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A Illustrations and examples

A.1 Fully connected shallow model

In this section, we illustrate linear region calculations for simple examples in the plane.

In the two-dimensional plane, "general position" means that two lines always intersect and three lines never are concurrent.
Let us see an example in the case n0 = 2, n1 = 4, i.e., four lines in the plan.

x− y + 1 = 0 : H1

x− y − 1 = 0 : H2

x+ y − 2 = 0 : H3

x = 1
2 : H4.

This arrangement is not in general position because H1 and H2 are parallel or H1, H3 and H4 are concurrent. Its number
of chambers is 9 (Figure 1)

Let us modify H2 to make the arrangement being general position. Now we have:
x− y + 1 = 0 : H1

y = 1 : H2

x+ y − 2 = 0 : H3

x = 1
2 : H4.

Now the number of chambers is 11 =
∑n0

i=0

(
n1

i

)
. It is maximal for a 4-line arrangement in the real plane (Figure 2).

A.2 Permutation invariant shallow model

Let us consider an example of a permutation-invariant shallow model withm = n = 2, i.e., this model also implements a
function from R2 to R4. We have the two pairs of lines (Figure 3):

2x+ 1
2y − 3 = 0 : H11

1
2x+ 2y − 3 = 0 : H12

−x+ 6y = 0 : H21

6x− y = 0 : H22.

We also count 11 chambers.
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Figure 1: The line arrangement not in general position.
The number of chambers is 9.

Figure 2: The line arrangement in general position. The
number of chambers is 11 and is maximal

Figure 3: The 4 lines arrangement in the plane of a permutation invariant model. We count 11 linear regions.

A.3 Measure of complexity as the number of equivalent classes

Let us consider again the last invariant model example:


2x+ 1

2y − 3 = 0 : H11

1
2x+ 2y − 3 = 0 : H12

−x+ 6y = 0 : H21

6x− y = 0 : H22.

In this case, S2 has a single element which is the permutation σ = (1 2). Here, the action of σ on R2 is exactly the action

of the reflection symmetry through the line x = y. Then, the corresponding Euclidean transformation φ is φ =

(
0 1
1 0

)
and the underlying group is Φ̂ = {I, φ}

In Figure 4, we identify regions belonging to the same equivalent classes. In this case, a region is identified by its symmetry
through the line x = y. Therefore, we count 7 equivalent classes of linear regions: {R1}, {R2,R6}, {R3,R7}, {R4,R8},
{R5,R10}, {R9}, {R11}.
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Figure 4: The dashed line is the line of equation x = y. We identify the equivalent regions with respect to the symmetry
through the line x = y. The number of orbits is 7.

B Proof of Proposition 1

In this section, we prove Proposition 1. To show this, we use the Deletion-Restriction theorem (Orlik and Terao, 2013,
Theorem 2.56 and Theorem 2.68).
Theorem 1 (Brylawsky, Zaslavsky). For a hyperplane arrangementA inRn and a fixed hyperplaneX ∈ A, let (A,A′,A′′)
be the triple defined as A′ = A\{X} and

A′′ = {H ∩X | H ∈ A\{X}, H ∩X 6= ∅}.

Then, the following holds:
|Ch(A)| = |Ch(A′)|+ |Ch(A′′)|.

By apply Theorem 1 to our hyperplane arrangement, we obtain a recurrence relation and calculate the number of linear
regions for permutation invariant models.

Proof of Proposition 1. Let Bm,n = {Hij ⊂ Rn | i = 1, . . . ,m, j = 1, . . . , n} be the hyperplane arrangement defined by
(2.6). We recall that hyperplanes of this arrangement Bm,n satisfy the following equations:

Hi1,j ∩Hi2,j ∩Hi3,j = ∅, (B.1)
Hi1,j1 ∩Hi1,j2 ∩Hi2,j1 = Hi1,j1 ∩Hi1,j2 ∩Hi2,j2 = Hi1,j1 ∩Hi2,j1 ∩Hi2,j2 (B.2)

for i1, i2, i3 = 1, . . . ,m and j, j1, j2 = 1, . . . , n.

