A KNOWN RESULTS

Our proofs depend on the following result.
Lemma 9 (Lemma 11 of Abbasi-Yadkori et al. (2011)). Let $\left\{x_{t}\right\}_{t \in[T]}$ be any sequence such that $x_{t} \in \mathbb{R}^{d}$ and $\left\|x_{t}\right\|_{2} \leq L$ for all $t \in[T]$. Let V be a positive definite matrix and $V_{t}=V+\sum_{s \in[t]} x_{s} x_{s}^{\top}$. Then, we have

$$
\sum_{t \in[T]} \min \left(1,\left\|x_{t}\right\|_{V_{t-1}^{-1}}^{2}\right) \leq 2\left(d \log \left(\left(\operatorname{trace}(V)+L^{2} T\right) / d\right)-\log \operatorname{det}(V)\right)
$$

B MISSING PROOFS

B. 1 Proof of Lemma 1

Proof of Lemma 1. We fix $t \in[T]$ and $s \geq 1$ arbitrarily. For all $t^{\prime} \in \Psi_{t, s}$ we have $\left\|x_{t^{\prime}}\left(i_{t^{\prime}}\right)\right\|_{V_{t^{\prime}-1, s}^{-1}}>c^{-s}$ by definition of $i_{t^{\prime}}$. Thus, from $c>1$ and Lemma 9 , we obtain

$$
\begin{aligned}
\left|\Psi_{t, s}\right| c^{-2 s} & \leq \sum_{t^{\prime} \in \Psi_{t, s}} \min \left(1,\left\|x_{t^{\prime}}\left(i_{t^{\prime}}\right)\right\|_{V_{t^{\prime}-1, s}^{-1}}^{2}\right) \\
& \leq 2 d \log \left(1+L^{2}\left|\Psi_{t, s}\right| /(d \lambda)\right)
\end{aligned}
$$

B. 2 Proof of Lemma 3

To prove Lemma 3, we use the following concentration inequality.
Lemma 10. Let $\left\{\mathcal{F}_{t}\right\}_{t=1}^{\infty}$ be a filtration. Let $\left\{\eta_{t}\right\}_{t=1}^{\infty}$ be a real-valued stochastic process such that η_{t} is $\mathcal{F}_{t^{-}}$ measurable. Assume that η_{t} is conditionally R_{t}-sub-Gaussian for all t. Then, for any $t>0$ and $a>0$,

$$
\mathbb{P}\left(\sum_{s \in[t]} \eta_{s}>a\right) \leq \exp \left(-\frac{a^{2}}{2 \sum_{s \in[t]} R_{s}^{2}}\right)
$$

Proof. Using Markov's inequality, for any $\lambda>0$, we have

$$
\begin{aligned}
\mathbb{P}\left(\sum_{s \in[t]} \eta_{s}>a\right) & =\mathbb{P}\left(\exp \left(\lambda \sum_{s \in[t]} \eta_{s}>\exp (\lambda a)\right)\right) \\
& \leq \exp (-\lambda a) \mathbb{E}\left(\exp \left(\lambda \sum_{s \in[t]} \eta_{s}\right)\right)
\end{aligned}
$$

For the second term on the right-hand side, we have

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda \sum_{s \in[t]} \eta_{s}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[\exp \left(\lambda \sum_{s \in[t]} \eta_{s}\right) \mid \mathcal{F}_{t-1}\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\prod_{s \in[t]} \exp \left(\lambda \eta_{s}\right) \mid \mathcal{F}_{t-1}\right]\right]
\end{aligned}
$$

Since η_{s} is measurable with respect to \mathcal{F}_{t-1} for all $t>0$ and $s \in[t-1]$, we have

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{E}\left[\prod_{s \in[t]} \exp \left(\lambda \eta_{s}\right) \mid \mathcal{F}_{t-1}\right]\right] & =\mathbb{E}\left[\mathbb{E}\left[\exp \left(\lambda \eta_{t}\right) \mid \mathcal{F}_{t-1}\right] \prod_{s \in[t-1]} \exp \left(\lambda \eta_{s}\right)\right] \\
& \leq \exp \left(\lambda^{2} R_{t}^{2} / 2\right) \mathbb{E}\left[\prod_{s \in[t-1]} \exp \left(\lambda \eta_{s}\right)\right] \\
& \leq \exp \left(\lambda^{2} \sum_{s \in[t]} R_{s}^{2} / 2\right)
\end{aligned}
$$

