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6 Proof for Lemma 1

Proof. Let us first fix an arbitrary action set Aa ◆ Ad, and a rational decision rule f . We must have that the
agent’s utility is at least Va(f |Ad), that is, any action (P, c) the agent would chose under the decision rule f must
satisfy:

EP[f(x)] � EP[f(x)]� c = Va(f |Aa) � Va(f |Ad).

Thus, the decision maker’s utility Vd(f |Aa) = EP[h(x)] is at the least the minimum given by the (4). This implies
the following guarantee of worst-case utility Vd(f):

Vd(f) � min

P2�(X )
EP[h(x)] s.t. EP[f(x)] � Va(f |Ad). (17)

We now show that (17) is tight. Let supp(P) denote the support of distribution P. Let P0 be a distribution
attaining the minimum in (4) and also satisfying the constraint. We consider following two cases:
Case 1: supp(P0) 6⇢ arg max

x

f(x). Then let P1 be a distribution which achieves a higher value of EP[f(x)].
Let P0 be a mixture distribution P0

= (1 � ✏)P0 + ✏P1, with a small positive ✏. Then we have EP0
[f(x)] =

(1� ✏)EP0 [f(x)] + ✏EP1 [f(x)] > EP0 [f(x)]. Now take A0
a = Ad [ {(P0

, 0)}, then the agent’s unique optimal action
under A0

a is (P0
, 0). This brings the decision maker with utility of Vd(f |A0

a) = (1� ✏)EP0 [h(x)] + ✏EP1 [h(x)]. Since
Vd(f |A0

a) � Vd(f), we further have

Vd(f)  Vd(f |A0
a) = (1� ✏)EP0 [h(x)] + ✏EP1 [h(x)]. (18)

When ✏! 0, the RHS in (18) will converge to EP0 [h(x)].This implies Vd(f)  EP0 [h(x)] when ✏! 0. Recall our
definition of P0, and together with the lower bound we have shown for Vd(f) in (17), we can conclude our results
in (4) for this case.

Case 2: supp(P0) ⇢ arg max

x

f(x). For this case, we discuss following two situations.
(i): EP0 [f(x)] > Va(f |Ad), we now consider action set A0

a = Ad [ {(P0, 0)}. Since EP0 [f(x)] > Va(f |Ad), then the
agent will uniquely chose action (P0, 0) for f under the action set A0

a. This brings the decision maker with the
utility of Vd(f |A0

a) = EP0 [h(x)]. Again, with the fact that Vd(f |A0
a) � Vd(f) and the definition of P0, we have

now proved (4).
(ii): EP0 [f(x)] = Va(f |Ad) = max f(x), this situation can only be satisfied when Ad contains some action of the
form (P0

, 0) with supp(P0
) ⇢ arg max f(x). Thus, we define

G := {(P0
, 0) 2 Ad : supp(P0

) ⇢ arg max f(x)} 6= ;.

Then, under action set Ad, the agent will choose an action in G which would benefit decision maker (according to
the tie-breaking assumption, when there are multiple optimal actions for agent, agent will choose the one which
maximizes decision maker’s utility.), leading the decision maker’s utility Vd(f |Ad) = max(P,0)2G EP[h(x)] � Vd(f).
In this scenario, the unique optimal action for the agent under any action set A ◆ Ad is some (P, 0) 2 G. However,
the agent would stick to the same action even under zero decision rule (recall our tie-breaking assumption),
leading the decision maker’s utility Vd(0|A) = max(P,0)2G EP[h(x)] = Vd(0). This implies Vd(0) � Vd(f), which
contradicts our rationality assumption.
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Now we establish the equality claims. Without loss of generality, we may assume the agent has a costless action
(�

x

, 0) in Ad where h(x) = 0.4 Recall that we have EP0 [h(x)] = Vd(f) > Vd(0) > 0 by our assumption on
P0 and DM’s rationality. If we have EP0 [f(x)] > Va(f |Ad) strictly, then replace P0 by a mixture distribution
P0

= (1 � ✏)P0 + ✏�

x

for small ✏. Consider A0
a = Ad [ {(P0

, 0)}, then the agent’s utility by taking the action
(P0

, 0) is given by Va(f |A0
a) = (1� ✏)EP0 [f(x)] + ✏f(x), then one can always find a small ✏ such that Va(f |A0

a)

is strictly larger than Va(f |Ad). As a result, this brings the decision maker with a utility of Vd(f |A0
a) =

(1 � ✏)EP0 [h(x)] + ✏h(x) = (1 � ✏)EP0 [h(x)]. Since Vd(f |A0
a) � Vd(f), given any positive ✏, this implies that

Vd(f)  (1�✏)EP0 [h(x)] < EP0 [h(x)], which contradicts the minimality of P0. Thus we have EP0 [f(x)] = Va(f |Ad).
Finally, if P0 2 arg maxP2�(X ) EP[f(x)], and EP0 [f(x)] = Va(f |Ad), then we have (5).

