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Abstract

Despite the popularity of Empirical Risk Min-
imization (ERM) algorithms, a theory that
explains their statistical properties in mod-
ern high-dimensional regimes is only recently
emerging. We characterize for the first time
the fundamental limits on the statistical ac-
curacy of convex ridge-regularized ERM for
inference in high-dimensional generalized lin-
ear models. For a stylized setting with Gaus-
sian features and problem dimensions that
grow large at a proportional rate, we start
with sharp performance characterizations and
then derive tight lower bounds on the esti-
mation and prediction error. Our bounds
provably hold over a wide class of loss func-
tions, and, for any value of the regularization
parameter and of the sampling ratio. Our
precise analysis has several attributes. First,
it leads to a recipe for optimally tuning the
loss function and the regularization parameter.
Second, it allows to precisely quantify the sub-
optimality of popular heuristic choices, such
as optimally-tuned least-squares. Third, we
use the bounds to precisely assess the merits
of ridge-regularization as a function of the
sampling ratio. Our bounds are expressed in
terms of the Fisher Information of random
variables that are simple functions of the data
distribution, thus making ties to correspond-
ing bounds in classical statistics.
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1 Introduction

Motivation. Empirical Risk Minimization (ERM)
includes statistical inference algorithms that are pop-
ular in estimation and learning tasks in a range of
applications in signal processing, communications and
machine learning. ERM methods are often efficient
in implementation, but first one needs to make cer-
tain choices: such as, choose an appropriate loss func-
tion and regularization function, and tune the regu-
larization parameter. Classical statistics have comple-
mented the practice of ERM with an elegant theory
regarding optimal such choices, as well as, fundamental
limits, i.e., tight bounds on their performance (e.g.,
[Huber, 2011]). These classical theories typically as-
sume that the size m of the set of observations (or,
training set) is much larger than the dimension n of
the unknown parameter-vector to be estimated. In
contrast, modern inference problems are typically high-
dimensional: m and n are of the same order, and, often
n > m [Candès, 2014, Montanari, 2015, Karoui, 2013].
This paper studies the fundamental limits of convex
ERM in high-dimensions for generalized linear models.
Generalized linear models (GLM) relate the response
variable yi to a linear model aT

i
x0 via a link func-

tion: yi = '(aT
i
x0). Here, x0 2 Rn is a vector of

true parameters and ai 2 Rn
, i 2 [m] are the feature

(or, measurement) vectors. Let x0 be estimated by
minimizing the empirical risk 1

m

P
m

i=1 L
�
yi,aTi x

�
for a

particular convex loss L. Typically, ERM is combined
with a regularization term. Arguably the most popu-
lar choice is ridge regularization, which gives rise to
ridge-regularized ERM (RERM, in short):

bxL,� = arg min
x2Rn

1

m

mX

i=1

L
�
yi,a

T

i
x
�
+ �kxk22. (1)

This paper aims to answer the following questions
on fundamental limits of (1): What is the minimum
achievable estimation/prediction error of bxL,�? How
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does this depend on the link function ' and how to
choose L and � to achieve it? What is the sub-
optimality gap of popular ad-hoc choices, such as ridge-
regularized least-squares (RLS)? How do the answers
depend on the sampling ratio m/n?

Challenge. The challenge of answering the ques-
tions above involves completing the following three
key tasks. The first prerequisite task is to: [T1] obtain
a precise characterization of the estimation/prediction
error of bxL,� as a function of the parameters L, �

and the dimensions m and n. Significant research
activity over the past decade has led to novel anal-
ysis frameworks making this possible, typically, in a
stylized setting of Gaussian features and an asymp-
totic regime, where m and n grow large at a propor-
tional rate � = m/n [Montanari, 2015, Karoui, 2013,
Sur and Candès, 2019]. The analysis leads to error
characterizations in terms of solutions to appropriate
systems of (a few) nonlinear equations. Naturally, the
equations are parameterized by L, � and �. For dif-
ferent choices of these parameters, numerically solving
the equations leads to precise asymptotic error char-
acterizations. But, questions on fundamental limits
such as “what is the optimal loss L and regularizer �?",
ask us to take a step further. They require determin-
ing the choice of L,� that leads to a solution to the
equations that, in turn, implies minimum error, for a
given �. There are two additional tasks involved in
accomplishing this. First, to allow optimizing over L,�
we need to: [T2] prove that the system of equations is
valid for a rich family of losses L and every value � > 0.
Second, since the solution to the equations (thus, the
asymptotic error) is not an explicit function of the
parameters of interest L,�, we need a mechanism to:
[T3] minimize the solution to the system of equations
over L,�.

Contributions. This paper, for the first time accom-
plishes tasks [T2,T3], for two popular GLM-instances,
namely linear and binary models, and, for a stylized
distributional setting of isotropic Gaussian features.
With this we establish the promised fundamental per-
formance limits and answer corresponding optimality
questions.

