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Abstract

We investigate the misspecified linear con-
textual bandit (MLCB) problem, which is a
generalization of the linear contextual ban-
dit (LCB) problem. The MLCB problem is
a decision-making problem in which a learner
observes d-dimensional feature vectors, called
arms, chooses an arm from K arms, and then
obtains a reward from the chosen arm in each
round. The learner aims to maximize the
sum of the rewards over T rounds. In con-
trast to the LCB problem, the rewards in
the MLCB problem may not be represented
by a linear function in feature vectors; in-
stead, it is approximated by a linear func-
tion with additive approximation parameter
ε ≥ 0. In this paper, we propose an algorithm
that achieves Õ(

√
dT log(K)+ε

√
dT ) regret,

where Õ(·) ignores polylogarithmic factors in
d and T . This is the first algorithm that guar-
antees a high-probability regret bound for the
MLCB problem without knowledge of the ap-
proximation parameter ε.

1 INTRODUCTION

The linear contextual bandit (LCB) problem is a se-
quential decision-making problem in which a learner it-
erates the following process T times. First, the learner
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observes d-dimensional vectors called arms, where the
number of the arms is K. Each arm offers a reward
defined by a common linear function over the arms,
but the reward is not revealed to the learner at this
point. Then the learner chooses an arm. At the end,
the learner observes the reward of the chosen arm. The
learner aims to maximize the sum of the rewards. We
measure the performance of an algorithm by its re-
gret, which is the difference between the sum of the
rewards of the optimal choices and that of the algo-
rithm’s choices.

Over the last decade, the LCB problem has been
extensively studied both theoretically and practi-
cally (Abbasi-Yadkori et al., 2011; Agrawal and Goyal,
2013; Auer, 2002; Chapelle and Li, 2011; Chu et al.,
2011; Dani et al., 2008; Dimakopoulou et al., 2019;
Li et al., 2010). The LCB problem has several ad-
vantages over the multi-armed bandit (MAB) prob-
lem for real-world applications such as recommender
systems. First, the LCB problem enables feature vec-
tors (arms) to change in each round. This enables us to
model recommender systems where news articles may
frequently change (Li et al., 2010). Second,

√
K in the

regret bound of the MAB problem is replaced with√
d log(K) or d in that of the LCB problem. Since

K is often much larger than d in practice, the LCB
problem gives better performance.

The misspecified linear contextual bandit (MLCB)
problem has been studied in the recent years (Foster
and Rakhlin, 2020; Ghosh et al., 2017; Gopalan et al.,
2016; Lattimore et al., 2020). In this problem, there is
a possibility that the rewards are not represented by
any linear function in the feature vectors but approx-
imated by a linear function where the approximation
error is at most ε. Note that the MLCB problem when
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Table 1: Regret Bounds for MLCB Problem

Upper bound (known ε) Upper bound (unknown ε) Lower bound

Õ(d
√
T + ε

√
dT )

(Lattimore et al., 2020)

Õ(
√
dKT + ε

√
KT )

(Foster and Rakhlin, 2020)

Õ(
√
dT log(K) + ε

√
dT )

Õ(d
√
T + ε

√
dT )

(This work)

Ω(d
√
T )

(Lattimore and Szepesvári, 2020)

Ω(ε
√
d/ log(K) min(K,T ))

(Lattimore et al., 2020)

ε = 0 is identical to the LCB problem. The misspecifi-
cation (i.e., approximation error) enables us to formu-
late a more complicated reward function than a linear
function, e.g., a reward function which may change
over the rounds. Such cases usually appear in real-
world applications such as education, healthcare, and
recommender systems (Dimakopoulou et al., 2019).

The existing regret bounds for the MLCB problem
are summarized in Table 1. Here, Õ(·) ignores poly-
logarithmic factors in d and T . Lattimore et al.
(2020) designed a modified version of the LinUCB al-
gorithm which achieves Õ(d

√
T + ε

√
dT ) regret. Fos-

ter and Rakhlin (2020) proposed an algorithm for a
more general problem that requires an online opti-
mization oracle. Their algorithm achieves Õ(

√
dKT +

ε
√
KT ) regret for the MLCB problem when the

Vovk-Azoury-Warmuth forecaster (Azoury and War-
muth, 2001; Vovk, 1998) is chosen as the oracle.1

On the other hand, Lattimore et al. (2020) showed
Ω(ε
√
d/ log(K) min(K,T )) regret for the MLCB prob-

lem, based on the results of Du et al. (2020). This
means that the MLCB problem does not admit any
sub-linear regret with respect to T , in contrast to the
LCB problem.