Thus, we obtain

$$
\mathbb{P}\left(\sum_{s \in[t]} \eta_{s}>a\right) \leq \exp (-\lambda a) \exp \left(\lambda^{2} \sum_{s \in[t]} R_{s}^{2} / 2\right)
$$

Choosing $\lambda=a / \sum_{s \in[t]} R_{t}^{2}$, we have the desired result.

Proof of Lemma 3. Recall that $\tilde{\theta}_{t, s}=V_{t-1, s}^{-1} \sum_{\tau \in \Psi_{t, s}}\left(\theta^{\top} x_{\tau}\left(i_{\tau}\right)+\eta_{\tau}\right) x_{\tau}\left(i_{\tau}\right)$. We arbitrarily fix $s \in[S], t \in[T]$, and $i \in I_{t, s}$. From the definition of $\tilde{\theta}_{t, s}$, we have

$$
\begin{align*}
\left(\tilde{\theta}_{t, s}-\theta\right)^{\top} x_{t}(i) & =\left(V_{t-1, s}^{-1} \sum_{\tau \in \Psi_{t, s}}\left(\theta^{\top} x_{\tau}\left(i_{\tau}\right)+\eta_{\tau}\right) x_{\tau}\left(i_{\tau}\right)-\theta\right)^{\top} x_{t}(i) \\
& =x_{t}(i)^{\top} V_{t-1, s}^{-1} \sum_{\tau \in \Psi_{t, s}} \eta_{\tau} x_{\tau}\left(i_{\tau}\right)+x_{t}(i)^{\top} V_{t-1, s}^{-1}\left(\sum_{\tau \in \Psi_{t, s}} x_{\tau}\left(i_{\tau}\right) x_{\tau}\left(i_{\tau}\right)^{\top}-V_{t-1, s}^{-1}\right) \theta \\
& =x_{t}(i)^{\top} V_{t-1, s}^{-1} \sum_{\tau \in \Psi_{t, s}} \eta_{\tau} x_{\tau}\left(i_{\tau}\right)-\lambda x_{t}(i)^{\top} V_{t-1, s}^{-1} \theta . \tag{10}
\end{align*}
$$

Let $\alpha=R \sqrt{2 \log (2 / \delta)}$. For the first term on the right-hand side of (10), from Lemma 14 of Auer (2002) and Lemma 10, we have

$$
\begin{aligned}
& \mathbb{P}\left(\left|x_{t}(i)^{\top} V_{t-1, s}^{-1} \sum_{\tau \in \Psi_{t, s}} \eta_{\tau} x_{\tau}\left(i_{\tau}\right)\right|>\alpha\left\|x_{t}(i)\right\|_{V_{t-1, s}^{-1}}\right) \\
& =\mathbb{P}\left(\left|\sum_{\tau \in \Psi_{t, s}} x_{t}(i)^{\top} V_{t-1, s}^{-1} x_{\tau}\left(i_{\tau}\right) \eta_{\tau}\right|>\alpha\left\|x_{t}(i)\right\|_{V_{t-1, s}^{-1}}\right) \\
& \leq 2 \exp \left(-\frac{\alpha^{2}\left\|x_{t}(i)\right\|_{V_{t-1, s}^{-1}}^{2}}{2 R^{2} \sum_{\tau \in \Psi_{t, s}}\left(x_{t}(i)^{\top} V_{t-1, s}^{-1} x_{\tau}\left(i_{\tau}\right)\right)^{2}}\right) \\
& =2 \exp \left(-\frac{\alpha^{2}\left\|x_{t}(i)\right\|_{V_{t-1, s}^{-1}}^{2}}{2 R^{2} x_{t}(i)^{\top} V_{t-1, s}^{-1}\left(\sum_{\tau \in \Psi_{t, s}} x_{\tau}\left(i_{\tau}\right) x_{\tau}\left(i_{\tau}\right)^{\top}\right) V_{t-1, s}^{-1} x_{t}(i)^{\top}}\right) \\
& \leq 2 \exp \left(-\frac{\alpha^{2}}{2 R^{2}}\right) \\
& =\delta
\end{aligned}
$$

