
Supplementary Material for the Paper:
Amortized Bayesian Prototype Meta-learning: A New Probabilistic

Meta-learning Approach to Few-shot Image Classification

1 Overview

In this document, we present details of experimental settings, including hyper-parameters (batch size, learning
rate, etc.). We also provide pseudo-code for meta-validation/meta-testing and detailed statistics in plots and
figures. All experiments are implemented with PyTorch.

2 Pseudo-code for Meta-validation/Meta-testing

Algorithm 2 Meta-validation/Meta-testing of the proposed method

Require: Input Meta-trained model M̂. Set D̃ = Dval or Dte.
1: for i from 1 to E do:
2: Generate a task Ti = Si ∪Qi from D̃.
3: Initialize φi ← θ.
4: for d from 1 to D do:
5: Compute qφi(z|Si).
6: Approximate KL.
7: Update variational parameters φi ← φi − α∇φi{LPR(Si|z) +KL[qφi(z|Si) || p(z|θ)]}.
8: Predict for an image x: ŷ = arg maxc Pr(µ(x)|qφi(zc|Si,c)), c ∈ [C].
9: Compute prediction accuracy ai for Qi.

10: Output mean accuracy 1
E

∑E
i=1 ai as M̂’s performance.

3 Proofs

3.1 Proof for Eq.2

In this section, we provide a detailed derivation of the evidence lower bound of log pθ(S).

log pθ(S) ≥ Ez∼qφ(z)[log pθ(S|z)]−KL[qφ(z) || pθ(z)]

Proof:

log pθ(S) = log

∫
pθ(S, z)dz

= log

∫
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qφ(z)

qφ(z)
dz

= logEq
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]
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−KL
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]
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3.2 Unbiased Estimator Scaled by A Constant

Although we replace the KL term in the evidence lower bound of log pθ(S) with Eq.7 as our proposed prior
distribution of z is now dependent on the support set S, our estimator to Eq.4 is still an unbiased estimator to
evidence lower bound of log pθ(S) in Eq.2 (scaled by a constant). Therefore the proposed method still learns to
learn the approximate posteriors of latent z conditional on S properly. To appreciate this, note that during the
inference stage τ is the support set S (and we have |τ | = CK). Then, after putting the unbiased estimator of
Eq.7 and Eq.9 into Eq.4, we can rewrite the loss in Eq.4 as

L(S) =
1

CK

C∑
c=1

K∑
i=1

(
− log

( Pr
[
µ(x

(Sc)
i )|zc

]
∑C
k=1 Pr

[
µ(x

(Sc)
i )|zk

])+ KL[qφ(zc|Sc)||pθ(zc;µ(x
(Sc)
i ),Σ(x

(Sc)
i ))]

)

, where Sc is the subset of S and only contains all support images from the class c ∈ {1, . . . , C}, and (x
(Sc)
i , y

(Sc)
i =

c) is the ith image in Sc. This immediately tells that −L(S) = 1
CK

∑C
c=1

∑K
i=1(log pθ(y

(Sc)
i |x(Sc)i , zc) −

KL[qφ(zc|Sc)||pθ(zc;µ(x
(Sc)
i ),Σ(x

(Sc)
i ))]), where the terms inside the double summation is an unbiased estimator

of the evidence lower bound of log pθ(y
(Sc)
i |x(Sc)i ). Since 1

CK

∑
c,i log pθ(y

(Sc)
i |x(Sc)i ) = 1

CK log pθ(S), it tells that
−L(S) is an unbiased estimator of the evidence lower bound of log pθ(S) scaled by a factor of 1/CK.

4 Experimental Details

At the meta-training stage, except that the maximum training epoch is 12000 for 1-shot classification on mini-
ImageNet, the maximum training epoch is set to be 3500 epochs for all the other experiments. We use a
mini-batch of tasks consisting T tasks to update the shared θ during meta-training.