Although these algorithms achieve near-optimal regret
bounds for the MLCB problem, they are based on the
assumption that we are given (an upper bound of) the
approximation parameter ε in advance. This assump-
tion is unavoidable in the algorithms; Lattimore et al.
(2020) use ε to compute confidence intervals, and Fos-
ter and Rakhlin (2020) define a distribution to sample
arms with ε. Thus, to apply the algorithms, we need
to estimate (an upper bound of) the approximation
parameter ε. In the real-world applications mentioned
above, however, it is difficult to compute the approx-
imation parameter ε. If we only obtain a loose upper
bound of ε, then the regret of their algorithms dete-
riorates. In particular, the algorithms cannot achieve
sub-linear regret when ε = 0 if we do not know the

1This result does not contradict the lower bound of
the LCB problem by Theorem 24.1 of Lattimore and
Szepesvári (2020) because the lower bound holds when K
is exponentially larger than d.

fact that ε = 0.

Our contribution is to propose the first algorithm for
the MLCB problem that achieves Õ(

√
dT log(K) +

ε
√
dT ) regret without knowledge of the approxima-

tion parameter ε. The proposed algorithm is based
on the SupLinUCB algorithm by Chu et al. (2011) for
the LCB problem. The SupLinUCB algorithm intro-
duces stages, which is used to reduce the set of arms
in a round.2 Specifically, as the stage progresses, the
algorithm discards arms whose estimated rewards, to-
gether with confidence intervals, are less than a certain
threshold. Our analysis reveals that the stages play an
important role in bounding the estimation errors on
the rewards without knowledge of the approximation
parameter ε. We can show that the SupLinUCB al-

gorithm achieves Õ

(√
d log2(K)T + ε

√
d log(K)T

)
regret. While the SupLinUCB algorithm achieves a
near-optimal regret, the second term depends on the
number of arms K, which is not optimal. To fill this
gap, we propose two techniques for the SupLinUCB
algorithm. One is to modify the conditions that de-
termine whether or not the stage proceeds. This im-
proves the bound of the estimation errors on the re-
wards. Specifically, the term with ε in the bound is
no longer dependent on K and becomes Õ(ε

√
d). The

other is to relax the threshold to reduce candidates for
the chosen arm. On the basis of the improved estima-
tion errors and the relaxed threshold, we show that a
near-optimal arm that suffers Õ(ε

√
d) regret remains

in the candidates during the stage progresses. This
leads to Õ(

√
dT log(K) + ε

√
dT ) regret in total. Note

that by choosing a different parameter in our algo-
rithm, it achieves Õ(d

√
T + ε

√
dT ) regret, which is

minimax optimal if ε = 0. In contrast to the exist-
ing algorithms, the proposed algorithm automatically
achieves the optimal regret if ε = 0, i.e., if a given
instance is an instance of the LCB problem.

Very recently, a number of studies have proposed al-
gorithms that achieve Õ(d

√
T + ε

√
dT ) regret for the

MLCB problem without knowing the approximation

2This technique was originally proposed by Auer (2002)
in the SupLinRel algorithm.
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parameter ε (Foster et al., 2020; Pacchiano et al.,
2020). We note that each algorithm deals with a
more general problem. Our results are obtained in-
dependently of these studies, and our techniques are
different, leading to a stronger regret bound for the
MLCB problem. Specifically, whereas they showed the
expected regret bounds with respect to the random-
ness in algorithms and the stochastic realization of the
rewards, we show the high-probability regret bounds.
Moreover, Pacchiano et al. (2020) assume that the sets
of feature vectors are i.i.d. and the learner knows an
upper bound of ε.

2 RELATED WORK

A special case of the MLCB problem is the non-
contextual version, i.e., when given feature vectors
are fixed over the rounds. Lattimore et al. (2020)
showed that the elimination algorithm (Lattimore and
Szepesvári, 2020) achieves Õ(

√
dT log(K)+ε

√
dT ) re-

gret without knowledge of the approximation param-
eter ε. The elimination algorithm, based on the ex-
perimental design technique, divides rounds into sev-
eral stages and reduces the number of candidate arms
to choose from as the stage progresses. In each stage,
the algorithm computes a near-optimal design over the
candidates and then chooses each arm in proportion
to the design. From the resulting choices in the stage,
the arms that seem sub-optimal are eliminated. The
choices heavily depend on the assumption that the fea-
ture vectors are fixed. We remark that SupLinUCB
and the proposed algorithms can be seen as a mod-
ification of the elimination algorithm to address the
general MLCB problem.

A few studies have investigated the conditions under
which sub-linear regret with respect to T is achievable
for the non-contextual MLCB problem. Gopalan et al.
(2016) showed that the OFUL algorithm (Abbasi-
Yadkori et al., 2011) still enjoys a sub-linear regret if
ε is very small. Ghosh et al. (2017) proposed an algo-
rithm that achieves Õ(d

√
T +
√
KT ) regret if ε is suffi-

ciently large and most of the rewards of the arms can-
not be represented by a common linear function. This
algorithm tests the linearity of the rewards and then
decides to use the OFUL algorithm or the UCB algo-
rithm for the MAB problem. Meanwhile, Ghosh et al.
(2017) showed that, for any algorithm that achieves
the optimal regret O(d

√
T ) for the LCB problem, an

instance of the non-contextual MLCB problem can be
constructed in which the algorithm suffers Ω(εT ) re-
gret.

