model changes as we vary 1 � ↵, the
sample proportion. When (1� ↵) = 1, the worst-case
subsample is the original dataset and corresponds to no
distribution shift. As 1�↵ approaches 0, the worst-case
subsample becomes smaller and the worst-case shifted
distribution can become increasingly di↵erent from the
original data distribution. The shift in test ordering pat-
terns can be represented as shifts in the conditional dis-
tribution P (test order | demographics, disease status).
By specifying demographics and disease status as im-
mutable variables, we fix their distributions such that
P (demographics, disease status) in the worst (1� ↵)-
subsample is the same as in the original dataset.

3.2.2 Validation Experiment

We begin by validating that the method can correctly
estimate the performance of a model under worst-case
distribution shift, and that this provides meaningful
information about the performance in new, shifted
environments. To do so, we compare the estimated
worst-case performance under a shift in lab test or-
dering patterns to the observed performance in a new
environment exhibiting such a shift. For this purpose,
we used an additional dataset containing the same vari-
ables collected from a di↵erent hospital (Hospital B,
also in our institution’s health network).6 Hospital
B has a similar patient population (i.e., demographic
makeup and disease prevalence) to Hospital A. On the
other hand, the two hospitals di↵er substantially in the
rate of test orders (11% ordering rate at Hospital A vs

5Accuracy is 1 minus the expected 0-1 loss.
6Description in the supplemental material.
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Figure 3: (a) Estimated accuracy of the classical
model on its worst (1�↵)-subsamples (blue curve).
The orange dot is the actual accuracy of the classical
model when applied to Hospital B. The shaded blue
region denotes a 95% confidence interval. (b) The
test ordering rate in the worst (1� ↵)-subsamples.
The Hospital A test ordering rate is 11% while at
Hospital B it is 23%.

23% ordering rate at Hospital B). Thus, this is exactly
the shift in test ordering patterns we wish to study.

Fig 3a plots the estimated worst-case performance of
the classical model across sample proportions (1� ↵).
As expected, the model’s performance worsens as the
sample proportion decreases. To characterize the worst
(1�↵)-subsamples, in Fig 3b we plot the fraction of the
subsample that received a test (the test ordering rate)
against the sample proportion. Since the test ordering
rate doubles to 23% from Hospital A to Hospital B,
we expect the accuracy of the model at Hospital B to
be greater than or equal to the worst-case accuracy
for (1 � ↵) = 0.39 (the sample proportion producing
an ordering rate of 23%). Indeed, we find that the
accuracy at Hospital B (orange dot) is worse than
the accuracy at Hospital A. Further, the accuracy at
Hospital B is roughly equal to the estimated worst-case
accuracy for this subpopulation size (and well within
the blue shaded 95% confidence interval). The intervals
also demonstrate the relationship between the sample
proportion and the estimator variance. If the intervals
are too large for large ↵, more data may need to be
collected in order to trust the estimates. These results
show that the risk curves accurately inform us about
how performance changes under worst-case shifts.

3.2.3 Use Cases for Stability Analysis
We now consider three use cases of the proposed method
which demonstrate how to analyze model stability with-
out requiring additional data gathering.

Comparing the stability of models: Model devel-
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Figure 4: (a) Accuracy of the classical and robust
models on their respective worst (1�↵)-subsamples.
Shaded regions denote 95% confidence intervals. (c)
Accuracy of the classical model on its worst (1�↵)-
subsamples and accuracy of qSOFA on these same
subsamples. (b) Correlation between sepsis and lab
test order in the classical worst-case subsamples.

opers often need to compare the performance of models.
We compare the stability of two models with respect
to potential changes in test ordering patterns. Fig 4a
shows the estimated worst-case risk for the classical and
robust models at various sample proportions (1� ↵).
The plot confirms that the robust model is more stable
under shifts in test ordering patterns. As the subpop-
ulation size decreases, the robust model increasingly
outperforms the classical model on their respective
worst-case subpopulations (doing so significantly for
(1� ↵)  0.1). Model di↵erences can be characterized
by their worst performing test ordering patterns.