• For linear models, we prove a lower bound on
the squared estimation error of RERM (see Thm.
2.1) that holds for all choices of L,� > 0 and � >

0. Specifically, our contribution involves accomplish-
ing Task [T3]; Tasks [T1,T2] were investigated in
[Karoui, 2013, Thrampoulidis et al., 2018]. Our analy-
sis, leads to explicit expressions for the optimal loss L?

and regularizer parameter �?. Additionally, we present

analytic conditions on the noise-distribution and �, for
which L? is convex.

• For binary models, we fulfill the promise of perfor-
mance lower bounds by completing both Tasks [T2]
(see Thm. 3.1) and Task [T3] (see Thm. 3.2). As
in linear models, we present explicit recipes for opti-
mally tuning L and �. For specific models, such as
binary logistic and signed data, we numerically show
that the optimal loss function is convex and we use
gradient-descent to optimize it. The numerical simula-
tions perfectly match with the theoretical predictions
suggesting that our bounds are tight.

• We derive simple closed-form approximations to the
aforementioned bounds (see Cor. 2.1 and 3.1). These
simple (yet tight) expressions allow us to precisely
quantify the sub-optimality of ridge-regularized least-
squares (RLS). For instance, we show that optimally-
tuned RLS is approximately optimal for logistic data
and small signal strength, but the sub-optimality gap
grows drastically as signal strength increases. In the
appendix, we also include comparisons to ERM without
regularization and to a simple averaging method.

Comparison to state-of-the-art. Our re-
sults fit in the rapidly growing recent lit-
erature on precise asymptotics of convex-
regularized estimators, e.g., [Donoho et al., 2011,
Stojnic, 2009, Bayati and Montanari, 2012,
Chandrasekaran et al., 2012, Amelunxen et al., 2013,
Oymak and Hassibi, 2016, Abbasi et al., 2016,
Stojnic, 2013, Oymak et al., 2013,
Thrampoulidis et al., 2015b, Karoui, 2013,
Donoho and Montanari, 2016, El Karoui, 2018,
Thrampoulidis et al., 2018, Oymak and Tropp, 2017,
Dobriban et al., 2018, Lei et al., 2018,
Miolane and Montanari, 2018, Hastie et al., 2019,
Wang et al., 2019, Celentano and Montanari, 2019,
Hu and Lu, 2019, Bu et al., 2019, Emami et al., 2020,
Lolas, 2020, Kini and Thrampoulidis, 2020,
Gerbelot et al., 2020]. Most of these works study
linear models. Extensions to generalized linear models
for the special case of regularized LS were studied
in [Thrampoulidis et al., 2015a], while more recently
there has been a surge of interest in (R)ERM methods
tailored to binary models (such as logistic regression
or SVM) [Huang, 2017, Candès and Sur, 2018,
Sur and Candès, 2019, Mai et al., 2019,
Kammoun and Alouini, 2020, Salehi et al., 2019,
Taheri et al., 2020, Deng et al., 2019,
Montanari et al., 2019, Mignacco et al., 2020,
Emami et al., 2020, Salehi et al., 2020]. The fo-
cus of these works has been Task [T1]. Out of these



Hossein Taheri, Ramtin Pedarsani, Christos Thrampoulidis

works relatively few have focused on fundamental
limits, which requires accomplishing the additional
tasks [T2] and [T3]. For linear models, the papers
[Bean et al., 2013, Donoho and Montanari, 2016,
Advani and Ganguli, 2016] were the first to de-
rive lower bounds and optimal loss functions for
the squared error of unregularized ERM. In a re-
lated work, [Donoho and Montanari, 2015] studies
noise-robustness of these methods. More recently,
[Celentano and Montanari, 2019] performed an
in-depth analysis of fundamental limits of convex-
regularized least-squares for linear models over
structured (e.g., sparse, low-rank) signals. For
binary models, performance lower bounds for un-
regularized ERM were only recently derived in
[Taheri et al., 2020].
To the best of our knowledge, none of these prior
works has established fundamental limits for ridge-
regularized ERM, for either linear or binary mod-
els. Accounting for the regularization term brings
the following technical challenges. First, to accom-
plish Task [T2], we prove that a solution to the cor-
responding system of equations exists and is unique
for all values of � > 0, and, only under mild as-
sumptions on L. For binary models, this is the first
proof of both existence and uniqueness compared to
prior works [Sur and Candès, 2019, Salehi et al., 2019,
Taheri et al., 2020, Mignacco et al., 2020]. Second,
the presence of the regularizer complicates Task [T3].
Compared to the unregularized case, we need to op-
timize not only over L, but also over � > 0. More
elaborate discussions on technical comparisons of our
results to prior work are deferred till after the formal
statement of our results.

1.1 Dataset model

Linear models: yi = aT
i
x0+zi, where zi

iid⇠ PZ , i 2 [m].
As is typical, for linear models, we measure performance
of bxL,� with the squared error : kbxL,� � x0k22.

Binary models: yi = f(aT
i
x0), i 2 [m] for a (possi-

bly random) link function with range {±1}, e.g., lo-
gistic, probit and signed models. We measure esti-
mation performance with the (normalized) correlation
(bxT

L,�
x0)

.
kbxL,�k2kx0k2 and prediction performance in

terms of classification error P(y 6= sign(bxT

L,�
a)), where

the probability is over a fresh data point (a, y).

