Hindsight Expectation Maximization for Goal-conditioned Reinforcement Learning

A Details on Graphical Models for Reinforcement Learning

In this section, we review details of the RL as inference framework [53, 21] and highlight its critical differences
from Variational RL.

The graphical model for RL as inference is shown in Figure 7(c). The framework also assumes a trajectory variable
T = (8¢, at)th_Ol which encompasses the state and action sequences. Conditional on the trajectory variable 7, the
optimality variable is defined as p(O =1 | 7) x exp(thT:_O1 r(st,at)/a) for a > 0. Under this framework, the
trajectory variable has a prior a; ~ p(-) where p(-) is usually set to be a uniform distribution over the action
space A.

The policy parameter 6 comes into play with the inference model. The framework asks the question: what is the
posterior distribution p(7 | O = 1). To approximate this intractable posterior distribution, consider the variational
distribution q(7) == T ' mg(as | s¢)p(ses1 | 8¢, a¢). Searching for the best approximate posterior by minimizing
the KL-divergence KL[g(7) || p(7 | O = 1)], it can be shown that this is equivalent to maximum-entropy RL
[54, 55, 56]. It is important to note that RL as inference does not contain trainable parameters for the generative
model.

Contrasting this to Variational RL and the graphical model for goal-conditioned RL in Figure 2: the policy
dependent parameter 6 is part of a generative model. The variational distribution ¢(7, g), defined separately from
0, is the inference model. In such cases, the variational distribution ¢(7,¢) is an auxiliary distribution which aids
in the optimization of 8 by performing partial E-steps.

o~ {] ~(I>«--@ (?
@ © ©

(a) Probabilistic inference (b) Variational RL (c) RL as inference

Figure 7: Plot (c) shows the graphical model for RL as inference [53, 21]. Solid lines represent generative models and
dashed lines represent inference models. Circles represent random variables and squares represent parameters. Filled
circles represent observed random variables. This graphical model does not have trainable parameters for the generative
model. The policy dependent parameter € is in the inference model.

B Details on proof

B.1 Proof of Proposition Proposition 1

The proof follows from the observation that p(O = 1) = Ey,(),#[p(O = 1| 7,9)] = J(mp), and taking the log
does not change the optimal solution.

B.2 Proof of Theorem 1

Recall that we have a one-step MDP setup where A = G and |A| = k. The policy 7(a | s,g) = softmax(L, 4)
is parameterized by logits L, . When the policy is initialized randomly, we have L, , = L for some L and
mw(a|s,g) =1/k for all a,g. Assume also p(g) = 1/k,Vg.

The one-sample REINFORCE gradient estimator for the component Lq g is 10, = 7(s,b,¢') logy, m(b|s,g’) with
g ~p(-)and b~ 7(-|s,g'). Further, we can show
1 1 1 2 2 1 1 1
Elfa,g) = ﬁ(sa,g T3 V[na,g] = (ﬁ + S ﬁ)(sa,g + RS

where d,; are dirac-delta functions, which mean d,, =1 if @ = b and J,, = 0 otherwise. Taking the ratio, we
have the squared relative error (note that the estimator is unbiased and MSE consists purely of the variance)
MSE[na,] _ (k' + 0o(k"))da,g + (K + o(k?))
Eli1a,]? (k2 + 0(k?))3q,q + 1

Yunhao Tang, Alp Kucukelbir

The expression takes different forms based on the delta-function 6, 4. However, in either case (either §, 4, =1 or

da,g = 0), it is clear that % = k%(1+ o(1)), which directly reduces to the result of the theorem.

Comment on the control variates. We also briefly study the effect of control variates. Let X,Y be two
random variables and assume E[Y] = 0. Then compare the variance of V[X] and V[X + aY] where « is chosen
optimally to minimize the variance of the second estimator. It can be shown that with the best a*, the ratio
of variance reduction is (V[X] — V[X + o*Y])/V[X] = p? = Cov?[X,Y]/V[X]V[Y]. Consider the state-based
control variate for the REINFORCE gradient estimator, in this case —a -V, (b | s,g’) where « is chosen to
minimize the variance of the following aggregate estimator

Nag(a) =7(s,b,9) log,, w(b|s,g") —alog,, 7(b]|s,g)

