Supplementary Material for the Paper: Amortized Bayesian Prototype Meta-learning: A New Probabilistic Meta-learning Approach to Few-shot Image Classification

1 Overview

In this document, we present details of experimental settings, including hyper-parameters (batch size, learning rate, etc.). We also provide pseudo-code for meta-validation/meta-testing and detailed statistics in plots and figures. All experiments are implemented with PyTorch.

2 Pseudo-code for Meta-validation/Meta-testing

Algorithm 2 Meta-validation/Meta-testing of the proposed method

Require: Input Meta-trained model $\hat{\mathcal{M}}$. Set $\tilde{\mathcal{D}} = \mathcal{D}_{val}$ or \mathcal{D}_{te} .

1: for i from 1 to E do:

- 2: Generate a task $\mathcal{T}_i = \mathcal{S}_i \cup \mathcal{Q}_i$ from $\tilde{\mathcal{D}}$.
- 3: Initialize $\phi_i \leftarrow \theta$.
- 4: for d from 1 to D do:
- 5: Compute $q_{\phi_i}(z|\mathcal{S}_i)$.
- $6: \qquad \text{Approximate } KL.$
- 7: Update variational parameters $\phi_i \leftarrow \phi_i \alpha \nabla_{\phi_i} \{ \mathcal{L}_{PR}(\mathcal{S}_i | z) + KL[q_{\phi_i}(z | \mathcal{S}_i) || p(z | \theta)] \}.$
- 8: Predict for an image x: $\hat{y} = \arg \max_c \Pr(\mu(x) | q_{\phi_i}(z_c | \mathcal{S}_{i,c})), c \in [C].$
- 9: Compute prediction accuracy a_i for \mathcal{Q}_i .
- 10: Output mean accuracy $\frac{1}{E} \sum_{i=1}^{E} a_i$ as $\hat{\mathcal{M}}$'s performance.

3 Proofs

3.1 Proof for Eq.2

In this section, we provide a detailed derivation of the evidence lower bound of $\log p_{\theta}(S)$.

$$\log p_{\theta}(\mathcal{S}) \geq \mathbb{E}_{z \sim q_{\phi}(z)}[\log p_{\theta}(\mathcal{S}|z)] - \mathbb{KL}[q_{\phi}(z) \mid\mid p_{\theta}(z)]$$

Proof:

$$\begin{split} \log p_{\theta}(\mathcal{S}) &= \log \int p_{\theta}(\mathcal{S}, z) dz \\ &= \log \int p_{\theta}(\mathcal{S}, z) \frac{q_{\phi}(z)}{q_{\phi}(z)} dz \\ &= \log \mathbb{E}_q \left[\frac{p_{\theta}(\mathcal{S}, z)}{q_{\phi}(z)} \right] \\ &\geq \mathbb{E}_q \left[\log p_{\theta}(\mathcal{S}|z) + \log \frac{p_{\theta}(z)}{q_{\phi}(z)} \right] \quad \text{, by Jensen's inequality} \\ &= \mathbb{E}_q \left[\log p_{\theta}(\mathcal{S}|z) \right] - \mathbb{KL} \left[q_{\phi}(z) || p_{\theta}(z) \right] \end{split}$$

3.2 Unbiased Estimator Scaled by A Constant

Although we replace the KL term in the evidence lower bound of $\log p_{\theta}(S)$ with Eq.7 as our proposed prior distribution of z is now dependent on the support set S, our estimator to Eq.4 is still an unbiased estimator to evidence lower bound of $\log p_{\theta}(S)$ in Eq.2 (scaled by a constant). Therefore the proposed method still learns to learn the approximate posteriors of latent z conditional on S properly. To appreciate this, note that during the inference stage τ is the support set S (and we have $|\tau| = CK$). Then, after putting the unbiased estimator of Eq.7 and Eq.9 into Eq.4, we can rewrite the loss in Eq.4 as

$$\mathcal{L}(\mathcal{S}) = \frac{1}{CK} \sum_{c=1}^{C} \sum_{i=1}^{K} \left(-\log\left(\frac{\Pr\left[\mu(x_i^{(\mathcal{S}_c)})|z_c\right]}{\sum_{k=1}^{C} \Pr\left[\mu(x_i^{(\mathcal{S}_c)})|z_k\right]}\right) + \mathbb{KL}[q_{\phi}(z_c|\mathcal{S}_c)||p_{\theta}(z_c;\mu(x_i^{(\mathcal{S}_c)}),\Sigma(x_i^{(\mathcal{S}_c)}))]\right)$$

, where S_c is the subset of S and only contains all support images from the class $c \in \{1, \ldots, C\}$, and $(x_i^{(S_c)}, y_i^{(S_c)} = c)$ is the i^{th} image in S_c . This immediately tells that $-\mathcal{L}(S) = \frac{1}{CK} \sum_{c=1}^C \sum_{i=1}^K (\log p_{\theta}(y_i^{(S_c)} | x_i^{(S_c)}, z_c) - \mathbb{KL}[q_{\phi}(z_c | S_c) | | p_{\theta}(z_c; \mu(x_i^{(S_c)}), \Sigma(x_i^{(S_c)}))])$, where the terms inside the double summation is an unbiased estimator of the evidence lower bound of $\log p_{\theta}(y_i^{(S_c)} | x_i^{(S_c)})$. Since $\frac{1}{CK} \sum_{c,i} \log p_{\theta}(y_i^{(S_c)} | x_i^{(S_c)}) = \frac{1}{CK} \log p_{\theta}(S)$, it tells that $-\mathcal{L}(S)$ is an unbiased estimator of the evidence lower bound of $\log p_{\theta}(S)$ scaled by a factor of 1/CK.