After finishing the proof, we would like to give following explanation on our construction of worst-case action set
in the proof.

Remark 1. The above proof relies on a construction of agent’s worst case action set by adding an arbitrary
action of the form (P, 0). It may seem unrealistic to allow the agent to arbitrarily manipulate himself at zero cost.
However, we note that the zero cost is not a substantive assumption: the logic can be carried over to more realistic
models that can explicitly incorporate the effort costs as a function of expected manipulated feature. Then the
equivalent step consists of adding an action to the action set that produces P at the lowest allowable cost.

7 Proof for Lemma 2

Proof. Our proof structure is similar to Carroll (2015), with the key difference on how to define the two disjoint
convex sets. Suppose that the convex hull of X is a full-dimensional set in Rn. Now fix any nonlinear decision
rule f , our proof will hinge on the discussion of two cases we have shown in Lemma 1.

Case 1. We first define

t(x) = max{Va(f |Ad), h(x) + f(x)� Vd(f)}.

Now we define two sets in Rn+1
= Rn ⇥ R: Let S be the convex hull

of all pairs (x, f(x)), for x 2 X , let T be the convex hull of all pairs
(x, z) that x lies in the convex hull of X , and z > t(x). We note that T
is then a convex set. A graph illustration of our proof is presented in
Figure 3.
We now claim that S and T are disjoint. To see this, suppose S and
T are not disjoint, then there exists a distribution P 2 �(X ) such that
EP[f(x)] > EP[t(x)]. In particular, we have

EP[f(x)] > Va(f |Ad),

and also

EP[f(x)] > EP[h(x)] + EP[f(x)]� Vd(f)

) Vd(f) > EP[h(x)].

This is a direct contradiction to our statement of (4) in Lemma 1.

x
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Figure 3: Illustrate S and T when
n = 1. The blue line is f(x) and its as-
sociated convex hull in blue shaded re-
gion (the top blue triangle is the set �).
Black line is t(x). The black shaded
region is the convex hull for all points
(x, z) where z > t(x). The red line is
the hyperplane to separate S and T .

The disjointness and convexity of S and T enable us to apply the separating hyperplane theorem: There exists a

4
This assumption is merely an additive normalization of the decision maker’s utility and it can be relaxed to a more

general scenario where our reulsts still hold (see our discussion at the end of the Appendix 7). Earlier works also make

similar assumption (Carroll, 2015; Dütting et al., 2019): The agent can always exert no effort, namely, the zero-cost action,

to produce a minimum output (denote by 0); this corresponds to assuming (�0, 0) 2 Ad.
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vector � = (�1, . . . , �n) and constants µ, v such that
X

i

�ixi + µz  v, 8(x, z) 2 S (19)

X

i

�ixi + µz � v, 8(x, z) 2 T (20)

and � is a non-zero vector. Note that (19) and (20) implies µ � 0. To see this, fix a point x 2 X , then for
(x, z) 2 S and (x, z

0
) 2 T we have

X

i

�ixi + µz

0 �
X

i

�ixi + µz ) µz

0 � µz,

by earlier argument on the disjointness of S and T , we can conclude that µ � 0. We now also show that µ is
a positive constant. Suppose µ = 0, then (19) gives

P
i �ixi  v and (20) gives

P
i �ixi � v, which leads toP

i �ixi = v. Since not all �i are zero, this contradicts the full-dimensionality of X .

Now we can rewrite (19) as following

f(x) 
v �

P
i �ixi

µ

, 8x 2 X .

This motivates us to define following linear decision rule

f

0
(x) =

v �
P

i �ixi

µ

, 8x 2 X . (21)

Note that we have f

0
(x) � f(x) pointwise.

Now we are ready to check that Vd(f
0
) � Vd(f). Let (P0, c0) be the action that the agent would like to choose

under f and action set Ad. Consider any action set Aa ◆ Ad, as we have shown before, we must have

Va(f

0|Aa) � Va(f

0|Ad) � Va(f |Ad). (22)

Let (P, c) be the action that the agent chooses under f

0 and action set Aa. Then (20) implies

EP[t(x)] �
v �

P
i �iEP[xi]

µ

= EP[f
0
(x)] (23)

= Va(f

0|Aa) + c

� Va(f

0|Aa) (c 2 R+)
� Va(f |Ad). (by (22))

It is worthy noting that if above inequality is strict, then according to our definition of t(x), we must have

EP[t(x)] = EP[h(x)] + EP[f(x)]� Vd(f). (24)

So we have

Vd(f
0|Aa) = EP[h(x)] = EP[t(x)]� EP[f(x)] + Vd(f)

� EP[t(x)]� EP[f
0
(x)] + Vd(f) (by definition of f

0)
� Vd(f). (by 23)

On the other hand, if EP[t(x)] = Va(f |Ad). This implies all the inequalities in the stacked chain above are
equalities. In particular, we will have

Va(f

0|Aa) = Va(f

0|Ad) = Va(f |Ad).