Note that in practice, « is chosen to be state-dependent for REINFORCE gradient estimator of general MDPs
and is set to be the value function a := V7 (s). Such a choice is not optimal [57] but is conveniently adopted in
practice. Here, we consider an optimal o™ for the one-step MDP. The central quantity is the squared correlation
p* between 7(s,b,g) logp, m(b|s,g') and logy, m(b|s,g'). With similar computations as above, it can be
shown that p? ~ 1 for b # ¢’ and p* ~ ;5 otherwise. This implies that for k out of k? logits parameters, the
variance reduction is significant; yet for the rest of the k2 — k parameters, the variance reduction is negligible.
Overall, the analysis reflects that conventional control variantes do not address the issue of sup-linear growth of
relative errors as a result of sparse gradients.

B.3 Proof of Theorem 2

The key to the proof is the same as the proof of theorem 1: we analytically compute E[r, 4] and V[n, 4]. We can
show

1 1 1

1
ﬁéa,g + O(L2)a V[Ua,g] = ﬁéa,g + 0(

E[Tlmg] = E)z

More specifically, it is possible to show that the normalized one-step REINFORCE gradient estimator 77('1” g =
r(s,0,9")VyL, ,logn(b|s,g")/k with (b,g") ~ qu(7, g) has the following property

MSE[ag] (K + 0(k?))bag + (k + o(k))
Efnag® (k2 + 0(k))dag + 1

The above equality implies the result of the theorem. Indeed, the above implies regardless of whether d, 4 = 0 or

8a,g = 1 71\%8622“];] =k(1+0(1)).

Remark. Contrast this with the result from Theorem 1, where the result is k?(1 + o(1)). The main difference

stems from the variance: in Theorem 1 the variance is of order k% while here the variance is of order % The

variance reduction leads to significant improvements of the sample efficiency of the estimation.

B.4 Proof of Theorem 3

Without loss of generality we assume p(g) is a uniform measure, i.e. p(g) = 1/|G|. If not, we could always find a
transformation g = f(g’) such that ¢’ takes a uniform measure [6] and treat ¢’ as the goal to condition on.

Let |G| < oo and recall supp(p(g)) to be the support of p(g). The uniform distribution assumption deduces that
[supp(p(g))| = fgesupp(ﬁ(g)) dg. At iteration t, under tabular representation, the M-step update implies that g
learns the optimal policy for all g that could be sampled from ¢(7, g), whhich effectively corresponds to the
support of p(g). Formally, this implies E, (79, ,.¢)[R(7,9)] = 1 for Vg € supp(p¢(g)). This further implies

J(mo,,,) = /Ep(7|e,,+1,g>[R(T,g)]p(g)dg 2/ 1-p(g)dg = |supp(p:(9))|/IG|.

g€supp(pe(9))

Hindsight Expectation Maximization for Goal-conditioned Reinforcement Learning

C Additional Experiment Results

C.1 Details on Benchmark tasks

All reaching tasks are built with physics simulation engine MuJoCo [58]. We build customized point mass
environment; the Reacher and Fetch environment is partly based on OpenAl gym environment [59]; the Sawyer
environment is based on the multiworld open source code https://github.com/vitchyr/multiworld.

Figure 8: Illustration of tasks. From left to right: Point mass, Reacher, Fetch robot and Sawyer Robot. On the right is
the image-based input for Fetch robot. For additional information on the tasks, see Appendix C.

o N N NN
I-I.I.l.l-l.l.l u_u
I.I.I.I.I-I.I.I

1L NN EENN
HEEEEEN
|

II |l | I.l.l.l.
1LE NN EEENNN
HEEEEEEEE]
I.I.I.l.l-l.l.l I.II
I.I.I.l.l.l.l.l .I.I
1LE NN EEENNN
HEEEEEpy | |
1LE N EEN
H_EH_ N N u

—— e e e o e o = = = m

Figure 9: Illustration of image-based inputs for different reaching tasks in the main paper. Images are down-sampled to
be of size w X w X 3 as inputs, where w € {48, 84}.