4 Experimental Details

At the meta-training stage, except that the maximum training epoch is 12000 for 1-shot classification on *mini-ImageNet*, the maximum training epoch is set to be 3500 epochs for all the other experiments. We use a mini-batch of tasks consisting T tasks to update the shared θ during meta-training.

We select the optimal meta-training epoch on the meta-validation set according to classification accuracy. At the meta-testing stage, we randomly sample 600 novel tasks from the meta-testing set, and report the mean accuracy with its 95% confidence interval, i.e., mean acc. $\pm 1.96 \frac{\text{std}}{\sqrt{600}}$. For *C*-way *K*-shot, a task is constructed by sampling *C* classes and then subsequently sampling K + M instances for each class, with *K* being the number of support images in each class. In our experiments,

- Omniglot: M = 15 for meta-training/meta-validation/meta-testing;
- mini-ImageNet: M = 16 for meta-training and meta-validation, M = 15 for meta-testing;
- CUB-200-2011: M = 16 for meta-training and meta-validation, M = 15 for meta-testing;
- Stanford-dogs: M = 16 for meta-training and meta-validation, M = 15 for meta-testing.

The values of T, D, α and β in Alg. 1 and Alg. 2 are set to be

- Omniglot: T = 32, D = 1, $\alpha = 0.1$, $\beta = 0.001$;
- mini-ImageNet: $T = 4, D = 5, \alpha = 0.01, \beta = 0.001;$
- CUB-200-2011: $T = 4, D = 5, \alpha = 0.01, \beta = 0.001;$
- Stanford-dogs: $T = 4, D = 5, \alpha = 0.01, \beta = 0.001.$

In addition, we use standard stochastic gradient descent to generate variational parameters ϕ_i , during metatraining/meta-validation/meta-testing, for a task \mathcal{T}_i and for all *i*. We use the *Adam* optimizer to update the shared parameter θ at meta-training stage.

5 Details of Figures

In this section, we present detailed statistics in Fig. 2.

	Meta-training conditions		
C-way at meta-testing	5-way 5-shot (%)	10-way 5-shot (%)	
C = 5	99.45 ± 0.09	99.44 ± 0.08	
C = 10	98.97 ± 0.08	99.14 ± 0.08	
C = 15	98.45 ± 0.09	98.80 ± 0.09	
C = 20	98.14 ± 0.09	98.52 ± 0.08	
C = 25	97.85 ± 0.09	98.20 ± 0.08	
C = 30	97.44 ± 0.09	97.87 ± 0.08	
C = 35	97.17 ± 0.09	97.63 ± 0.08	
C = 40	96.84 ± 0.08	97.34 ± 0.08	
C = 45	96.57 ± 0.08	97.12 ± 0.08	
C = 50	96.30 ± 0.08	96.85 ± 0.08	

Ablation study in **Fig.2-a**.

Ablation study in **Fig.2-b**.

	Meta-training conditions		
K-shot at meta-testing	5-way 5-shot $(\%)$	10-way 5-shot (%)	
K = 2	98.65 ± 0.27	98.38 ± 0.15	
K = 4	99.47 ± 0.11	99.00 ± 0.11	
K = 5	99.60 ± 0.10	99.17 ± 0.09	
K = 6	99.53 ± 0.11	99.19 ± 0.10	
K = 8	99.59 ± 0.10	99.06 ± 0.13	
K = 10	99.61 ± 0.09	99.32 ± 0.10	
K = 12	99.60 ± 0.09	99.34 ± 0.09	

- Omniglot: Dropout with a keep probability of 0.9.
- *mini-ImageNet*: *Dropout* with a keep probability of 0.5.

KL	Dropout	Omniglot~(%)	mini-ImageNet (%)
-	-	96.16 ± 0.28	43.08 ± 0.62
\checkmark	-	99.54 ± 0.08	70.44 ± 0.72
\checkmark	\checkmark	99.50 ± 0.08	69.92 ± 0.67

Ablation study in **Fig.2-c**.

6 Comparisons of Convolution Networks

Here, we present details of shallow convolution networks used in the probabilistic meta-learning methods listed in **Table 1**. CONV-X means a convolution network with X convolution blocks.

	Omniglot	mini-ImageNet
BMAML	CONV-5	CONV-5
PLATIPUS	CONV-4	CONV-4
VAMPIRE	CONV-4	CONV-4
ABML	CONV-4	CONV-4
Amortized VI	CONV-4	CONV-5
VERSA	CONV-4	CONV-5
Meta-Mixture	CONV-4	CONV-4
DKT	CONV-4	CONV-4
Ours	CONV-4	CONV-4

Convolution networks of methods in Table 1.

7 Effect of D

We also take the effect of D into account. Recall that D is the number of updates of the inner loop for the approximate inference. We consider the cases when D = 1, D = 3 and D = 5. Performance for each choice of D is measured on the meta-testing set.

mini-ImageNet	D = 1(%)	D = 3(%)	D = 5(%)
5-way 1-shot	52.79 ± 0.94	53.29 ± 0.89	53.28 ± 0.91
5-way 5-shot	69.63 ± 0.70	70.56 ± 0.70	70.44 ± 0.72

Effect of D.