Supplementary Material for
 "On the Number of Linear Functions Composing Deep Neural Networks: Towards a Refined Definition of Neural Network Complexity"

Yuuki Takai
RIKEN AIP
yuuki.takai@riken.jp

Akiyoshi Sannai
RIKEN AIP
akiyoshi.sannai@riken.jp

Matthieu Cordonnier
École Normale
Supérieure Paris-Saclay
matthieu.cordonnier
@ens-paris-saclay.fr

A Illustrations and examples

A. 1 Fully connected shallow model

In this section, we illustrate linear region calculations for simple examples in the plane.
In the two-dimensional plane, "general position" means that two lines always intersect and three lines never are concurrent. Let us see an example in the case $n_{0}=2, n_{1}=4$, i.e., four lines in the plan.

$$
\begin{cases}x-y+1=0 & : H_{1} \\ x-y-1=0 & : H_{2} \\ x+y-2=0 & : H_{3} \\ x=\frac{1}{2} & : H_{4} .\end{cases}
$$

This arrangement is not in general position because H_{1} and H_{2} are parallel or H_{1}, H_{3} and H_{4} are concurrent. Its number of chambers is 9 (Figure 1)
Let us modify H_{2} to make the arrangement being general position. Now we have:

$$
\begin{cases}x-y+1=0 & : H_{1} \\ y=1 & : H_{2} \\ x+y-2=0 & : H_{3} \\ x=\frac{1}{2} & : H_{4}\end{cases}
$$

Now the number of chambers is $11=\sum_{i=0}^{n_{0}}\binom{n_{1}}{i}$. It is maximal for a 4-line arrangement in the real plane (Figure 2).

A. 2 Permutation invariant shallow model

Let us consider an example of a permutation-invariant shallow model with $m=n=2$, i.e., this model also implements a function from \mathbb{R}^{2} to \mathbb{R}^{4}. We have the two pairs of lines (Figure 3):

$$
\begin{cases}2 x+\frac{1}{2} y-3=0 & : H_{11} \\ \frac{1}{2} x+2 y-3=0 & : H_{12} \\ -x+6 y=0 & : H_{21} \\ 6 x-y=0 & : H_{22}\end{cases}
$$

We also count 11 chambers.

Figure 1: The line arrangement not in general position. The number of chambers is 9 .

Figure 2: The line arrangement in general position. The number of chambers is 11 and is maximal

Figure 3: The 4 lines arrangement in the plane of a permutation invariant model. We count 11 linear regions.

A. 3 Measure of complexity as the number of equivalent classes

Let us consider again the last invariant model example:

$$
\begin{cases}2 x+\frac{1}{2} y-3=0 & : H_{11} \\ \frac{1}{2} x+2 y-3=0 & : H_{12} \\ -x+6 y=0 & : H_{21} \\ 6 x-y=0 & : H_{22}\end{cases}
$$

In this case, S_{2} has a single element which is the permutation $\sigma=(12)$. Here, the action of σ on \mathbb{R}^{2} is exactly the action of the reflection symmetry through the line $x=y$. Then, the corresponding Euclidean transformation ϕ is $\phi=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and the underlying group is $\hat{\Phi}=\{I, \phi\}$

In Figure 4, we identify regions belonging to the same equivalent classes. In this case, a region is identified by its symmetry through the line $x=y$. Therefore, we count 7 equivalent classes of linear regions: $\{\mathrm{R} 1\},\{\mathrm{R} 2, \mathrm{R} 6\},\{\mathrm{R} 3, \mathrm{R} 7\},\{\mathrm{R} 4, \mathrm{R} 8\}$, \{R5,R10\}, \{R9\}, \{R11\}.

Figure 4: The dashed line is the line of equation $x=y$. We identify the equivalent regions with respect to the symmetry through the line $x=y$. The number of orbits is 7 .

B Proof of Proposition 1

In this section, we prove Proposition 1. To show this, we use the Deletion-Restriction theorem (Orlik and Terao, 2013, Theorem 2.56 and Theorem 2.68).
Theorem 1 (Brylawsky, Zaslavsky). For a hyperplane arrangement \mathcal{A} in \mathbb{R}^{n} and a fixed hyperplane $X \in \mathcal{A}$, let $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$ be the triple defined as $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{X\}$ and

$$
\mathcal{A}^{\prime \prime}=\{H \cap X \mid H \in \mathcal{A} \backslash\{X\}, H \cap X \neq \emptyset\}
$$

Then, the following holds:

$$
|\operatorname{Ch}(\mathcal{A})|=\left|\operatorname{Ch}\left(\mathcal{A}^{\prime}\right)\right|+\left|\operatorname{Ch}\left(\mathcal{A}^{\prime \prime}\right)\right| .
$$

By apply Theorem 1 to our hyperplane arrangement, we obtain a recurrence relation and calculate the number of linear regions for permutation invariant models.