An alternative approach to overcoming the limitation
of representing rewards by a linear function is the non-
linear contextual bandit problem. In this problem, al-

gorithms adaptively choose a policy, which is a map
from the feature vectors to an arm, from given set of
policies. Note that a reward function induces a policy
that chooses the arm with the largest reward. The
regret is defined as the difference between the sum
of the rewards of choices by the best policy among
given policies and that by the algorithms. Several
studies have proposed computationally efficient algo-
rithms that achieve sub-linear regret (Agarwal et al.,
2014; Dudik et al., 2011; Foster et al., 2018; Foster and
Rakhlin, 2020; Langford and Zhang, 2008). We note
that the regret can be sub-linear even when given poli-
cies are induced by linear functions, but this fact does
not contradicts to the lower bound by Lattimore et al.
(2020). Generally, in agnostic setting (Agarwal et al.,
2014; Dudik et al., 2011; Langford and Zhang, 2008),
the definition of regret of the non-linear contextual
bandit problem differs from that of the MLCB prob-
lem. These definitions coincide when the best policy
achieves the optimal choices which maximize the sum
of the rewards. Foster et al. (2018); Foster and Rakhlin
(2020) assume that there exists a policy whose reward
function can represent the true reward function.

3 PROBLEM SETTING

We formally define the MLCB problem. Let K denote
the number of given arms. Each arm is indexed by an
integer in [K] := {1, 2, . . . ,K}. The MLCB problem
consists of T rounds. The learner proceeds with each
round as follows. At the beginning of the t-th round,
the learner observes the set of arms {xt(i)}i∈[K] ⊆ Rd.
Then, the learner chooses an arm it ∈ [K]. At the end
of the round, the learner obtains reward rt(it), which
is defined as follows.

We assume that the reward rt(it) has the expected
value µt(i) = E [rt(i)] with R-sub-Gaussian noise.
That is, we assume the following.

Assumption 1 (R-sub-Gaussian noise). For all t ∈
[T ], ηt = rt(it) − µt(it) is conditionally R-sub-
Gaussian, i.e., for all λ ∈ R,

E [exp(ληt) | Ft] ≤ exp
(
λ2R2/2

)
,

where Ft = σ
(
{xs(is)}s∈[t], {ηs}s∈[t−1]

)
.

Furthermore, we suppose that the expected reward
µt(i) can be approximated by a linear function, where
the approximation error is at most ε.

Assumption 2 (misspecified linear model). There ex-
ist ε ≥ 0 and θ ∈ Rd such that for all t ∈ [T ] and
i ∈ [K],

µt(i) = θ>xt(i) + εt(i),

where |εt(i)| ≤ ε for all t ∈ [T ] and i ∈ [K].
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Note that when ε = 0 is identical to the assumption
in the LCB problem, and the unknown vector θ in
Assumption 2 is generally not unique.

We evaluate the performance of an algorithm by the
regret R(T ), which is defined as

R(T ) =
∑
t∈[T ]

(µt(i
∗
t )− µt(it)),

where i∗t ∈ argmaxi µt(i).

In addition, we define the following parameters of this
problem: (i) L > 0 such that ∀i ∈ [K] and ∀t ∈ [T ],
‖xt(i)‖2 ≤ L, (ii) M > 0 such that ‖θ‖2 ≤ M , and
(iii) B > 0 such that ∀i, j ∈ [K] and ∀t ∈ [T ], |µt(i)−
µt(j)| ≤ B.

4 PROPOSED ALGORITHM

In this section, we propose an algorithm that achieves
Õ(
√
dT log(K) + ε

√
dT ) regret when the approxima-

tion parameter ε is not given. The proposed algorithm
(Algorithm 1) is based on the SupLinUCB algorithm
(Chu et al., 2011) for the LCB problem. In each round
t ∈ [T ], our algorithm repeatedly reduces the set of
arms in each stage, until an arm is chosen from the
set. At the beginning of the s-th stage in round t, the
algorithm estimates the reward using r̂t,s(i) and its
confidence interval using wt,s(i) for each arm i ∈ It,s,
where It,s ⊆ [K] denotes the set of remaining arms
(lines 7–13). Here α is a parameter defined later, and

we denote ‖x‖V =
√
x>V x for any x ∈ Rd and any

positive definite matrix V ∈ Rd×d. Then, the algo-
rithm decides whether to proceed to the next stage
based on the confidence intervals wt,s(i) of the arms