Our precise analysis requires isotropic Gaussian fea-
tures and a proportional asymptotic regime, as follows

Assumption 1 (High-dimensional asymptotics).
Throughout the paper, we assume the high-dimensional

limit where m,n ! 1 at a fixed ratio � = m/n > 0.

Assumption 2 (Gaussian features). The feature vec-
tors ai 2 Rn

, i 2 [m] are iid N (0, In).

This set of assumption is well-adapted in the
recent literature on precise high-dimensional
statistics. Specifically regarding the Gaussian-
ity assumption, it is an essential first step in
the vast majority of existing analyses targeting
Task [T1] (e.g., [Montanari, 2015, Karoui, 2013,
Sur and Candès, 2019] and many references therein).
Besides, extensive numerical simulations and
partial theoretical evidence [Bayati et al., 2015,
Oymak and Tropp, 2017, Panahi and Hassibi, 2017,
Abbasi et al., 2019, Goldt et al., 2020] seem to suggest
that the systems of equations characterizing the error
enjoy a remarkable universality property: they hold for
a broader class of distributions, e.g., sub-gaussians. All
the results of this paper on fundamental performance
limits and optimality automatically hold for any
feature distribution that leads to the same asymptotic
error characterizations as the Gaussian distribution. A
formal proof of universality of our results is beyond
our scope. However, we present numerical experiments
in support of this conjecture; see Figure 1.
Notation. We use boldface notation for vectors. We
write i 2 [m] for i = 1, 2, . . . ,m. For a random
variable H with density PH(h) that has a deriva-
tive P

0
H
(h), 8h 2 R, we define its Fisher information

I(H) := E[(P 0
H
(H)/PH(H))2]. We write ML (x; ⌧) :=

minv
1
2⌧ (x� v)2 + L(v), for the Moreau envelope func-

tion and proxL (x; ⌧) := argminv
1
2⌧ (x � v)2 + L(v)

for the proximal operator of the loss L : R ! R at
x with parameter ⌧ > 0. We denote the first order
derivative of the Moreau-envelope function w.r.t x as:
M0

L,1 (x; ⌧) := @ML(x;⌧)
@x

. For a sequence of random
variables Xm,n that converges in probability to some
constant c in the high-dimensional asymptotic limit of
Assumption 1, we write Xm,n

P�! c.

2 Linear Models
Consider data (yi,ai) from an additive noisy linear
model: yi = aT

i
x0 + zi, zi

iid⇠ PZ , i 2 [m].

Assumption 3 (Noise distribution). The noise zi, i 2
[m] is distributed Z

iid⇠ PZ , for a distribution PZ with
zero mean and finite nonzero second moment.
For lower semicontinuous, proper, and convex losses we
focus on an instance of (1) tailored to linear models:

bxL,� := arg min
x2Rn

1

m

mX

i=1

L
�
yi � aT

i
x
�
+

�

2
kxk2. (2)
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We assume without loss of generality that kx0k2= 1.
Indeed, suppose that kx0k2= r > 0. Then, (2) can be
transformed to the case ex0 := x0/r (hence kex0k2= 1)
by setting eL(t) := L(rt), e� := r

2
� and eZ = Z/r. Thus

our results can be reformulated by replacing Z with eZ.

2.1 Background on asymptotic performance

Prior works have investigated the limit
of the squared error kbxL,� � x0k2
[Karoui, 2013, Thrampoulidis et al., 2018,
Donoho and Montanari, 2016]. Let the following
system of two equations in two unknowns ↵ and ⌧ :

E
h⇣

M0
L,1 (↵G+ Z; ⌧)

⌘2 i
=

↵
2 � �

2
�
2
⌧
2

⌧2 �
, (3a)

E
h
G · M0

L,1 (↵G+ Z; ⌧)
i
=

↵(1� ��⌧)

⌧ �
, (3b)

where G ⇠ N (0, 1) and Z ⇠ PZ . It has been shown in
[Karoui, 2013, Thrampoulidis et al., 2018] that under
appropriate regularity conditions on L and the noise dis-
tribution PZ , (cf. Tasks [T1,T2]) the system of equa-
tions above has a unique solution (↵L,� > 0, ⌧L,� > 0)
and ↵

2
L,�

is the limit of the squared-error, i.e.,

kbxL,� � x0k22
P�! ↵

2
L,�

. (4)

Using this, we derive tight lower bounds on ↵
2
L,�

over
the choices of L and � (cf. Task [T3]). Our results
hold for all losses and regularizer parameters for which
(3) has a unique solution characterizing the limit of the
squared-error. To formalize this, define the following
collection of losses L and noise distributions PZ :

Clin :=
n
(L, PZ)

��� 8� > 0: (3) has a unique bounded

solution (↵L,� > 0, ⌧L,� > 0) and (4) holds
o
.