Proof of Proposition 1. Let $\mathcal{B}_{m, n}=\left\{H_{i j} \subset \mathbb{R}^{n} \mid i=1, \ldots, m, j=1, \ldots, n\right\}$ be the hyperplane arrangement defined by (2.6). We recall that hyperplanes of this arrangement $\mathcal{B}_{m, n}$ satisfy the following equations:

$$
\begin{align*}
& H_{i_{1}, j} \cap H_{i_{2}, j} \cap H_{i_{3}, j}=\emptyset \tag{B.1}\\
& H_{i_{1}, j_{1}} \cap H_{i_{1}, j_{2}} \cap H_{i_{2}, j_{1}}=H_{i_{1}, j_{1}} \cap H_{i_{1}, j_{2}} \cap H_{i_{2}, j_{2}}=H_{i_{1}, j_{1}} \cap H_{i_{2}, j_{1}} \cap H_{i_{2}, j_{2}} \tag{B.2}
\end{align*}
$$

for $i_{1}, i_{2}, i_{3}=1, \ldots, m$ and $j, j_{1}, j_{2}=1, \ldots, n$.
We apply Theorem 1 to $\mathcal{B}_{m, n}$ and $H_{m, n} \in \mathcal{B}_{m, n}$. Then, we have

$$
\begin{aligned}
\mathcal{B}_{m, n}^{\prime} & =\left\{H_{11}, \ldots, H_{1 n}, \ldots, H_{m 1}, \ldots, H_{m, n-1}\right\} \\
\mathcal{B}_{m, n}^{\prime \prime} & =\left\{H_{11} \cap H_{m, n}, \ldots, H_{1 n} \cap H_{m, n}, \ldots, H_{m 1} \cap H_{m, n}, \ldots, H_{m, n-1} \cap H_{m, n}\right\}
\end{aligned}
$$

and $\left|\mathcal{B}_{m, n}\right|=\left|\mathcal{B}_{m, n}^{\prime}\right|+\left|\mathcal{B}_{m, n}^{\prime \prime}\right|$ Here, because $H_{m, n}$ is a hyperplane bijective to $\mathbb{R}^{n-1}, H_{i j} \cap H_{m, n}$ can be regarded as a hyperplane in $H_{m, n}=\mathbb{R}^{n-1}$.

Next, we consider deletion and restriction for $\mathcal{B}_{m . n}^{\prime \prime}$ and $H_{m-1, n} \cap H_{m, n}$. Then, we have

$$
\begin{aligned}
\left(\mathcal{B}_{m, n}^{\prime \prime}\right)^{\prime} & =\left\{\begin{array}{c}
H_{1,1} \cap H_{m, n}, \ldots, H_{m-2, n} \cap H_{m, n}, H_{m-1,1} \cap H_{m, n}, \ldots, H_{m-1, n-1} \cap H_{m, n}, \\
H_{m, 1} \cap H_{m, n}, \ldots, H_{m, n-1} \cap H_{m, n}
\end{array}\right\}, \\
\left(\mathcal{B}_{m, n}^{\prime \prime}\right)^{\prime \prime} & =\left\{\begin{array}{c}
H_{1,1} \cap H_{m-1, n} \cap H_{m, n}, \ldots, H_{1, n} \cap H_{m-1, n} \cap H_{m, n}, \ldots, \\
H_{m, 1} \cap H_{m-1, n} \cap H_{m, n}, \ldots, H_{m, n-1} \cap H_{m-1, n} \cap H_{m, n}
\end{array}\right\} .
\end{aligned}
$$

Then, in the above $\left(\mathcal{B}_{m, n}^{\prime \prime}\right)^{\prime \prime}$, by the relation (B.3), we have

$$
H_{i, n} \cap H_{m-1, n} \cap H_{m, n}=\emptyset
$$

for any $i=1, \ldots, m-2$. Hence, any hyperplane of the form $H_{i, n} \cap H_{m-1, n} \cap H_{m, n}$ vanishes from $\left(\mathcal{B}_{m, n}^{\prime \prime}\right)^{\prime \prime}$. Moreover, by the relation (B.4), for any $j=1, \ldots, n-1$,

$$
H_{m, j} \cap H_{m-1, n} \cap H_{m, n}=H_{m-1, j} \cap H_{m-1, n} \cap H_{m, n}
$$

holds. By this relation, we can unify the hyperplanes of forms of $H_{m, j} \cap H_{m-1, n} \cap H_{m, n}$ and $H_{m-1, j} \cap H_{m-1, n} \cap H_{m, n}$. By these arguments, $\left(\mathcal{B}_{m, n}^{\prime \prime}\right)^{\prime \prime}$ can be written by

$$
\left(\mathcal{B}_{m, n}^{\prime \prime}\right)^{\prime \prime}=\left\{H_{i, j} \cap H_{m-1, n} \cap H_{m, n} \subset \mathbb{R}^{n-2} \mid i=1, \ldots, m-1, j=1, \ldots, n-1\right\}
$$