i ∈ It,s. If all wt,s(i)’s are smaller than α
√
d/T , the

algorithm chooses the arm that has the largest upper
confidence bound of the estimated reward (line 15).
If wt,s(i)’s do not satisfy the condition above but are
smaller than αc−s, the algorithm proceeds to the next
stage. In the next stage, our algorithm keeps the arms
i ∈ It,s that satisfy the following threshold:

r̂t,s(i) + wt,s(i) ≥ max
i′∈It,s

(r̂t,s(i
′) + wt,s(i

′))− 2αc−s,

(1)

and discards the other arms (line 18). Note that since
the threshold in line 17 decreases exponentially as the
stage progresses, it follows from the threshold in line
14 that the number of stages in each round is at most
S := dlogc(T/d)/2e. If an arm i has confidence interval
wt,s(i) larger than αc−s, our algorithm chooses an arm
with a large confidence interval (line 21), and keeps the
current round t in the set Ψt,s (line 22). The chosen
arm it and the observed reward rt(it) of round t ∈ Ψt,s

Algorithm 1 Proposed algorithm (a modified version
of SupLinUCB (Chu et al., 2011))

Input: T > 0, λ > 0, α > 0, and c > 1.
1: Let S = dlogc(T/d)/2e.
2: Ψ1,s ← ∅ for s ∈ [S].
3: for t = 1, 2, . . . , T do
4: Observe {xt(i)}i∈[K].
5: s← 1 and It,1 ← [K].
6: repeat
7: Vt−1,s ← λI +

∑
τ∈Ψt,s

xτ (iτ )xτ (iτ )>.

8: bt−1,s ←
∑
τ∈Ψt,s

rτ (iτ )xτ (iτ ).

9: θ̂t,s ← V −1
t−1,sbt−1,s.

10: for i ∈ It,s do

11: r̂t,s(i)← θ̂>t,sxt(i).
12: wt,s(i)← α‖xt(i)‖V −1

t−1,s
.

13: end for
14: if wt,s(i) ≤ α

√
d/T for all i ∈ It,s then

15: it ∈ argmaxi∈It,s(r̂t,s(i) + wt,s(i)).
16: Ψt+1,s′ ← Ψt,s′ for all s′ ∈ [S].
17: else if wt,s(i) ≤ αc−s for all i ∈ It,s then
18: It,s+1 ← arms that satisfy (1).
19: s← s+ 1.
20: else
21: Choose it ∈ It,s s.t. wt,s(i) > αc−s.
22: Ψt+1,s ← Ψt,s ∪ {t}.
23: Ψt+1,s′ ← Ψt,s′ for all s′ ∈ [S] \ {s}.
24: end if
25: until an arm it is chosen.
26: Observe rt(it).
27: end for

will be used to compute r̂t′,s(i) and wt′,s(i) for each
arm i ∈ It′,s in stage s of the round t′ > t, whereas
the arm chosen in line 15 will not be used.

The crucial difference between the proposed and the
SupLinUCB algorithm is that our algorithm intro-
duces α in lines 14, 17, 18, and 21. In fact, our algo-
rithm coincides with the SupLinUCB algorithm if we
set α = 1 and c = 2 in those lines.3 Note that in this
case, the parameter α remains to define wt,s(i). The

difference improves the regret bound by a Θ̃(
√

log(K))
factor, as will be seen in the next section.

5 REGRET ANALYSIS

In this section, we show that the proposed algorithm
has Õ(

√
dT log(K) + ε

√
dT ) regret. We define β(δ) =

R
√

2 log(2KST/δ) +
√
λM .

Theorem 1. If α = β(δ), c − 1 = Θ(1), and λ =

3Strictly speaking, the RHS in line 14 is 1/
√
T in the

SupLinUCB algorithm, but this minor difference does not
affect the regret bound of Chu et al. (2011).
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R2M−2, then Algorithm 1 has the following regret
bound with probability 1− δ:

R(T ) = Õ
(
R
√
dT log(K) + ε

√
dT +Bd

)
,

where Õ(·) ignores the polylogarithmic factors in d and
T .

We remark that Theorem 1 holds for any pair of θ and
ε that satisfies Assumption 2, which means that the
regret bound in Theorem 1 is obtained for the smallest
ε that satisfies Assumption 2. In particular, we can
achieve a sub-linear regret when ε = 0, i.e., when a
given instance is that of the LCB problem, even if we
do not know this fact.

To prove Theorem 1, we first decompose the regret
based on ΨT+1,s’s. Let Ψ0 be the set of rounds that
succeeds to choose an arm with small confidence inter-
val (lines 14–16), i.e., Ψ0 = [T ] \

⋃
s∈[S] ΨT+1,s. Then

the regret can be decomposed as follows:

R(T ) = Rfirst(T ) +Rmain(T ) +Rconfident(T ),

where

Rfirst(T ) =
∑

t∈ΨT+1,1

(µt(i
∗
t )− µt(it)),

Rmain(T ) =

S∑
s=2

∑
t∈ΨT+1,s

(µt(i
∗
t )− µt(it)), and

Rconfident(T ) =
∑
t∈Ψ0

(µt(i
∗
t )− µt(it)).