We apply Theorem 1 to Bm,n and Hm,n ∈ Bm,n. Then, we have

B′m,n = {H11, . . . ,H1n, . . . ,Hm1, . . . ,Hm,n−1},
B′′m,n = {H11 ∩Hm,n, . . . ,H1n ∩Hm,n, . . . ,Hm1 ∩Hm,n, . . . ,Hm,n−1 ∩Hm,n}

and |Bm,n| = |B′m,n| + |B′′m,n| Here, because Hm,n is a hyperplane bĳective to Rn−1, Hij ∩Hm,n can be regarded as a
hyperplane in Hm,n = Rn−1.

Next, we consider deletion and restriction for B′′m.n and Hm−1,n ∩Hm,n. Then, we have

(B′′m,n)′ =

{
H1,1 ∩Hm,n, . . . ,Hm−2,n ∩Hm,n, Hm−1,1 ∩Hm,n, . . . ,Hm−1,n−1 ∩Hm,n,

Hm,1 ∩Hm,n, . . . ,Hm,n−1 ∩Hm,n

}
,

(B′′m,n)′′ =

{
H1,1 ∩Hm−1,n ∩Hm,n, . . . ,H1,n ∩Hm−1,n ∩Hm,n, . . . ,

Hm,1 ∩Hm−1,n ∩Hm,n, . . . ,Hm,n−1 ∩Hm−1,n ∩Hm,n

}
.
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Then, in the above (B′′m,n)′′, by the relation (B.3), we have

Hi,n ∩Hm−1,n ∩Hm,n = ∅

for any i = 1, . . . ,m− 2. Hence, any hyperplane of the formHi,n ∩Hm−1,n ∩Hm,n vanishes from (B′′m,n)′′. Moreover,
by the relation (B.4), for any j = 1, . . . , n− 1,

Hm,j ∩Hm−1,n ∩Hm,n = Hm−1,j ∩Hm−1,n ∩Hm,n

holds. By this relation, we can unify the hyperplanes of forms ofHm,j ∩Hm−1,n ∩Hm,n andHm−1,j ∩Hm−1,n ∩Hm,n.
By these arguments, (B′′m,n)′′ can be written by

(B′′m,n)′′ = {Hi,j ∩Hm−1,n ∩Hm,n ⊂ Rn−2 | i = 1, . . . ,m− 1, j = 1, . . . , n− 1}.

Once, we set Hi,j = Hi,j ∩ Hm−1,n ∩ Hm,n ∈ (B′′m,n)′′. Then, it is easy to show that the obtained arrangement
(B′′)′′ = {Hi,j ⊂ Rn−2 | i = 1, . . . ,m− 1, j = 1, . . . , n− 1} satisfies the following relations:

Hi1,j ∩Hi2,j ∩Hi3,j = ∅,
Hi1,j1 ∩Hi1,j2 ∩Hi2,j1 = Hi1,j1 ∩Hi1,j2 ∩Hi2,j2 = Hi1,j1 ∩Hi2,j1 ∩Hi2,j2 .

for i1, i2, i3 = 1, . . . ,m − 1 and j, j1, j2 = 1, . . . , n − 1. This means that the hyperplane arrangement (B′′)′′ can be
regarded as an arrangement “Bm−1,n−1 in Rn−2”. We will subsequently justify this argument more precisely.

Before we do it, we shall observe the deletion and restriction for B′m,n withHm−1,n ∈ B′m,n. Then, we have the following
arrangements:

(B′m,n)′ = {H1,1, . . . ,Hm−2,n, Hm−1,1, . . . ,Hm−1,n−1, . . . ,Hm,1, . . . ,Hm,n−1},

(B′m,n)′′ =

{
H11 ∩Hm−1,n, . . . ,H1,n ∩Hm−1,n, . . . ,Hm−1,1 ∩Hm−1,n, . . . ,

Hm−1,n−1 ∩Hm−1,n, Hm,1 ∩Hm−1,n, . . . ,Hm,n ∩Hm−1,n

}
.