Once, we set $\bar{H}_{i, j}=H_{i, j} \cap H_{m-1, n} \cap H_{m, n} \in\left(\mathcal{B}_{m, n}^{\prime \prime}\right)^{\prime \prime}$. Then, it is easy to show that the obtained arrangement $\left(\mathcal{B}^{\prime \prime}\right)^{\prime \prime}=\left\{\bar{H}_{i, j} \subset \mathbb{R}^{n-2} \mid i=1, \ldots, m-1, j=1, \ldots, n-1\right\}$ satisfies the following relations:

$$
\begin{aligned}
& \bar{H}_{i_{1}, j} \cap \bar{H}_{i_{2}, j} \cap \bar{H}_{i_{3}, j}=\emptyset \\
& \bar{H}_{i_{1}, j_{1}} \cap \bar{H}_{i_{1}, j_{2}} \cap \bar{H}_{i_{2}, j_{1}}=\bar{H}_{i_{1}, j_{1}} \cap \bar{H}_{i_{1}, j_{2}} \cap \bar{H}_{i_{2}, j_{2}}=\bar{H}_{i_{1}, j_{1}} \cap \bar{H}_{i_{2}, j_{1}} \cap \bar{H}_{i_{2}, j_{2}}
\end{aligned}
$$

for $i_{1}, i_{2}, i_{3}=1, \ldots, m-1$ and $j, j_{1}, j_{2}=1, \ldots, n-1$. This means that the hyperplane arrangement $\left(\mathcal{B}^{\prime \prime}\right)^{\prime \prime}$ can be regarded as an arrangement " $\mathcal{B}_{m-1, n-1}$ in \mathbb{R}^{n-2} ". We will subsequently justify this argument more precisely.
Before we do it, we shall observe the deletion and restriction for $\mathcal{B}_{m, n}^{\prime}$ with $H_{m-1, n} \in \mathcal{B}_{m, n}^{\prime}$. Then, we have the following arrangements:

$$
\begin{aligned}
\left(\mathcal{B}_{m, n}^{\prime}\right)^{\prime} & =\left\{H_{1,1}, \ldots, H_{m-2, n}, H_{m-1,1}, \ldots, H_{m-1, n-1}, \ldots, H_{m, 1}, \ldots, H_{m, n-1}\right\}, \\
\left(\mathcal{B}_{m, n}^{\prime}\right)^{\prime \prime} & =\left\{\begin{array}{c}
H_{11} \cap H_{m-1, n}, \ldots, H_{1, n} \cap H_{m-1, n}, \ldots, H_{m-1,1} \cap H_{m-1, n}, \ldots \\
H_{m-1, n-1} \cap H_{m-1, n}, H_{m, 1} \cap H_{m-1, n}, \ldots, H_{m, n} \cap H_{m-1, n}
\end{array}\right\} .
\end{aligned}
$$

Then, we remark that $\left(\mathcal{B}_{m, n}^{\prime}\right)^{\prime \prime}$ is same as $\left(\mathcal{B}_{m, n}^{\prime \prime}\right)^{\prime}$ if we exchange $H_{m-1, j}$ and $H_{m, j}$. By these relations, we have the following diagram:

To extract a recurrence relation from this diagram, we introduce another notation: Let

$$
\mathcal{B}_{m, n}^{\ell}=\left\{X_{i, j} \subset \mathbb{R}^{\ell} \mid i=1, \ldots, m, j=1, \ldots, n\right\}
$$

be a hyperplane arrangement in \mathbb{R}^{ℓ} satisfying the following relations:

$$
\begin{align*}
& X_{i_{1}, j} \cap X_{i_{2}, j} \cap X_{i_{3}, j}=\emptyset \tag{B.3}\\
& X_{i_{1}, j_{1}} \cap X_{i_{1}, j_{2}} \cap X_{i_{2}, j_{1}}=X_{i_{1}, j_{1}} \cap X_{i_{1}, j_{2}} \cap X_{i_{2}, j_{2}}=X_{i_{1}, j_{1}} \cap X_{i_{2}, j_{1}} \cap X_{i_{2}, j_{2}} \tag{B.4}
\end{align*}
$$

for $i_{1}, i_{2}, i_{3}=1, \ldots, m$ and $j, j_{1}, j_{2}=1, \ldots, n$. Then, by the above arguments and a simple consideration, we have the
following diagram:

Here, \mathcal{B} is the hyperplane arrangement in \mathbb{R}^{n} defined by

$$
\mathcal{B}=\mathcal{B}_{m, n-1}^{n} \cup\left\{X_{1, n}\right\} .
$$

Let $b_{m, n}^{\ell}=\left|\operatorname{Ch}\left(\mathcal{B}_{m, n}^{\ell}\right)\right|$. Then, by Theorem 1 with the diagram (B.5), we have the recurrence relation

$$
b_{m, n}^{n}=b_{m, n-1}^{n}+m b_{m, n-1}^{n-1}+\frac{m(m-1)}{2} b_{m-1, n-1}^{n-2} .
$$

Moreover, by considering recursively, we can show that the following holds for $\ell, m, n \geq 1$:

$$
\begin{equation*}
b_{m, n}^{\ell}=b_{m, n-1}^{\ell}+m b_{m, n-1}^{\ell-1}+\frac{m(m-1)}{2} b_{m-1, n-1}^{\ell-2} . \tag{B.6}
\end{equation*}
$$

Here, $b_{m, n}^{0}=b_{0, n}^{\ell}=b_{m, 0}^{\ell}=1$ for any $\ell, m, n \geq 0$ and we set $b_{m, n}^{\ell}=0$ for $\ell<0$. Then, for example, by (B.6), we have $b_{m, n}^{1}=m n+1$ for any $m, n \geq 0, b_{m, 1}^{\ell}=m^{2} / 2+m / 2+1$ for any $\ell \geq 2$ and m. In particular, $b_{m, n}^{\ell}$ is a polynomial with respect to m.
By this recurrence relation (B.6), we can represent $b_{m, n}^{n}$ as

$$
b_{m, n}^{n}=\sum_{k=0}^{n / 2} \sum_{\ell=0}^{n} d_{\ell, k}(m) b_{m-k, 0}^{n-2 k-\ell}=\sum_{k=0}^{n / 2} \sum_{\ell=0}^{n} d_{\ell, k}(m),
$$

where $d_{\ell, k}(m)$ is a non-negative integer. Here, the last equation follows from $b_{m-k, 0}^{n-2 k-\ell}=1$ for any k, ℓ, m such that $m-k \geq 0$ and $n-2 k-\ell \geq 0$. Then, it is easy to show that $d_{\ell, k}(m)$ is obtained as a sum of multiples of k times " $m(m-1) / 2$ ", ℓ times " m ", and $n-k-\ell$ times 1 . Here, these double quotation means that these vary in accordance with the order of the operations. Indeed, the iteration relation (B.6) can be represented as a higher-dimensional analogue of Pascal's triangle as Figure 5. However, because we will calculate only the coefficient of leading term of $b_{m, n}^{n}$ as a polynomial of variable m, we may not take care of the orders. Then, the degree of $d_{\ell, k}(m)$ as a polynomial of variable m is equal to $2 k+\ell$. This means that the leading term of $b_{m, n}^{n}$ as a polynomial of variable m is equal to the sum of terms $d_{\ell, k}(m)$ for $2 k+\ell=n$. Moreover, by the fact $d_{\ell, k}(m) \geq 0$, we have

$$
b_{m, n}^{n}=\sum_{k=0}^{n / 2} \sum_{\ell=0}^{n} d_{\ell, k}(m) \geq \sum_{k=0}^{n / 2} d_{n-2 k, k}(m)=\left(\text { the leading term of } b_{m, n}^{n} \text { as a polynomial of variable } m\right. \text {). }
$$

We calculate a lower bound of the leading term. Then, the leading term of $d_{n-2 k, k}(m)$ as a polynomial of m can be written as

$$
d_{n-2 k, k}(m)=\binom{n}{k, k, n-2 k} \frac{1}{2^{k}} m^{n}+O\left(m^{n-1}\right),
$$

Figure 5: A higher dimensional analogue of Pascal's triangle representing the iteration relation (B.6).
where $\binom{n}{k_{1}, \ldots, k_{m}}$ for positive integers k_{1}, \ldots, k_{m} such that $n=k_{1}+\cdots+k_{m}$ is the multinomial coefficient defined by

$$
\begin{equation*}
\binom{n}{k_{1}, \ldots, k_{m}}=\frac{n!}{k_{1}!\cdots k_{m}!}=\binom{k_{1}}{k_{1}}\binom{k_{1}+k_{2}}{k_{2}} \cdots\binom{k_{1}+k_{2}+\cdots+k_{m}}{k_{m}} . \tag{B.7}
\end{equation*}
$$