Thus, replacing δ with $\delta /(K S T)$, we have

$$
\left|x_{t}(i)^{\top} V_{t-1, s}^{-1} \sum_{\tau \in \Psi_{t, s}} \eta_{\tau} x_{\tau}\left(i_{\tau}\right)\right|<R \sqrt{2 \log (2 K S T / \delta)}\left\|x_{t}(i)\right\|_{V_{t-1, s}^{-1}}
$$

with probability at least $1-\delta /(K S T)$. For the second term on the right-hand side of (3), we have

$$
\begin{aligned}
\lambda x_{t}(i)^{\top} V_{t-1, s}^{-1} \theta & \leq \lambda\|\theta\|_{V_{t-1, s}^{-1}}\left\|x_{t}(i)\right\|_{V_{t-1, s}^{-1}} \\
& \leq \sqrt{\lambda}\|\theta\|_{2}\left\|x_{t}(i)\right\|_{V_{t-1, s}^{-1}} \\
& \leq \sqrt{\lambda} M\left\|x_{t}(i)\right\|_{V_{t-1, s}^{-1}}
\end{aligned}
$$

B. 3 Proof of Lemma 7

Proof of Lemma 7. We arbitrarily fix $t \in \Psi_{0}$ and $i \in I_{t, s_{t}}$. By the same line of calculation in the proof for Lemma 2, we obtain

$$
\begin{align*}
\left|\left(\hat{\theta}_{t, s}-\theta\right)^{\top} x_{t}(i)\right| & \leq\left|\left(V_{t-1, s_{t}}^{-1} \sum_{\tau \in \Psi_{0}} r_{\tau}\left(i_{\tau}\right) x_{\tau}\left(i_{\tau}\right)-\theta\right)^{\top} x_{t}(i)\right| \\
& \leq\left|\left(V_{t-1, s_{t}}^{-1} \sum_{\tau \in \Psi_{0}}\left(\theta^{\top} x_{\tau}\left(i_{\tau}\right)+\eta_{\tau}\right) x_{\tau}\left(i_{\tau}\right)-\theta\right)^{\top} x_{t}(i)\right| \tag{11}\\
& +\left|\left(V_{t-1, s_{t}}^{-1} \sum_{\tau \in \Psi_{0}} \varepsilon_{\tau}\left(i_{\tau}\right) x_{\tau}\left(i_{\tau}\right)\right)^{\top} x_{t}(i)\right| \tag{12}
\end{align*}
$$

Applying Lemma 3 to the term (11), we have

$$
\left|\left(V_{t-1, s_{t}}^{-1} \sum_{\tau \in \Psi_{0}}\left(\theta^{\top} x_{\tau}\left(i_{\tau}\right)+\eta_{\tau}\right) x_{\tau}\left(i_{\tau}\right)-\theta\right)^{\top} x_{t}(i)\right| \leq \beta_{t}(\delta)\left\|x_{t}(i)\right\|_{V_{t-1, s_{t}}^{-1}}
$$

with probability at least $1-\delta /(K S T)$. Taking the union bound over the rounds and arms, the above inequality holds with probability at least $1-\delta / S$ for all $t \in \Psi_{0}$ and $i \in I_{t, s_{t}}$. For the term (12), from the same line of calculation in the proof for Lemma 2, we have

$$
\left|\left(V_{t-1, s_{t}}^{-1} \sum_{\tau \in \Psi_{0}} \varepsilon_{\tau}\left(i_{\tau}\right) x_{\tau}\left(i_{\tau}\right)\right)^{\top} x_{t}(i)\right| \leq \varepsilon \sqrt{\left|\Psi_{0}\right| x_{t}(i)^{\top} V_{t-1, s_{t}}^{-1} x_{t}(i)}
$$