Please refer to [Karoui, 2013, Thm. 1.1] and
[Thrampoulidis et al., 2018, Thm. 2] for explicit char-
acterizations of Clin. We conjecture that some of these
regularity conditions (e.g., the differentiability require-
ment) can in fact be relaxed. While this is beyond the
scope of this paper, if this is shown then automatically
the results of this paper formally hold for a richer class
of loss functions.

2.2 Fundamental Limits and Optimal Tuning

Our first main result, stated as Theorem 2.1 below,
establishes a tight bound on the achievable values of
↵
2
L,�

for all pairs (L, PZ) 2 Clin.

Theorem 2.1 (Lower bound on ↵L,�). Let Assump-
tions 1, 2 and 3 hold. For G ⇠ N (0, 1) and noise

random variable Z ⇠ PZ , consider a new random vari-
able Va := aG+ Z, parameterized by a 2 R. Fix any
� > 0 and define ↵? = ↵?(�, PZ) as follows:

↵? := min
0x<1/�


a > 0 :

�(a2 � x
2
�
2) I(Va)

(1� x �)2
= 1

�
. (5)

For any L such that (L, PZ) 2 Clin, � > 0 and ↵
2
L,�

denoting the respective high-dimensional limit of the
squared-error as in (4), it holds that ↵L,� � ↵?.

The proof is given to Section C.2. It includes showing
feasibility of the minimization in (5) for any � > 0.

In general, the lower bound ↵? can be computed by
numerically solving (5). For special cases, such as
Gaussian noise, it is possible to analytically solve (5)
and obtain a closed-form formula for ↵?, which is easier
to interpret. Because this is not always possible, our
next result establishes a simple closed-form lower bound
on ↵? that is valid under only mild assumptions on PZ .
For convenience, let us define h� : R>0 ! R>0,

h�(x) :=
1

2

⇣
1� x� � +

p
(1 + � + x)2 � 4�

⌘
. (6)

The subscript � emphasizes the dependence of the func-
tion on the oversampling ratio �. Note, for future
reference, that h� is strictly increasing for all � > 0.
Corollary 2.1 (Closed-form lower bound on ↵

2
?
). Let

↵? be as in (5) under the assumptions of Theorem
2.1. Assume that PZ is differentiable and takes strictly
positive values on the real line. Then, it holds that

↵
2
?
� h� (1/I(Z)) .

Equality holds if and only if Z ⇠ N (0, ⇣2) for ⇣ > 0.

The proof, presented in Section C.5, shows that the
gap between the actual value of ↵? and h�(1/I(Z))
depends solely on the distribution of Z. Informally,
the more Z resembles a Gaussian, the smaller the gap.
The simple approximation of Corollary 2.1 is key for
comparing the performance of optimally tuned RERM
to optimally-tuned RLS in Section 2.3.Moreover, it can
be used to show that the lower bound of Theorem 2.1
cannot be improved in general. This can be argued as
follows. Consider additive Gaussian noise Z ⇠ N (0, ⇣2)
for which I(Z) = 1/E[Z2] = 1/⇣2. On the one hand,
Corollary 2.1 shows that ↵

2
?
� h�(⇣2). On the other

hand, we will soon show in Lemma 2.2 that optimally-
tuned RLS achieves this bound, i.e., ↵2

`2 ,�opt
= h�(⇣2).

Thus, the case of Gaussian noise shows that the bound
of Theorem 2.1 cannot be improved in general.

Our next result reinforces the claim that the bound of



Hossein Taheri, Ramtin Pedarsani, Christos Thrampoulidis

Theorem 2.1 is indeed tight for a broad class of noise
distributions. Specifically, the lemma below delivers an
explicit recipe for optimally choosing the loss and the
regularizer parameter, as well as, sufficient conditions
under which the optimal loss is convex L?. Note that
both L? and �? depend on the sampling ratio �.

Lemma 2.1 (Optimal tuning of RERM). For given
� > 0 and PZ , let (↵? > 0, x? 2 [0, 1/�)) be the optimal
solution in the minimization in (5). Denote �? = x?

and define V? := ↵?G+ Z. Consider the loss function
L? : R ! R defined as

L?(v) := �M
↵
2
?��

2
? �

2

1��? � ·log(PV? )
(v; 1) .

Then for L? and �?, Equations (3) satisfy (↵, ⌧) =
(↵?, 1). Moreover, L? is convex provided that PZ is
log-concave and ↵

2
?
< �?�.

We numerically validate the theoretical results of this
section in Figure 1(Left), and in the Appendix in
Figures 2(Top Left) and 3(Left). Specifically, we
consider Laplacian noise Z ⇠ Laplace(0,b), where
E[Z2] = 2b2. In Figure 3(Left), we plot the optimal
loss L? (computed as per Lemma 2.1) for � = 2 and
b = 1, 2. Note that L? differs from the loss func-
tion of the maximum-likelihood estimator. Instead,
it is a (non-trivial) smoothed version of it; see also
[Bean et al., 2013, Advani and Ganguli, 2016]. In Fig-
ures 1(Left) and 2(Top Left), we use gradient descent
to numerically evaluate the error of the pair (L?,�?)
as a function of �, for b = 1 and b = 2, respectively.
We compare the achieved error to the lower bound of
Theorem 2.1. Note the perfect match.