Then, we remark that (B′m,n)′′ is same as (B′′m,n)′ if we exchange Hm−1,j and Hm,j . By these relations, we have the
following diagram:

Bm,n
∩Hm,n //

\Hm,n
��

B′′m,n
∩(Hm−1,n∩Hm,n) //

\(Hm−1,n∩Hm,n)
��

(B′′m,n)′′

B′m,n
∩Hm−1,n //

\Hm−1,n

��

(B′m,n)′′ “ = ” (B′′m,n)′

(B′m,n)′

To extract a recurrence relation from this diagram, we introduce another notation: Let

B`m,n = {Xi,j ⊂ R` | i = 1, . . . ,m, j = 1, . . . , n}

be a hyperplane arrangement in R` satisfying the following relations:

Xi1,j ∩Xi2,j ∩Xi3,j = ∅, (B.3)
Xi1,j1 ∩Xi1,j2 ∩Xi2,j1 = Xi1,j1 ∩Xi1,j2 ∩Xi2,j2 = Xi1,j1 ∩Xi2,j1 ∩Xi2,j2 (B.4)

for i1, i2, i3 = 1, . . . ,m and j, j1, j2 = 1, . . . , n. Then, by the above arguments and a simple consideration, we have the
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following diagram:

Bnm,n
∩Xm,n //

\Xm,n
��

(Bnm,n)′′
∩(Xm−1,n∩Xm,n) //

\(Xm−1,n∩Xm,n)
��

Bn−2m−1,n−1

(Bnm,n)′
∩Xm−1,n //

\Xm−1,n��

((Bnm,n)′)′′
∩(Xm−2,n∩Xm−1,n)//

\(Xm−2,n∩Xm−1,n)��

Bn−2m−1,n−1

...

\X2,n

��

...

\(X1,n∩X2,n)

��
B

∩X1,n //

\X1,n

��

Bn−1m,n−1

Bnm,n−1

(B.5)

Here, B is the hyperplane arrangement in Rn defined by

B = Bnm,n−1 ∪ {X1,n}.

Let b`m,n = |Ch(B`m,n)|. Then, by Theorem 1 with the diagram (B.5), we have the recurrence relation

bnm,n = bnm,n−1 +mbn−1m,n−1 +
m(m− 1)

2
bn−2m−1,n−1.

Moreover, by considering recursively, we can show that the following holds for `,m, n ≥ 1:

b`m,n = b`m,n−1 +mb`−1m,n−1 +
m(m− 1)

2
b`−2m−1,n−1. (B.6)

Here, b0m,n = b`0,n = b`m,0 = 1 for any `,m, n ≥ 0 and we set b`m,n = 0 for ` < 0. Then, for example, by (B.6), we have
b1m,n = mn+ 1 for anym,n ≥ 0, b`m,1 = m2/2 +m/2 + 1 for any ` ≥ 2 andm. In particular, b`m,n is a polynomial with
respect tom.

By this recurrence relation (B.6), we can represent bnm,n as

bnm,n =

n/2∑
k=0

n∑
`=0

d`,k(m)bn−2k−`m−k,0 =

n/2∑
k=0

n∑
`=0

d`,k(m),

where d`,k(m) is a non-negative integer. Here, the last equation follows from bn−2k−`m−k,0 = 1 for any k, `,m such that
m − k ≥ 0 and n − 2k − ` ≥ 0. Then, it is easy to show that d`,k(m) is obtained as a sum of multiples of k times
“m(m − 1)/2”, ` times “m”, and n − k − ` times 1. Here, these double quotation means that these vary in accordance
with the order of the operations. Indeed, the iteration relation (B.6) can be represented as a higher-dimensional analogue
of Pascal’s triangle as Figure 5. However, because we will calculate only the coefficient of leading term of bnm,n as a
polynomial of variablem, we may not take care of the orders. Then, the degree of d`,k(m) as a polynomial of variablem
is equal to 2k + `. This means that the leading term of bnm,n as a polynomial of variable m is equal to the sum of terms
d`,k(m) for 2k + ` = n. Moreover, by the fact d`,k(m) ≥ 0, we have

bnm,n =

n/2∑
k=0

n∑
`=0

d`,k(m) ≥
n/2∑
k=0

dn−2k,k(m) = (the leading term of bnm,n as a polynomial of variablem).