In what follows, we bound each term.

The term Rfirst(T ) is the regret of the rounds when
the algorithm chooses an arm with a large confidence
interval in the first stage. We will show Rfirst(T ) =
Õ(d) in the next subsection by proving |ΨT+1,1| =

Õ(d) (Lemma 1).

The main part of the proof is to bound the term
Rmain(T ), as Rconfident(T ) can be bounded in a sim-
ilar way. As mentioned in the previous section, we
introduce α when we determine whether to proceed
to the next stage (lines 14, 17, and 21). This en-
ables us to bound the estimation error of r̂t,s(i) by

β(δ)‖xt(i)‖V −1
t−1,s

+ Õ(ε
√
d) (Lemma 2). On the ba-

sis of Lemma 2, with the threshold (1), we show that
our algorithm keeps a near-optimal arm that suffers
Õ(ε
√
d) regret as the stage progresses (Lemma 4).

This implies that the regret in a round is at most
5β(δ)‖xt(i)‖V −1

t−1,s
+ Õ(ε

√
d) (Lemma 6). Summing up

the regrets from all rounds, we obtain a desired re-
gret bound Õ(

√
dT log(K) + ε

√
dT ). The details of

our proof are given in the following subsections, and
additional proofs may be found in the appendix.

Before describing the details of our analysis, we com-
pare our analysis with that of Chu et al. (2011).
We may be able to perform the SupLinUCB algo-
rithm for the MLCB problem, but the regret bound
would be worse. Suppose that α = β(δ), simi-
larly to our algorithm. Since the SupLinUCB al-
gorithm does not use α in the thresholds of the
algorithm, we cannot use Lemma 1. Instead, we
use Lemma 6 from Chu et al. (2011), which implies
Rfirst(T ) = Õ(

√
dT log(K)2). Moreover, by using

the Lemma, the estimation error of r̂t,s(i) is bounded

by β(δ)‖xt(i)‖V −1
t−1,s

+ Õ(ε
√
d log(K)), which is worse

than that by Lemma 2. Therefore, the regret bound
in total will be Õ(

√
dT log(K)2 + ε

√
d log(K)T ).

5.1 Bound of Rfirst(T )

We bound the regret when an arm with large confi-
dence interval is chosen in the first stage. Since the re-
gret in a round is at most B, we can bound Rfirst(T )
by bounding the number of chosen arms in the first
stage.

Lemma 1. For all t ∈ [T ] and s ≥ 1, we have

|Ψt,s| ≤ 2c2sd log(1 + L2|Ψt,s|/(dλ)).

Using Lemma 1 and the assumption that c = Θ(1), we
obtain

Rfirst(T ) ≤ B|ΨT+1,1|
≤ 2c2Bd log(1 + L2|ΨT+1,1|/(dλ))

= O(Bd log(1 + L2T/(dλ)).

5.2 Bound of Rmain(T )

We bound Rmain(T ), which is the main part of our
regret analysis. We first show that the estimation error
of θ̂t,s is at most β(δ)‖xt(i)‖V −1

t−1,s
+Õ(ε

√
d). Let st be

the stage in which it is chosen for all t ∈ [T ]. Recall
that S = dlogc(T/d)/2e.
Lemma 2. For all δ ∈ (0, 1), with probability at least
1− δ(S−1)/S, for all t ∈ [T ], s ∈ [st−1], and i ∈ It,s,
we have

|(θ̂t,s − θ)>xt(i)|

≤ β(δ)‖xt(i)‖V −1
t−1,s

+ ε
√

2d log(1 + L2t/(dλ)). (2)

Our confidence bound relies on the following lemma.

Lemma 3. Let θ̃t,s = V −1
t−1,s

∑
τ∈Ψt,s

(θ>xτ (iτ ) +

ητ )xτ (iτ ) for all t ∈ [T ] and s ∈ [S]. For all δ ∈ (0, 1),
for any s ∈ [S], t ∈ [T ], and i ∈ It,s, with probability
at least 1− δ/(KST ), we have∣∣∣(θ̃t,s − θ)>xt(i)∣∣∣ ≤ β(δ)‖xt(i)‖V −1

t−1,s
.
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Proof of Lemma 2. We arbitrarily fix t ∈ [T ], s ∈ [st−
1], and i ∈ It,s. From the definition of θ̂t,s and bt,s, we
have

|(θ̂t,s − θ)>xt(i)|

=
∣∣∣(V −1

t−1,sbt−1,s − θ
)>
xt(i)

∣∣∣
=

∣∣∣∣∣∣∣
V −1

t−1,s

∑
τ∈Ψt,s

rτ (iτ )xτ (iτ )− θ

> xt(i)
∣∣∣∣∣∣∣ .