Indeed, as mentioned before, $d_{n-2 k, k}(m)$ is obtained as a sum of multiples of k times of " $m(m-1) / 2$ ", $n-2 k$ times of " m ", and k times of 1 . Although the terms in the double quotations varies in accordance with the orders of the operations, the leading term is independent of the orders. Hence, the leading term of $d_{n-2 k, k}(m)$ is the sum of multiples of k times of $1 / 2, n-2 k$ times of 1 , and k times of 1 . The number of such multiples in the sum is same as $\binom{n}{k, k, n-2 k}$. Hence, we have

$$
d_{n-2 k, k}(m)=\binom{n}{k, k, n-2 k} \frac{1}{2^{k}} m^{n}+O\left(m^{n-1}\right)
$$

By the form of RHS of equation (B.7) and the estimate in (2.4), we have

$$
\begin{aligned}
\binom{n}{k, k, n-2 k} & =\binom{k}{k}\binom{2 k}{k}\binom{n}{n-2 k}=\binom{2 k}{k}\binom{n}{n-2 k} \\
& \geq \frac{2^{k H(1 / 2)}}{\sqrt{8 k(1-1 / 2)}} \frac{2^{n H((n-2 k) / n)}}{\sqrt{8 k(n-2 k)(1-(n-2 k) / n)}} \\
& =\frac{2^{2 k} 2^{n H((n-2 k) / n)}}{8 k \sqrt{(n-2 k) / n}}
\end{aligned}
$$

In the last inequality follows from $H(1 / 2)=1$.
We evaluate the coefficient of the leading term at $k=n / 4$. Then, we have

$$
d_{n / 2, n / 4}(m) \geq \frac{\left(2^{5 / 4}\right)^{n}}{n \sqrt{2}} m^{n}+O\left(m^{n-1}\right)
$$

In particular, the coefficient of leading term of $b_{m, n}^{n}$ is bounded from below by $\left(2^{5 / 4}\right)^{n} /(n \sqrt{2})$. This concludes the proof.

C Proof of Proposition 2

Proof of Proposition 2. Let $\lambda \in \Lambda, \boldsymbol{x} \in D_{\lambda}$ and $\phi \in \Phi$. We assume that ϕ satisfies (1) $\phi\left(D_{\lambda}\right)=D_{\lambda^{\prime}}$ and (2) $f_{\lambda}=\left.f_{\lambda} \circ \phi\right|_{D_{\lambda}}$. Then, we have

$$
\begin{align*}
f(\phi(\boldsymbol{x})) & =f_{\lambda^{\prime}}(\phi(\boldsymbol{x}))=\left(\left.f_{\lambda^{\prime}} \circ \phi\right|_{D_{\lambda}}\right)(\boldsymbol{x}) \\
& =f_{\lambda}(\boldsymbol{x})=f(\boldsymbol{x}) . \tag{C.1}
\end{align*}
$$

This equation holds for any \boldsymbol{x} and any $\phi \in \Phi$. Because $\phi \in \Phi$ is a Euclidean transformation, ϕ is an isomorphism. In particular, the inverse of ϕ exists. As for any $\boldsymbol{y} \in \mathbb{R}^{n}$, there is a \boldsymbol{x} such that $\boldsymbol{y}=\phi(\boldsymbol{x})$, by the equation (C.1), we have

$$
\begin{equation*}
f\left(\phi^{-1}(\boldsymbol{y})\right)=f(\boldsymbol{x})=f(\phi(\boldsymbol{x}))=f(\boldsymbol{y}) . \tag{C.2}
\end{equation*}
$$

Hence, f is invariant by the action of ϕ^{-1} for any $\phi \in \Phi$. Now, let $\widehat{\Phi}$ be the subgroup of the group of Euclidean transformations generated by Φ. This means that any element $\phi \in \widehat{\Phi}$ is a composition of finite elements of $\left\{\phi_{1}, \ldots, \phi_{t}, \phi_{1}^{-1}, \ldots, \phi_{t}^{-1}\right\}$. Hence, by combining this fact and equations (C.1) and (C.2), f is invariant by the action of the group $\widehat{\Phi}$.

References

Orlik, P. and Terao, H. (2013). Arrangements of hyperplanes, volume 300. Springer Science \& Business Media.