Comparing to baseline standards: Another impor-
tant use case is to understand in what settings or on
what subpopulations a model’s performance becomes
worse than existing baseline standards of care. For
example, FDA reviewers might want to verify that
a sepsis diagnosis model performs at least as well as
qSOFA, a simple, established early warning score that is
commonly used to detect patient deterioration (Singer
et al., 2016). To make this assessment we first estimate
the worst-case risk and worst (1� ↵)-subsamples for
the classical model and then estimate the accuracy of
qSOFA on these same subsamples (shown in Fig 4b).
Across all ↵ values the classical model significantly out-
performs qSOFA, showing it is safe relative to standard
of care under a variety of test ordering patterns.

Determining unsafe use conditions: Finally,
model reviewers and developers may wish to under-
stand the settings (i.e., test ordering patterns) associ-

ated with poor performance so that they can further
improve the model or add warnings about its use. In
Fig 3b we saw that increased test ordering rates were
associated with worse performance. To investigate fur-
ther, for each worst (1 � ↵)-subsample, we plot the
correlation between a positive sepsis diagnosis and a
test order within this subsample (Fig 4c). There is
a clear trend: smaller worst-case subsamples have de-
creasing correlation between disease status and test
orders. From this we can conclude that the classical
model will experience performance deterioration when
applied to hospitals that widely (as opposed to selec-
tively) test patients. However, relative to the original
dataset, even a doubling of the test ordering rate re-
sults in only small performance deterioration. Thus,
we may conclude that the model is safe to use under a
wide range of test ordering patterns, though developers
might still seek to improve the model in settings with
small or negative test order correlations.

4 Related Work

We now overview various threads of work on the prob-
lem of dataset shift, in which the deployment environ-
ment di↵ers from the training environment.

Adapting models to new environments: One of
the most common dataset shift paradigms assumes that
the deployment environment is known and that we have
limited access to data from the deployment environ-
ment (Quiñonero-Candela et al., 2009). Many works
consider the problem of learning a model using labeled
data from the training environment and unlabeled data
from the deployment environment, using the unlabeled
data to adjust for shifts in P (X) through reweighting
(e.g., Shimodaira (2000); Huang et al. (2007)) or ex-
tracting invariant feature representations (e.g., Gong
et al. (2016); Ganin et al. (2016)). Rai et al. (2010)
assume that we have limited capacity to query the
deployment environment and use active learning tech-
niques to adapt a model from the training environment
to the deployment environment. While these types
of adaptations should absolutely be conducted when
possible, our goal in this work is to evaluate how a
model will perform in potential future environments
from which we do not currently have samples.

Learning robust models: Another large body of
research attempts to proactively improve robustness
to dataset shift by learning models that are robust
to changes or uncertainty in the data distribution.
This work falls broadly under the umbrella of dis-
tributionally robust optimization (DRO) which, in
turn, comes from a large body of work on formulating
optimization problems a↵ected by uncertainty (e.g.,
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Ben-Tal et al. (2013); Duchi et al. (2016); Bertsimas
et al. (2018)). As in our work, DRO assumes that
the true population distribution is in an uncertainty
“ball” around the empirical data distribution and opti-
mizes with respect to the worst-case such distribution.
In some cases, the uncertainty set is designed to re-
flect sampling variability and thus the radius of the
ball linearly decreases with the number of samples,
but no distributional shift is assumed (Namkoong and
Duchi, 2016, 2017; Lei et al., 2020). Work on DRO ex-
plores a variety ways to define the uncertainty ball/set
of distributions. Some have explored balls defined
by the so-called f-divergences, which include as spe-
cial cases KL divergence, �2 divergence, and CVaR
(used in this work) (Lam, 2016; Namkoong and Duchi,
2016, 2017; Duchi and Namkoong, 2018). Still oth-
ers consider uncertainty sets defined by Reproducing
Kernel Hilbert Spaces (RKHS) via Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012; Staib and
Jegelka, 2019; Zhu et al., 2021) and Wasserstein dis-
tances (Fournier and Guillin, 2015; Abadeh et al., 2015;
Sinha et al., 2017; Esfahani and Kuhn, 2018; Lei et al.,
2020). Unlike approaches using f-divergences, these
approaches can allow for distributions with di↵ering
support, but they are computationally challenging, of-
ten requiring restrictions on the loss or transportation
cost functions. Future work may consider extensions
of the proposed evaluation framework to MMD and
Wasserstein-based uncertainty sets.