Then, from Assumption 2 and the definition of θ̃t,s, we
have ∣∣∣∣∣∣∣

V −1
t−1,s

∑
τ∈Ψt,s

rτ (iτ )xτ (iτ )− θ

> xt(i)
∣∣∣∣∣∣∣

≤
∣∣∣∣(θ̃t,s − θ)> xt(i)∣∣∣∣ (3)

+

∣∣∣∣∣∣∣
V −1

t−1,s

∑
τ∈Ψt,s

ετ (iτ )xτ (iτ )

> xt(i)
∣∣∣∣∣∣∣ . (4)

Applying Lemma 3 to the term (3), we have∣∣∣∣(θ̃t,s − θ)> xt(i)∣∣∣∣ ≤ β(δ)‖xt(i)‖V −1
t−1,s

with probability at least 1 − δ/(KST ). Taking the
union bound over rounds, stages, and arms, with prob-
ability at least 1− δ(S − 1)/S, the above bound holds
for all t ∈ [T ], s ∈ [st − 1], and i ∈ It,s. For the term
(4), from Assumption 2, we have∣∣∣∣∣∣∣

V −1
t−1,s

∑
τ∈Ψt,s

ετ (iτ )xτ (iτ )

> xt(i)
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
τ∈Ψt,s

ετ (iτ )xτ (iτ )>V −1
t−1,sxt(i)

∣∣∣∣∣∣
≤ ε

∑
τ∈Ψt,s

∣∣xτ (iτ )>V −1
t−1,sxt(i)

∣∣ .
Then, applying the Cauchy-Schwarz inequality, we
have

ε
∑
τ∈Ψt,s

∣∣xτ (iτ )>V −1
t−1,sxt(i)

∣∣
≤ ε
√
|Ψt,s|

∑
τ∈Ψt,s

(
xτ (iτ )>V −1

t−1,sxt(i)
)2

= ε
√
|Ψt,s|xt(i)>V −1

t−1,s(Vt−1,s − λI)V −1
t−1,sxt(i)

≤
√
|Ψt,s|xt(i)>V −1

t−1,sxt(i).

It follows from s < st that xt(i
′)>V −1

t−1,sxt(i
′) ≤ c−2s

for all i′ ∈ It,s. Thus, we obtain

ε
√
|Ψt,s|xt(i)>V −1

t−1,sxt(i) ≤ ε
√
|Ψt,s|c−2s.

Applying Lemma 1 to the above, we finish the proof.

It is worth mentioning that, if we construct an esti-
mator from all observations (i.e., an estimator with-
out producing stages) without knowledge of ε, then
the estimation error becomes larger due to the mis-
specification. When we consider an estimator with a
single stage, it seems hard to bound the term (4) by
Õ(ε
√
d) because |Ψt,1| = t−1 and it cannot show that

‖xt(it)‖2V −1
t−1,1

is Õ(d/t) for any t ∈ [T ] and any se-

quence {xt′(it′)}t′∈[t]. The instance in Appendix E
of Lattimore et al. (2020) shows that an estimator
that uses all observations has Ω(1) estimation error
after Θ(T ) rounds when d = O(1) and ε = Θ(T−1/4)
while βt‖xt(i)‖V −1

t−1,s
+ε
√
d = Õ(T−1/4) in that setting,

where βt = Õ(
√
d). We overcome this by introducing

stages.

For the special case of the MLCB problem when
given arms do not change over the rounds, Lattimore
et al. (2020) analyzed the elimination algorithm. They
showed that the dependence on ε in the estimation er-
rors is Õ(ε

√
d) without knowledge of ε. The key ingre-

dient of their proof is to control the number of rounds
and the confidence intervals in a stage so that they are
not too large (see Proposition 5.1 of Lattimore et al.
(2020) for details). One of our contributions is to de-
sign stages to have this property for the general MLCB
problem. Specifically, we define thresholds of confi-
dence intervals so that |ΨT+1,s|‖xt(i)‖2V −1

t−1,s

= Õ(d),

where |ΨT+1,s| corresponds to the number of rounds
in a stage of the elimination algorithm. Thus, our algo-
rithm can be seen as a modification of the elimination
algorithm for the MLCB problem.

Before proceeding with our analysis, we define the
probabilistic event that we use in our proofs.

Definition 1. We define Et as the event where the
estimation error can be bounded as in Lemma 2, i.e.,

Et = {∀s ∈ [st − 1],∀i ∈ It,s, (2) holds.} .

We next show that, due to our threshold (1) and
Lemma 2, a near-optimal arm i such that µt(i

∗
t ) −

µt(i) = Õ(ε
√
d) remains in It,s for all t ∈ [T ] and

s ∈ [st]. This is in contrast to the SupLinUCB al-
gorithm, which guarantees that i∗t ∈ It,s for the LCB
problem. Let i∗t,s ∈ argmaxi∈It,s µt(i) for all t ∈ [T ]
and s ≤ st.
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Lemma 4. For all t ∈ [T ], under the event Et, we
have

µt(i
∗
t )− µt(i∗t,s)

≤ 2ε(1 +
√

2d log(1 + L2t/(dλ)))(s− 1)

for all s ∈ [st].