From the definition of Ψ_{0}, we have $\left\|x_{t}(i)\right\|_{V_{t-1, s_{t}}^{-1}} \leq \sqrt{d / T}$. Since $\left|\Psi_{0}\right| \leq T$, we have

$$
\varepsilon \sqrt{\left|\Psi_{0}\right| x_{t}(i)^{\top} V_{t-1, s_{t}}^{-1} x_{t}(i)} \leq \varepsilon \sqrt{d}
$$

B. 4 Proof of Lemma 8

Proof of Lemma 8. We arbitrarily fix $t \in \Psi_{0}$. From Assumption 2, we have

$$
\mu_{t}\left(i_{t, s_{t}}^{*}\right)-\mu_{t}\left(i_{t}\right) \leq \theta^{\top}\left(x_{t}\left(i_{t, s_{t}}^{*}\right)-x_{t}\left(i_{t}\right)\right)+2 \varepsilon
$$

Using Lemma 7, we have

$$
\theta^{\top}\left(x_{t}\left(i_{t, s_{t}}^{*}\right)-x_{t}\left(i_{t}\right)\right)+2 \varepsilon \leq \hat{\theta}_{t, s_{t}}^{\top} x_{t}\left(i_{t, s_{t}}^{*}\right)+\beta(\delta)\left\|x_{t}\left(i_{t, s_{t}}^{*}\right)\right\|_{V_{t-1, s_{t}}^{-1}}+\varepsilon \sqrt{d}-\theta^{\top} x_{t}\left(i_{t}\right)+2 \varepsilon
$$

From the fact that $i_{t} \in \operatorname{argmax}_{i \in I_{t, s_{t}}}\left(\hat{r}_{t, s}(i)+w_{t, s}(i)\right)$, we obtain

$$
\hat{\theta}_{t, s_{t}}^{\top} x_{t}\left(i_{t, s_{t}}^{*}\right)+\beta(\delta)\left\|x_{t}\left(i_{t, s_{t}}^{*}\right)\right\|_{V_{t-1, s_{t}}^{-1}} \leq \hat{\theta}_{t, s_{t}}^{\top} x_{t}\left(i_{t}\right)+\beta(\delta)\left\|x_{t}\left(i_{t}\right)\right\|_{V_{t-1, s_{t}}^{-1}}
$$

Since $\left\|x_{t}\left(i_{t}\right)\right\|_{V_{t-1, s_{t}}^{-1}} \leq \sqrt{d / T}$, we have

$$
\hat{\theta}_{t, s_{t}}^{\top} x_{t}\left(i_{t}\right)+\beta(\delta)\left\|x_{t}\left(i_{t}\right)\right\|_{V_{t-1, s_{t}}^{-1}} \leq \hat{\theta}_{t, s_{t}}^{\top} x_{t}\left(i_{t}\right)+\beta(\delta) \sqrt{d / T}
$$

Therefore, we obtain

$$
\begin{aligned}
& \hat{\theta}_{t, s_{t}}^{\top} x_{t}\left(i_{t, s_{t}}^{*}\right)+\beta(\delta)\left\|x_{t}\left(i_{t, s_{t}}^{*}\right)\right\|_{V_{t-1, s_{t}}^{-1}}+\varepsilon \sqrt{d}-\theta^{\top} x_{t}\left(i_{t}\right)+2 \varepsilon \\
& \leq\left(\hat{\theta}_{t, s_{t}}-\theta\right)^{\top} x_{t}\left(i_{t}\right)+\beta(\delta) \sqrt{d / T}+\varepsilon(2+\sqrt{d}) .
\end{aligned}
$$

Using Lemma 7 again, we have

$$
\left(\hat{\theta}_{t, s_{t}}-\theta\right)^{\top} x_{t}\left(i_{t}\right)+\beta(\delta) \sqrt{d / T}+\varepsilon(2+\sqrt{d}) \leq 2 \beta(\delta) \sqrt{d / T}+2 \varepsilon(1+\sqrt{d})
$$