2.3 The Sub-optimality Gap of RLS

Here, we use Theorem 2.1 to assess the statistical gap
between least-squares and the optimal choice of L.
As a first step, the lemma below computes the high-
dimensional limit of optimally regularized RLS.

Lemma 2.2 (Asymptotic Error of Optimally Regular-
ized RLS). Fix � > 0 and noise distribution PZ . Let
bx `2,� be the solution to �-regularized least-squares (i.e.,
L(t) = t

2 in (2)). Further let ↵`2,� denote the high-
dimensional limit of kbx `2,� � x0k22. Then, � 7! ↵`2,�

is minimized at �opt = 2E[Z2], and, it holds that

↵
2
`2,�opt

:= h�

�
E
⇥
Z

2
⇤�

.

Combining this with the closed-form lower bound of
Corollary 2.1 delivers an explicit lower bound on the

sub-optimality ratio ↵
2
?
/↵

2
`2 ,�opt

, as follows,

↵
2
?

↵
2
`2 ,�opt

2 [!� , 1], with !� :=
h� (1/I(Z))

h� (E [Z2])
.

Note that the bound depends on the noise distribution
only via its Fisher Information and its second moment.
The fact that !�  1 follows directly by the increasing
nature of the function h� and the Cramer-Rao bound
E[Z2] � 1/I(Z) (see Proposition A.3(c)). Using ana-
lytic properties of h� we can simplify the bound above
even further. We show in Section C.6 that

↵
2
?
/↵2

`2 ,�opt
� !� � max

n
1� � , (I(Z)E[Z2])�1

o
. (7)

The first term in the RHS of (7) reveals that in the
highly over-parameterized regime (� ⌧ 1), it holds
!� ⇡ 1. Thus, optimally-regularized LS becomes opti-
mal. More generally, in the over-parameterized regime
0 < � < 1, the squared-error of optimally-tuned LS is
no worse than (1� �)�1 times the optimal performance
among all convex ERM.

The second term in (7) is more useful in the
underparameterized regime � � 1 and captures
the effect of the noise distribution via the ratio
(I(Z)E[Z2])�1  1 (which is closely related to the
classical Fisher information distance studied e.g. in
[Johnson and Barron, 2004]). Using the fact that
I(Z) = 1/E[Z2] (thus, !� attains its maximum value 1)
iff Z ⇠ N (0, ⇣2). Hence, optimally-tuned LS is optimal
when Z is Gaussian. To further illustrate that our
results are informative for general noise distributions,
consider Laplacian noise Z ⇠ Laplace(0, b2). Using
E[Z2] = 2b2 and I(Z) = b

�2, it follows from(7) that
!� � 1/2, for all b > 0 and � > 0. Hence, we find
that optimally-tuned RLS achieves squared-error that
is at most twice as large as the optimal error, i.e. if
Z ⇠ Laplace(0, b2), b > 0 then for all � > 0 it holds
that ↵

2
`2 ,�opt

 2↵2
?
. See also Figures 1 and 2 for a

numerical illustration.

3 Binary Models

Consider data (yi,ai), i 2 [m] from a binary model yi =
f(aT

i
x0), where f : R ! {±1} is possibly random. We

make the following mild assumption on f ; see Section
D.1 for a discussion.

Assumption 4 (Link function). The link function f

satisfies ⌫f := E [S f(S)] 6= 0, for S ⇠ N (0, 1).

Under Assumptions 1, 2 and 4 we study the following
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ridge-regularized ERM for binary measurements,

bwL,� := arg min
w2Rn

1

m

mX

i=1

L
�
yia

T

i
w
�
+

�

2
kwk2. (8)

We also assume that kx0k2= 1 since the signal strength
can always be absorbed in the link function. Indeed, if
kx0k2= r > 0 then the results continue to hold for a
new link function ef(t) := f(rt).

3.1 Asymptotic Performance

In contrast to linear models where we focused on
squared error, for binary models, a more relevant
performance measure is the normalized correlation
corr ( bwL,� , x0 ) :=

|bwT
L,� x0|

kbwL,�k2kx0k2
. Our first result de-

termines the limit of corr ( bwL,� , x0 ). Specifically, we
show that for a wide class of loss functions it holds that

⇢L,� := corr ( bwL,� , x0 )
P�!

s
1

1 + �
2
L,�

, (9)

where �
2
L,�

:= ↵
2
L,�

/µ2
L,�

and (↵L,�, µL,�) are found by
solving the following system of three nonlinear equa-
tions in three unknowns (↵, µ, ⌧), for G,S

iid⇠ N (0, 1),

E
h
S f(S)M0

L,1 (↵G+ µSf(S); ⌧)
i
= ��µ, (10a)

⌧
2
� E

h �
M0

L,1 (↵G+ µSf(S); ⌧)
�2 i

= ↵
2
, (10b)

⌧ � E
h
GM0

L,1 (↵G+ µSf(S); ⌧)
i
= ↵(1� �⌧�).