Since the agent now does at least as well as Va(f |Ad) by taking action (P0, c0), this action is in his choice set
under f

0 and Aa, as a result, the decision maker gets at least the corresponding utility: Vd(f
0|Aa) � EP0 [h(x)] =
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Vd(f |Ad) � Vd(f), where the first inequality is due to the tie-breaking assumption of the agent (when there are
multiple maximizers, the agent will chose the most beneficial one for the decision maker).

Thus, in either case, we have Vd(f
0|Aa) � Vd(f), this holds for any Aa ◆ Ad, thus we have Vd(f

0
) � Vd(f).

Case 2. In this case, we define S to be the convex hull of all pairs (x, f(x)), and T to be the set of all (x, z) with
x in the convex hull of X and z > Va(f |Ad). We still claim both of S and T are convex, and disjoint: otherwise,
there exists P such that

EP[f(x)] > Va(f |Ad).

This contradicts our statement (5) in Lemma 1. Using the same arguments as in case 1, we find a vector
� = (�1, . . . , �n) and constants µ, v such that (19) and (20) hold, and we can still guarantee that µ > 0. Again,
we define a linear decision rule f

0 by (21); from (19) we know that f

0 � f pointwise. Consider the agent’s behavior
under decision rule f

0, for any action (P, c) chosen by the agent under any possible action set, we have

EP[f
0
(x)]� c = f

0
(EP[x])� c  Va(f |Ad). (by (20))

This means that the agent cannot earn a higher expected utility than Va(f |Ad). On the other hand, the agent
can always earn at least this much, since Va(f

0|Aa) � Va(f

0|Ad) � Va(f |Ad). This means we have equality
Va(f

0|Aa) = Va(f

0|Ad) = Va(f |Ad). From here, the argument finishes just as at the end of case 1, and we have
Vd(f

0
) � Vd(f).

Extensions: General cost lower bounds As mentioned in Remark 1, our analysis relies on the construction
of worst case action sets, using actions, that produce an undesirable distribution P, at costs of zero. This
zero-cost action assumption (together with the assumption in Footnote 6) is not substantial and one natural
relaxation is that the decision maker knows a lower bound on the cost of any available actions, or of producing
any given level of expected output. Our analysis and results will go through for this scenario. Specifically,
suppose the known lower bound cost is denoted by c > 0, then our Lemma 1 can be accordingly changed to:
Vd(f) = minP2�(X ) EP[h(x)], s.t. EP[f(x)] � c � Va(f |Ad) or maxP2�(X ) EP[f(x)] � c = Va(f |Ad). To get the
analogous result in Lemma 2, one can change the function t(x) as t(x) = max{Va(f |Ad)+ c, h(x)+ f(x)�Vd(f)},
then all the analysis can be carried over here.

8 Proof for Lemma 3

Proof. We prove Theorem 1 via showing the existence of an optimum within the class of linear decision rules,
and this decision rule will then be optimal among all decision rules. Note that for any rational decision rule
f(x), the value of f(x) that it assigns to x is bounded within (0,

¯

C]. Let a linear decision rule be the form
of f(!,�)(x) = !>

x + �. Then it suffices to show that the guaranteed worst-case utility Vd(f) is an upper
semi-continuous function of (!, �) 2 Glin. Now fix a sequence (!1

, �

1
), (!2

, �

2
), . . . in Glin converging to some

(!1
, �

1
) in Glin. Then it suffices to show that Vd(f(!1,�1)) � lim supk Vd(f(!k,�k)). To prove this, first note

that by replacing the sequence ((!k
, �

k
)) with a subsequence along which Vd(f((!k

, �

k
))) converges to its lim

sup on the original sequence, thus, we can assume that Vd(f(!k,�k)) converges to lim supk Vd(f(!k,�k)). Now for
any action set Aa, and let (Pk

, c

k
) be the agent’s chosen action under Aa and the decision rule f(!k,�k). Then

if necessary, by extracting a further subsequence, we can assume that the sequence (Pk
, c

k
) converges to some

(P1
, c

1
) 2 Aa. Since the agents’ utility are continuous in (!, �), then (P1

, c

1
) is an optimal action for the

agent under f(!1,�1), and its utility to the decision maker is the limit of the corresponding utility of (Pk
, c

k
)

under f(!k,�k). We thus have

Vd(f(!1,�1)|Aa) � EP1
[h(x)] = lim

k
EPk [h(x)] = lim

k
Vd(f(!k,�k)|Aa) � lim

k
Vd(f(!k,�k)).