Proof. We prove this lemma by induction. We fix t ∈
[T ] arbitrarily. For s = 1, since i∗t = i∗t,1, we have the
bound. Assume that the bound holds in a stage s < st.
It is sufficient to show that µt(i

∗
t,s)−µt(i∗t,s+1) ≤ 2ε(1+√

2d log(1 + L2t/(dλ))). If i∗t,s = i∗t,s+1, the desired
bound holds. Hence, we assume that i∗t,s /∈ It,s+1. Let

ît,s ∈ argmaxi∈It,s(r̂t,s(i)+wt,s(i)). From the fact that

ît,s ∈ It,s+1 and Assumption 2, we have

µt(i
∗
t,s)− µt(i∗t,s+1) ≤ µt(i∗t,s)− µt(̂it,s)

≤ θ>(xt(i
∗
t,s)− xt(̂it,s)) + 2ε.

(5)

Then, from the definition of Et, we obtain

θ>(xt(i
∗
t,s)− xt(̂it,s))

≤ r̂t,s(i∗t,s) + wt,s(i
∗
t,s)− (r̂t,s(̂it,s)− wt,s(̂it,s))

+ 2ε
√

2d log(1 + L2t/(dλ))

= r̂t,s(i
∗
t,s) + wt,s(i

∗
t,s)− (r̂t,s(̂it,s) + wt,s(̂it,s))

+ 2wt,s(̂it,s) + 2ε
√

2d log(1 + L2t/(dλ)).

Since s < st, we have wt,s(it,s) ≤ β(δ)c−s for all i ∈
It,s. Thus, from the assumption that i∗t,s /∈ It,s+1 and
the threshold (1), we have

2wt,s(̂it,s)

≤ 2β(δ)c−s

< r̂t,s(̂it,s) + wt,s(̂it,s)− (r̂t,s(i
∗
t,s) + wt,s(i

∗
t,s))

and we can obtain

θ>(xt(i
∗
t,s)− xt(̂it,s)) ≤ 2ε

√
2d log(1 + L2t/(dλ)).

Substituting this into (5) completes the proof.

In the following lemma, using the threshold (1) and
Lemma 2 again, we show that the largest difference
of the arms’ rewards in the set It,s is Õ(c−s)β(δ) +

Õ(ε
√
d) for stages such that s ≥ 2.

Lemma 5. For all t ∈ [T ], under the event Et, we
have

θ>(xt(i
∗
t,s)− xt(i))

≤ 5β(δ)c1−s + 2ε
√

2d log(1 + L2t/(dλ))

for all s such that 2 ≤ s ≤ st and i ∈ It,s.

Proof. We fix t ∈ [T ], s such that 2 ≤ s ≤ st, and
i ∈ It,s arbitrarily. From the definition of It,s, we have

r̂t,s−1(i∗t,s) + wt,s−1(i∗t,s)− (r̂t,s−1(i) + wt,s−1(i))

≤ 2β(δ)c1−s.

Since s− 1 < st, we have 0 ≤ wt,s−1(i) ≤ β(δ)c1−s for
all i ∈ It,s−1. Thus, we have

θ̂>t,s−1(xt(i
∗
t,s)− xt(i))

≤ (wt,s−1(i)− wt,s−1(i∗t,s)) + 2β(δ)c1−s

≤ 3β(δ)c1−s.

Then, from the definition of Et, we have

3β(δ)c1−s ≥ θ̂>t,s−1(xt(i
∗
t,s)− xt(i))

≥ θ>(xt(i
∗
t,s)− xt(i))

− β(δ)(‖xt(i∗t,s)‖V −1
t,s−1

+ ‖xt(i)‖V −1
t,s−1

)

− 2ε
√

2d log(1 + L2t/(dλ)).

Since ‖xt(i′)‖V −1
t,s−1

≤ c1−s for all i′ ∈ It,s, we obtain

the desired result.

Combining Lemma 4 and Lemma 5, we can obtain an
upper bound of the regret in a round.

Lemma 6. For all t ∈ [T ] such that st ≥ 2, under the
event Et, we have

µt(i
∗
t )− µt(i)

≤ 5β(δ)c1−st + 2ε(1 +
√

2d log(1 + L2t/(dλ)))st

for all i ∈ It,st .

Proof. We arbitrarily fix t ∈ [T ] such that st ≥ 2 and
i ∈ Ist . It follows from Assumption 2 and Lemma 5
that

µt(i) ≥ θ>xt(i)− ε
≥ θ>xt(i∗t,st)− 5β(δ)c1−st

− 2ε
√

2d log(1 + L2t/(dλ))− ε
≥ µt(i∗t,st)− 5β(δ)c1−st

− 2ε(1 +
√

2d log(1 + L2t/(dλ))).