We select the optimal meta-training epoch on the meta-validation set according to classification accuracy. At
the meta-testing stage, we randomly sample 600 novel tasks from the meta-testing set, and report the mean
accuracy with its 95% confidence interval, i.e., mean acc. ± 1.96 std√

600
. For C-way K-shot, a task is constructed

by sampling C classes and then subsequently sampling K+M instances for each class, with K being the number
of support images in each class. In our experiments,

• Omniglot : M = 15 for meta-training/meta-validation/meta-testing;

• mini-ImageNet : M = 16 for meta-training and meta-validation, M = 15 for meta-testing;

• CUB-200-2011 : M = 16 for meta-training and meta-validation, M = 15 for meta-testing;

• Stanford-dogs: M = 16 for meta-training and meta-validation, M = 15 for meta-testing.

The values of T , D, α and β in Alg. 1 and Alg. 2 are set to be

• Omniglot : T = 32, D = 1, α = 0.1, β = 0.001;

• mini-ImageNet : T = 4, D = 5, α = 0.01, β = 0.001;

• CUB-200-2011 : T = 4, D = 5, α = 0.01, β = 0.001;

• Stanford-dogs: T = 4, D = 5, α = 0.01, β = 0.001.

In addition, we use standard stochastic gradient descent to generate variational parameters φi, during meta-
training/meta-validation/meta-testing, for a task Ti and for all i. We use the Adam optimizer to update the
shared parameter θ at meta-training stage.



5 Details of Figures

In this section, we present detailed statistics in Fig. 2.

Ablation study in Fig.2-a.

Meta-training conditions

C-way at meta-testing 5-way 5-shot (%) 10-way 5-shot (%)

C = 5 99.45± 0.09 99.44± 0.08

C = 10 98.97± 0.08 99.14± 0.08

C = 15 98.45± 0.09 98.80± 0.09

C = 20 98.14± 0.09 98.52± 0.08

C = 25 97.85± 0.09 98.20± 0.08

C = 30 97.44± 0.09 97.87± 0.08

C = 35 97.17± 0.09 97.63± 0.08

C = 40 96.84± 0.08 97.34± 0.08

C = 45 96.57± 0.08 97.12± 0.08

C = 50 96.30± 0.08 96.85± 0.08

Ablation study in Fig.2-b.

Meta-training conditions

K-shot at meta-testing 5-way 5-shot (%) 10-way 5-shot (%)

K = 2 98.65± 0.27 98.38± 0.15

K = 4 99.47± 0.11 99.00± 0.11

K = 5 99.60± 0.10 99.17± 0.09

K = 6 99.53± 0.11 99.19± 0.10

K = 8 99.59± 0.10 99.06± 0.13

K = 10 99.61± 0.09 99.32± 0.10

K = 12 99.60± 0.09 99.34± 0.09

• Omniglot : Dropout with a keep probability of 0.9.

• mini-ImageNet : Dropout with a keep probability of 0.5.
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Ablation study in Fig.2-c.

KL Dropout Omniglot (%) mini-ImageNet (%)

- - 96.16± 0.28 43.08± 0.62

X - 99.54± 0.08 70.44± 0.72

X X 99.50± 0.08 69.92± 0.67

6 Comparisons of Convolution Networks

Here, we present details of shallow convolution networks used in the probabilistic meta-learning methods listed
in Table 1. CONV-X means a convolution network with X convolution blocks.

Convolution networks of methods in Table 1.

Omniglot mini-ImageNet
BMAML CONV-5 CONV-5
PLATIPUS CONV-4 CONV-4
VAMPIRE CONV-4 CONV-4
ABML CONV-4 CONV-4
Amortized VI CONV-4 CONV-5
VERSA CONV-4 CONV-5
Meta-Mixture CONV-4 CONV-4
DKT CONV-4 CONV-4

Ours CONV-4 CONV-4

7 Effect of D

We also take the effect of D into account. Recall that D is the number of updates of the inner loop for the
approximate inference. We consider the cases when D = 1, D = 3 and D = 5. Performance for each choice of D
is measured on the meta-testing set.

Effect of D.

mini-ImageNet D = 1(%) D = 3(%) D = 5(%)
5-way 1-shot 52.79± 0.94 53.29± 0.89 53.28± 0.91
5-way 5-shot 69.63± 0.70 70.56± 0.70 70.44± 0.72