(10c)

To formalize this, we define the following collection of
loss and link functions,

Cbin :=
n
(L, f)

��� 8� > 0: (10) has a unique bounded

solution (↵L,� > 0, µL,�, ⌧L,� > 0) and (9) holds
o
.

Theorem 3.1 (Asymptotics for binary RERM). Let
Assumptions 1 and 2 hold and kx0k2= 1. Assume
the link function f : R ! {±1} satisfies Assump-
tion 4. Further assume a loss function L with the
following properties: L is convex, twice differentiable
and bounded from below such that L0(0) 6= 0 and for
G ⇠ N (0, 1), we have E[L(G)] < 1. Then, it holds
that (L, f) 2 Cbin.

We prove Theorem 3.1 in Section B. Previous
works have considered special instances of this:
[Sur and Candès, 2019, Salehi et al., 2019] study un-
regularized and regularized logistic-loss for the logis-

tic binary model, while [Taheri et al., 2020] studies
strictly-convex ERM without regularization. Here,
we follow the same approach as in [Salehi et al., 2019,
Taheri et al., 2020], who apply the convex Gaussian
min-max theorem (CGMT) to relate the performance
of RERM to an auxiliary optimization (AO) prob-
lem whose first-order optimality conditions lead to
the system of equations in (10). Our key technical
contribution in proving Theorem 3.1 is proving ex-
istence and uniqueness of solutions to (10) for the
broad class of convex losses as in the statement of
the theorem (cf. Task [T2]). This is a non-trivial
task in view of the highly nonlinear nature of (10).
Specifically, we remark that none of the previous
works has established existence. Also, note that the
uniqueness result of [Taheri et al., 2020, Prop. 2.1] is
limited to large enough values of the sampling ra-
tio � such that the data are linearly separable. As
a final remark, compared to [Sur and Candès, 2019,
Salehi et al., 2019, Taheri et al., 2020], we also show
that the solution to (10) (specifically, the parameter
�
2
L,�

) further determines the limit of the classification
error of bwL,�. Specifically, letting a ⇠ N (0, In) be
a fresh feature vector and y = f

�
aTx0

�
its label, we

show in Section D.2 that

EL,� := Pa,y

�
y 6= sign

�
aT bwL,�

��
P�! (11)

PG,S (�L,� G+ Sf(S) < 0) , G, S
iid⇠ N (0, 1).

3.2 Fundamental limits and optimal tuning

Eqns. (9) and (11) predict the high-dimensional limit
of the correlation and classification-error of the RERM
solution bwL,�. In fact, smaller values for �L,� result in
better performance: higher correlation and classifica-
tion accuracy (see Section D.2). Here, we lower bound
�L,� and characterize the statistical limits of (8) (cf.
Task [T3]).

Theorem 3.2 (Lower Bound on �L,�). Let Assump-

tions 1, 2 and 4 hold. For G,S
iid⇠ N (0, 1) define the

random variable Ws := sG+ S f(S) parameterized by
s 2 R. Fix any � > 0 and define

�? := min
0x<1/�


s > 0 :

1� s
2(1� s

2I(Ws))

�s2(s2I(Ws) + I(Ws)� 1)
(12)

� 2x+ x
2
�(1 +

1

s2
) = 1

�
.

For any (L, f) 2 Cbin, � > 0 and �
2
L,�

the respective
high-dimensional limit of the error as in (9), it holds
that �L,� � �?.
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We prove Theorem 3.2 in Section D.3, where we also
show that the minimization in (12) is always feasible.
In view of (9) and (11) the theorem’s lower bound
translates to an upper bound on correlation and test
accuracy. Note that �? depends on the link function
only through the Fisher information of the random
variable sG+ S f(S). This parallels the lower bound
of Theorem 2.1 on linear models. Here, the role of
the noise variable Z is played by the random variable
S f(S). This “effective noise term" S f(S) fully cap-
tures the specifics of the link function f . Also, we see
again, that the lower bound depends I(sG+ Sf(S)),
that is the Fisher Information of the “noise distribution"
augmented by a Gaussian sG.

Next we present a useful closed-form lower bound for
�?. For convenience let function H� : R>1 ! R>0

parameterized by � > 0 be defined as follows, H�(x) :=

2
⇣
�� � x+ � x+

p
(�� � x+ � x)2 + 4�(x� 1)

⌘�1
.

Corollary 3.1 (Lower bound on �?). Let �? be as in
(12). Fix any � > 0 and assume that f is such that the
random variable Sf(S) has a differentiable and strictly
positive probability density on the real line. Then,

�
2
?
� H� ( I(Sf(S)) ) .

Corollary 3.1 nicely parallels Corollary 2.1 for linear
models. The proof of the corollary, presented in Section
D.6, reveals that the more the distribution of Sf(S)
resembles a Gaussian distribution, the tighter the gap
is, with equality achieved iff Sf(S) is Gaussian.

Our next result strengthens the lower bound of The-
orem 3.2 by showing existence of a loss function and
regularizer parameter for which the system of equations
(10) has a solution leading to �?.