From Lemma 4, we obtain

µt(i
∗
t,st)− 5β(δ)c1−st

− 2ε(1 +
√

2d log(1 + L2t/(dλ)))

≥ µt(i∗t )− 5β(δ)c1−st

− 2ε(1 +
√

2d log(1 + L2t/(dλ)))st.
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We can now bound Rmain(T ). Let E =
⋃
t∈[T ]Et.

From Lemma 2, we have P(E) ≥ 1− δ(S−1)/S. Con-
ditioned on the event E, from Lemma 6, we have

S∑
s=2

∑
t∈ΨT+1,s

(µt(i
∗
t )− µt(it))

≤
S∑
s=2

5β(δ)c1−s|ΨT+1,s| (6)

+

S∑
s=2

2ε(1 + 2
√
d log(1 + L2T/(dλ)))s|ΨT+1,s|. (7)

We bound the term (6). From Lemma 1, we have

|ΨT+1,s| ≤
√

2csd log(1 + L2T/(dλ))|ΨT+1,s|.

Applying this to the term (6), we have

S∑
s=2

5β(δ)c1−s|ΨT+1,s|

≤ 5β(δ)c
√

2d log(1 + L2T/(dλ))

S∑
s=2

√
|ΨT+1,s|.

Using the Cauchy-Schwarz inequality, we have

S∑
s=2

√
|ΨT+1,s| ≤

√√√√S

S∑
s=2

|ΨT+1,s|

≤
√
ST .

Recall that S = dlogc(T/d)/2e and β(δ) =
Õ(R

√
log(K)). From the assumption c − 1 = Θ(1),

there exists a universal constant C > 0 such that
1
2 logc(T/d) ≤ C log(T/d). This implies that S =
O(log(T )). Thus, we have

S∑
s=2

5β(δ)c1−s|ΨT+1,s| = Õ(R
√
dT log(K)).

Furthermore, from the fact that
∑
s∈[S] |ΨT+1,s| ≤ T ,

we have that the term (7) is Õ
(
ε
√
dT
)

. Hence, we

obtain

Rmain(T ) = Õ
(
R
√
dT log(K) + ε

√
dT
)

with probability at least 1− δ(S − 1)/S.

5.3 Bound of Rconfident(T )

Lastly, we boundRconfident(T ). We first show an anal-
ogy of Lemma 2. We can prove this lemma in a similar
way to the proof for Lemma 2.

Lemma 7. We have

|(θ̂t,st − θ)>xt(i)| ≤ β(δ)‖xt(i)‖V −1
t−1,st

+ ε
√
d

for all t ∈ Ψ0 and i ∈ It,st , with probability at least
1− δ/S.

Using Lemma 7, we obtain an analogy of Lemma 5.

Lemma 8. We have

µt(i
∗
t,st)− µt(it) ≤ 2β(δ)

√
d/T + 2ε(1 +

√
d)

for all t ∈ Ψ0, with probability at least 1− δ/S.

We now bound Rconfident(T ). We can decompose
Rconfident(T ) as follows:

Rconfident(T ) =
∑
t∈Ψ0

(µt(i
∗
t )− µt(i∗t,st)) (8)

+
∑
t∈Ψ0

(µt(i
∗
t,st)− µt(it)). (9)

Since |Ψ0| ≤ T , by applying Lemma 4 and Lemma 8
to (8) and (9), respectively, we obtain

Rconfident(T ) = Õ
(
R
√
dT + ε

√
dT
)

with probability at least 1− δ/S.

6 CONCLUSION

We proposed the first parameter-free algorithm that
achieves Õ(

√
dT log(K)+ε

√
dT ) regret for the MLCB

problem. Similar to the SupLinUCB algorithm, the
proposed algorithm reduces the set of arms as the stage
progresses. By introducing the parameter α to the
conditions that determine the arms in each stage, we
improved the Θ̃(

√
log(K)) factor from the regret of

the SupLinUCB algorithm. More precisely, we showed
that our algorithm keeps a near-optimal arm that suf-
fers Õ(ε

√
d) regret in any stage, and thus the total

regret bound is Õ(
√
dT log(K) + ε

√
dT ).

We note that our analysis of the proposed algo-
rithm with a different parameter α gives an alterna-
tive regret bound. Specifically, when we adopt α =

R

√
d log

(
1+STL2/λ

δ

)
+
√
λM , our algorithm achieves

Õ(d
√
T + ε

√
dT ) regret, which is optimal if ε = 0. To

prove this bound, we use Theorem 2 in Abbasi-Yadkori
et al. (2011) for each stage instead of Lemma 3 and
follow the same line of the proof of Theorem 1. The-
orem 1 matches the result when K is exponentially
larger than d.
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