A related line of work defines uncertainty sets of envi-
ronments using causal interventions on the data gener-
ating process which allow for arbitrary strength shifts
and do not have to be centered around the training dis-
tribution (Meinshausen, 2018; Bühlmann et al., 2020).
These methods aim to learn a model with stable or
robust performance across the uncertainty set of en-
vironments. Using datasets collected from multiple
environments, various methods seek invariant feature
subsets (Rojas-Carulla et al., 2018) or representations
(Arjovsky et al., 2019). Alternatively, assuming knowl-
edge of the causal graph of the data generating process,
Subbaswamy et al. (2019) identify mechanisms that
can shift and find a stable interventional distribution
to use for prediction. Assuming linear mechanisms,
Subbaswamy and Saria (2018) find a stable feature set
that can include counterfactuals. Recent end-to-end
approaches relax the need for the graph to be known
beforehand by instead learning it from data (Zhang
et al., 2020; Subbaswamy and Saria, 2020b).

Evaluating robustness: Relatively few works have
focused on evaluating the robustness of a model to
distributional shift. Santurkar et al. (2020) proposed
an algorithm for generating evaluation benchmarks for
subpopulation shifts (new subpopulations that were un-

seen in the training data) by combining datasets with
hierarchical class labels. Oakden-Rayner et al. (2020)
considered broad, sometimes manual, strategies to eval-
uate the performance of a model in subpopulations.
Both of these start by constructing subpopulations
that have semantic meaning and evaluate the model on
each of the subpopulations. Thus, discovering a subpop-
ulation with poor performance is either serendipitous
or is guided by domain knowledge. In this work, we
take a data-driven approach, starting with a worst-case
subpopulation and then exploring its properties.

Estimating optimal treatment subpopulations:
Finally, our work is methodologically similar to that of
Jeong and Namkoong (2020) and VanderWeele et al.
(2019), who sought to estimate the causal e↵ect of a
treatment in the worst- and best-case subpopulations,
respectively. Whereas, in our work, we seek to find a
subpopulation with the highest expected conditional
loss, they seek to find a subpopulation with the highest
(lowest) conditional average treatment e↵ect, which
can be formulated as the best- (worst-) case average
treatment e↵ect under a marginal shift. A potential
extension of this work is to consider optimal treatment
subgroups defined by other types of shifts.

5 Conclusion

As machine learning systems are adopted in high im-
pact industries such as healthcare, transportation, and
finance, a growing challenge is to proactively evaluate
the safety of these systems to avoid the high costs of
failure. To this end, we proposed a framework and
estimation method for proactively analyzing the sta-
bility of trained machine learning models to shifts in
population or setting without requiring the collection
of new datasets (an often costly and time-consuming
e↵ort). When su�cient variation is present in the avail-
able evaluation data, the proposed framework allows
us to understand the changes in population or setting
under which the model would be unsafe to use. As
demonstrated in the experiments, this now enables us
to analyze stability to realistic shifts which correspond
to policies that can vary across sites, datasets, or over
time. Further, this evaluation can be used to guide
model refinement and additional data collection. We en-
vision that procedures like the proposed method should
become standard practice for analyzing the stability of
models in new settings.
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Quiñonero-Candela, J., Sugiyama, M., Schwaighofer,
A., and Lawrence, N. D. (2009). Dataset shift in
machine learning. The MIT Press.
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gence and kullback-leibler divergence. IEEE Trans-
actions on Information Theory, 60(7):3797–3820.

VanderWeele, T. J., Luedtke, A. R., van der Laan,
M. J., and Kessler, R. C. (2019). Selecting opti-
mal subgroups for treatment using many covariates.
Epidemiology, 30(3):334–341.

Zhang, K., Gong, M., Stojanov, P., Huang, B., and
Glymour, C. (2020). Domain adaptation as a prob-
lem of inference on graphical models. arXiv preprint
arXiv:2002.03278.

Zhu, J.-J., Jitkrittum, W., Diehl, M., and Schölkopf, B.
(2021). Kernel distributionally robust optimization.
In The 24th International Conference on Artificial
Intelligence and Statistics. PMLR.


	Introduction
	Methods
	Defining Distribution Shifts
	Quantifying Performance Under Shifts
	Estimating the Worst-Case Risk

	Results
	Theoretical Results
	Experimental Results
	Dataset and Models
	Validation Experiment
	Use Cases for Stability Analysis


	Related Work
	Conclusion
	Causally Interpreting Distribution Shifts
	Connection to distributionally robust optimization
	Derivation of Equation 3 of the main paper
	Proof of Theorem 1
	Handling discrete W
	Experimental Details
	Dataset
	Models
	Estimating Worst-Case Risk