We calculate a lower bound of the leading term. Then, the leading term of dn−2k,k(m) as a polynomial ofm can be written
as

dn−2k,k(m) =

(
n

k, k, n− 2k

)
1

2k
mn +O(mn−1),
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Figure 5: A higher dimensional analogue of Pascal’s triangle representing the iteration relation (B.6).

where
(

n
k1,...,km

)
for positive integers k1, . . . , km such that n = k1 + · · ·+ km is the multinomial coefficient defined by(

n

k1, . . . , km

)
=

n!

k1! · · · km!
=

(
k1
k1

)(
k1 + k2
k2

)
· · ·
(
k1 + k2 + · · ·+ km

km

)
. (B.7)

Indeed, as mentioned before, dn−2k,k(m) is obtained as a sum of multiples of k times of “m(m− 1)/2”, n− 2k times of
“m”, and k times of 1. Although the terms in the double quotations varies in accordance with the orders of the operations,
the leading term is independent of the orders. Hence, the leading term of dn−2k,k(m) is the sum of multiples of k times of
1/2, n− 2k times of 1, and k times of 1. The number of such multiples in the sum is same as

(
n

k,k,n−2k
)
. Hence, we have

dn−2k,k(m) =

(
n

k, k, n− 2k

)
1

2k
mn +O(mn−1).

By the form of RHS of equation (B.7) and the estimate in (2.4), we have(
n

k, k, n− 2k

)
=

(
k

k

)(
2k

k

)(
n

n− 2k

)
=

(
2k

k

)(
n

n− 2k

)
≥ 2kH(1/2)√

8k(1− 1/2)

2nH((n−2k)/n)√
8k(n− 2k)(1− (n− 2k)/n)

=
22k2nH((n−2k)/n)

8k
√

(n− 2k)/n
.

In the last inequality follows from H(1/2) = 1.

We evaluate the coefficient of the leading term at k = n/4. Then, we have

dn/2,n/4(m) ≥ (25/4)n

n
√

2
mn +O(mn−1).

In particular, the coefficient of leading term of bnm,n is bounded from below by (25/4)n/(n
√

2). This concludes the
proof.

C Proof of Proposition 2

Proof of Proposition 2. Letλ ∈ Λ,x ∈ Dλ andφ ∈ Φ. We assume thatφ satisfies (1)φ(Dλ) = Dλ′ and (2) fλ = fλ◦φ|Dλ .
Then, we have

f(φ(x)) = fλ′(φ(x)) = (fλ′ ◦ φ|Dλ)(x)

= fλ(x) = f(x). (C.1)
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This equation holds for any x and any φ ∈ Φ. Because φ ∈ Φ is a Euclidean transformation, φ is an isomorphism. In
particular, the inverse of φ exists. As for any y ∈ Rn, there is a x such that y = φ(x), by the equation (C.1), we have

f(φ−1(y)) = f(x) = f(φ(x)) = f(y). (C.2)

Hence, f is invariant by the action of φ−1 for any φ ∈ Φ. Now, let Φ̂ be the subgroup of the group of Euclidean transforma-
tions generated byΦ. This means that any element φ ∈ Φ̂ is a composition of finite elements of {φ1, . . . , φt, φ−11 , . . . , φ−1t }.
Hence, by combining this fact and equations (C.1) and (C.2), f is invariant by the action of the group Φ̂.
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