Lemma 3.1 (Optimal tuning for binary RERM). For
given � > 0 and binary link function f , let (�? > 0, x? 2
[0, 1/�)) be the optimal solution in the minimization in
(12). Denote �? = x? and define W? := �?G+ Sf(S).
Consider the loss function L? : R ! R

L?(x) := �M �?��1
�(⌘�I(W? )) (⌘Q+logPW? )

(x; 1) , (13)

where ⌘ := 1� I(W?) · (�2
?
� �

2
?
�?� � �?�)� �?� and

Q(w) := w
2
/2. Then for L? and �?, the equations (10)

satisfy (↵, µ, ⌧) = (�?, 1, 1).

Lemma 3.1 suggests that if L? satisfies the assumptions
of Theorem 3.1, then �L?,�? = �?. In Figures 1 and
2 we verify this numerically for the Signed and Logis-

tic models. Specifically, we numerically evaluate the
performance of gradient descent on L? showing that
the pair (L?,�?) achieves the optimal error predicted
by Theorem 3.1 (with remarkable accuracy despite the
finite dimensions). See also Figure 3(Right) for an
illustration of L?.

3.3 The sub-optimality gap of RLS

We use the results of the previous section to precisely
quantify the sub-optimality gap of RLS. First, the
following lemma characterizes the performance of RLS.
Lemma 3.2 (Asymptotic error of RLS). Let Assump-
tions 1, 2 and 4 hold. Recall that ⌫f = E[Sf(S)] 6= 0.
Fix any � > 0 and consider solving (8) with the
square-loss L(t) = (t � 1)2 and � � 0. Then, the
system of equations in (10) has a unique solution
(↵`2,�, µ`2,�, ⌧`2,�) and �

2
`2,�

=
↵

2
`2,�

µ
2
`2,�

=

1

2�⌫2
f

⇣
1� �⌫

2
f
+

2 + 2� + �� + �⌫
2
f
((2 + �)� � 6)

p
4 + 4�(�� 2) + �2(�+ 2)2

⌘
.

(14)

Moreover, it holds that

�
2
`2,�

� �
2
`2,�opt

:= H�((1� ⌫
2
f
)�1),

with equality attained for �opt = 2(1� ⌫
2
f
)/(� ⌫2

f
).

In resemblance to Lemma 2.2 in which RLS perfor-
mance for linear measurements only depends on the
second moment E[Z2] of the additive noise distribu-
tion, Lemma 3.2 reveals that the corresponding key
parameter for binary models is 1 � ⌫

2
f
. Interestingly,

the expression for �
2
`2,�opt

conveniently matches with
the simple bound on �

2
?

in Corollary 3.1. Specifically,
it holds for any � > 0 that

1 � �
2
?

�
2
`2 ,�opt

� ⌦� :=
H� ( I(S f(S)) )

H�

⇣
(1� ⌫

2
f
)�1

⌘ . (15)

It can be checked that H�(·) is strictly-decreasing
in its domain for a fixed � > 0. Furthermore, the
Cramer-Rao bound (see Prop. A.3 (d)) requires that
I(Sf(S)) � (Var[Sf(S)])�1 = (1� ⌫

2
f
)�1. Combining

these, confirms that ⌦�  1. Furthermore ⌦� = 1 (thus,
�
2
?
= �

2
`2 ,�opt

) iff the random variable Sf(S) is Gaus-
sian. This conclusion is similar to what we found for
linear models. However, for binary models satisfying
Assumption 4, it can be easily checked (see Section
D.1) that Sf(S) is never Gaussian. Thus (15) suggests
that square-loss cannot be optimal. Nevertheless, one
can use (15) to argue that square-loss is (perhaps sur-
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Figure 1: The lower bounds on error derived in this paper, compared to RLS for the linear model with
Z ⇠ Laplace(0, 1) (Left), and for the binary Signed model(Middle) and binary Logistic model with kx0k= 10
(Right). The markers denote the emipirical performance of the optimally tuned RERM as derived in Lemmas 2.1
and 3.1 for Gaussian and Rademacher data. See Section G for additional numerical results.

� 0.5 2 4 6 8

Z ⇠ Laplace(0, 1) Theory 0.9798 0.9103 0.8332 0.7690 0.7447
Experiment 0.9700 0.8902 0.8109 0.7530 0.7438

Z ⇠ Laplace(0, 2) Theory 0.9832 0.9329 0.8796 0.8371 0.8043
Experiment 0.9785 0.9103 0.8550 0.8316 0.7864

f = Sign Theory 0.9934 0.8531 0.6199 0.4602 0.3618
Experiment 0.9918 0.8204 0.6210 0.4710 0.3829

f = Logistic, kx0k= 10
Theory 0.9826 0.8721 0.7116 0.6211 0.5712

Experiment 0.9477 0.8987 0.7112 0.6211 0.6389

Table 1: Theoretical and numerical values of ↵
2
?
/↵

2
L,�opt

(linear models) and �
2
?
/�

2
L,�opt

(binary models) for
different values of � and various link functions. The curves for ↵? and �? correspond to Theorems 2.1 and 3.2.
The empirical values of ↵? and �? are derived by numerically solving the optimally-tuned RERM of Lemmas 2.1
and 3.1 by GD for isotropic Gaussian features, n = 100 and averaging over 50 independent experiments.

prisingly) approximately optimal for certain popular
models. For instance, consider the logistic link func-
tion efr satisfying P( efr(x) = 1) = (1 + exp(�rx))�1,
where r := kx0k2. Using (15) and maximizing the
sub-optimality gap 1/⌦� over � > 0, we find that if
f = efr=1 then for all � > 0 it holds that

�
2
`2 ,�opt

 1.003 �
2
?
.