Since Aa ◆ Ad is arbitrary, then we have Vd(f(!1,�1)) � limk Vd(f(!k,�k)).

9 Missing Table in Section 3.4

Given the student’s efforts e invested to each action, we can enumerate all possible induced distributions over X
in Ad and Aa (see Table 1). Note that since the student can now also invest efforts to action a0, Aa contains
more availabilities compared to Ad.
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x = (x1, x2) P in Ad P in Aa

Pr(x = (1, 1)) e1p
2

(e1p + (p� ✏)e0)(p + ✏e0)

Pr(x = (1, 0)) e1p(1� p) (e1p + (p� ✏)e0)(1� p� ✏e0)

Pr(x = (0, 1)) (1� e1p)p (1� e1p� (p� ✏)e0)(p + ✏e0)

Pr(x = (0, 0)) (1� e1p)(1� p) (1� e1p� (p� ✏)e0)(1� p� ✏e0)

Table 1: All possible distributions P in Ad and Aa induced by student’s effort e = (e0, e1, 1� e0 � e1). e1, e0 are
the efforts decided by the student for actions a1 and a0, and e1 + e0 2 [0, 1].

10 Missing proof and the Algorithm for Theorem 2

Algorithm 1 Find the optimal robust decision rule

1: Input: Decision maker’s knowledge Ad, linear decision space Glin, objective function h.
2: Initial f

⇤ 2 Glin arbitrarily and Vd(f
⇤
) = 0.

3: for every (!, �) 2 Glin do
4: Let (P0, c0) 2 arg max(P,c)2Ad

EP
⇥
!>

x + �

⇤
� c;

5: Solve the set P =

�
P : !>

(EP0 [x]� EP[x]) = c0,P 2 �(X )

 
;

6: Compute Vd

�
f(!,�)

�
= minP2P EP[h(x)];

7: if Vd

�
f(!,�)

�
> Vd(f

⇤
) then

8: f

⇤  !>
x + �.

9: end if
10: end for
11: Output Robust optimal decision: f

⇤.

Proof. According Lemma 1, given f(!,�), for any distribution P attaining the minimum in (4), we know that the
inequality in � must bind at P. Let (P!, c!) 2 Ad be the solution to the constraint in SO. Then we can compute
f

⇤ by solving:

arg max

(!,�)2Glin
min

P2P
EP[h(x)], (R-SO)

s.t. P =

�
P0

: EP0
[f(!,�)(x)] = !>EP! [x]� c! = C!,P0 2 �(X )

 
, (25)

where we refer to the set P, as the worst-action set, since we choose the worst action among it to minimize
the expected utility EP[h(x)]. Different from the problem in SO, after identifying the agent’s best response
(P!, c!) 2 Ad under f(!,�), our problem in R-SO first turns to characterizing a worst-action set P. Then
the searching of f

⇤ will hinge on maximizing EP[h(x)] in each P over Glin. This implies that to make our
problem tractable, one may first need to guarantee the corresponding strategic decision-making problem tractable.
Furthermore, given a linear f(!,�), the additional computational complexity in R-SO is due to the robustness
concern in minimizing EP[h(x)] over set P. It is easy to see that this is a linear programming with equality
constraint, where the decision variables are a probability simplex over X .

min

P2P
EP[h(x)], s.t. P =

�
P0

: !>EP0
[x] = C! � �,P0 2 �(X )

 
. (26)

Inside the optimization, for every (!, �) 2 Glin, our problem R-SO has one more induced Linear programming to
solve compared with the standard problem SO.

As it will in general be hard to optimize arbitrary non-concave functions, we may consider assuming a concave
h. However, as pointed out by other studies (Kleinberg and Raghavan, 2019; Alon et al., 2020), there exist
concave functions h that are NP-hard to solve the problem SO (via a reduction from the maximum independent
set problem), which naturally leads the hardness of our problem. In particular, back to our student evaluation
setting, let P(e) be the induced feature distribution if the agent’s effort profile is e. As a result, the decision
maker’s goal on maximizing h(x) can be reduced to maximizing h(P(e)). When h(P(e)) = kek0, solving the
problem SO is then NP-hard.
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