Thus, for a logistic link function and kx0k2= 1
optimally-tuned RLS is approximately optimal. This
is in agreement with the key message of Corollary 3.1
on the critical role played by Sf(S), since for the lo-
gistic model and small values of r, its density is “close”
to a Gaussian. We remark that [Taheri et al., 2020]
further shows that LS remains approximately optimal
among convex loss functions without regularization for
the logistic and probit models with r = 1. However,
[Taheri et al., 2020] did not investigate the effect of
the SNR term r := kx0k2. Specifically, as the signal

strength increases, efr converges to the sign function
( efr(·) ! sign(·)). This suggests that there might be
room for improvement between RLS and what Theo-
rem 3.2 suggests to be possible. This can be precisely
quantified using (15). For example, for r = 10 it can
be checked that �

2
`2 ,�opt

 2.442 �
2
?
, 8� > 0. Lemma

3.1 provides the recipe to bridge the gap in this case.
Indeed, Figures 1 and 2 show that the optimal loss
function L predicted by the lemma outperforms RLS
for all values � and its performance matches the best
possible one specified by Theorem 3.2.

Due to space limitations, we defer Figures 2 and 3 to
the appendix; see Section G.

4 Numerical Experiments

In Figure 1(Left), we compare the lower bound of
Theorem 2.1 with the error of RLS (see Lemma 2.2)
for Z ⇠ Laplace(0, 1) and kx0k2= 1. To numeri-
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cally validate that ↵? is achievable by the proposed
choices of loss function and regularization parameter
in Lemma 2.1, we proceed as follows. We generate
noisy linear measurements with iid Gaussian feature
vectors ai 2 R100. The estimator bxL?,�? is computed
by running gradient descent (GD) on the correspond-
ing optimization in (2) when the proposed optimal loss
and regularizer of Lemma 2.1 are used. See Figure
3(Left) for an illustration of the optimal loss for this
model. The resulting vector bxL?,�? is used to compute
kbxL?,�? � x0k2. The average of these values over 50
independent Monte-carlo trials is shown in red squares.
Note the remarkable agreement between theoretical
and empirical values despite the finite dimensions (see
also the first and second rows of Table 1). In the next
two plots, we present results for binary models. Figure
1(Middle) plots the effective error parameter � for the
Signed model and Figure 1(Right) plots the classifica-
tion error ‘E ’ for the Logistic model with kx0k2= 10.
The red squares correspond to the numerical evalua-
tions of ERM with L = L? and � = �? (as in Lemma
3.1) derived by running GD on the proposed optimal
loss and regularization parameter. See Figure 3(Right)
for an illustration of the optimal loss in this case. The
solution bwL?,�? of GD is used to calculate �L?,�? and
EL?,�? in accordance with (9) and (11), respectively.
Again, note the close match between theory and exper-
iments (see the third and fourth rows of Table 1).

The goal of the next experiment is to numerically sup-
port the universality property of our results discussed
in Section 1.1. For this purpose, we repeat the experi-
ments above with choosing the entries ai as independent
Rademacher random variables. We plot the numerical
averages in blue stars. Again, for all three plots, note
the remarkable agreement of these values to both the
corresponding numerical values for Gaussian features,
and, our theoretical performance bounds.

Finally, for all three models studied in Figure 1, we in-
clude the plots the theoretical predictions for the error
of the following: (i) RLS with small and large regulariza-
tion (see Eqns. (56) and (14)); (ii) optimally tuned RLS
(see Lemmas 2.2 and 3.2); (iii) optimally-tuned unregu-
larized ERM (marked as ↵ureg,�ureg, Eureg). The curves
for the latter are obtained from [Bean et al., 2013] and
[Taheri et al., 2020] for linear and binary models, re-
spectively. We refer the reader to Sections F.1 and
F.2 for a precise study of the benefits of regularization
in view of Theorems 2.1 and 3.2, for both linear and
binary models.

5 Future work
There is a host of exciting directions for future work.
Proving universality of our results is an important, yet
possibly challenging, task. Extensions to correlated
features is yet another important direction. While we
suspect that our techniques are still useful, such an
extension requires revisiting Task [T1] to obtain the
appropriate system of equations (one that properly
accounts for the covariance matrix) for that case; see
[Montanari et al., 2019, Liang and Sur, 2020] for some
very recent progress in this direction, but only for
special ERM instances.
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