All simulation tasks below have a maximum episode length of T'= 50. The episode terminates early if the goal
is achieved at a certain step. The sparse binary reward function is r(s,a,g) = I[success], which indicates the
success of the transitioned state s’ = f(s,a)'. Below we describe in details the setup of each task, in particular
the success criterion.

e Point mass [32]. The objective is to navigate a point mass through a 2-D room with obstacles to the target
location. |S| =4,|G| =2 and |A| = 2. The goals g € R? are specified as a 2-D point on the plane. Included
in the state s are the 2-D coordinates of the point mass, denoted as s;, € R?. The success is defined as
d(z(s2y),2(g)) < do where d(-,-) is the Euclidean distance, z(g) is a element-wise normalization function
z(x) == (& — Tmin)/(Tmax — Tmin) Where Tax, Tmin are the boundaries of the wall. The normalized threshold
is dy = 0.02 - v/2.

e Reacher [59]. The objective is to move via joint motors the finger tip of a 2-D Reacher robot to reach a
target goal location. |S| =11,|G| = 2 and | A| = 2. As with the above point mass environment, the goals
g € R? are locations of a point at the 2-D plane. Included in the state s are 2-D coordinates of the finger tip
location of the Reacher robot s,,. The success criterion is defined identically as the point mass environment.

e Fetch robot [59, 2]. The objective is to move via position controls the end effector of a fetch robot, to
reach a target location in the 3-D space. |S| = 10, |G| = 3 and | A| = 3. This task belongs to the standard
environment in OpenAl gym [59] and we leave the details to the code base and [2].

!For such simulation environments, the transition s’ ~ p(- | s,a) is deterministic so we equivalently write s’ = f(s,a)
for some deterministic function f.

https://github.com/vitchyr/multiworld

Yunhao Tang, Alp Kucukelbir

e Sawyer robot [49, 50]. The objective is to move via motor controls of the end effector of a sawyer robot,
to reach a target location in the 3-D space. |S| = |G| = |A| = 3. This task belongs to the multiworld code
base.

Details on image inputs. For the customized point mass and Reacher environments, the image inputs are
taken by cameras which look vertically down at the systems For the Fetch robot and Sawyer robot environment,
the images are taken by cameras mounted to the robotic systems. See Figure 9 for an illustration of the image
inputs.

C.2 Details on Algorithms and Hyper-parameters

Hindsight Expectation Maximization. For hEM on domains with discrete actions, the policy is a categorical
distribution mg(a | s, g) = Cat(gg(s, g)) with parameterized logits ¢¢(s, g); on domains with continuous actions, the
policy network is a state-goal conditional Gaussian distribution 7g(a | s,9) = N (ue(s, g), 0?) with a parameterized
mean /ig(s, g) and a global standard deviation 2. The mean is takes the concatenated vector [x, g] as inputs, has
5 hidden layers each with 5 hidden units interleaved with relu(x) non-linear activation functions, and outputs a
vector pig(s, g) € RIAL

hEM alternates between data collection using the policy and policy optimization with the EM-algorithms. During
data collection, the output action is perturbed by a Gaussian noise a’ = N (0,02) + a,a ~ ma(- | 5,g) where the
scale is 0, = 0.5. Note that injecting noise to actions is a common practice in off-policy RL algorithms to ensure
sufficient exploration [3, 4]; for tasks with a discrete action space, the agent samples actions a ~ my(- | s,g) with
probability 1 — e and uniformly random with probability € € [0.2,0.5]. The baseline hEM collects data with N = 30
parallel MPI actors, each with k£ = 20 trajectories. When sampling the hindsight goal given trajectories, we adopt
the future strategy specified in HER [2]: in particular, at state s, future achieved goals are uniformly sampled at
trainig time as gy, (7, g). All parameters are optimized with Adam optimizer [31] with learning rate o = 10~ and
batch size B = 64. By default, we run M = 30 parallel MPI workers for data collection and training, at each
iteration hEM collects N = 20 trajectories from the environment. For image-based reacher and Fetch robot, hEm
collects N = 80 trajectories.

Hindsight Experience Replay. By design in [2], HER is combined with off-policy learning algorithms such
as DQN or DDPG [3, 4]. We describe the details of DDPG. The algorithm maintains a Q-function Qg (s, a, g)
parameterized similarly as a universal value function [60]: the network takes as inputs the concatenated vector
[x,a,g], has 5 hidden layers with h = 256 hidden units per layer interleaved with relu(z) non-linear activation
functions, and outputs a single scalar. The policy network 7y (s, g) takes the concatenated vector [z, g] as inputs,
has the same intermediate architecture as the Q-function network and outputs the action vector my(s, g) € RIAI
We take the implementation from OpenAl baseline [61], all missing hyper-parameters are the default hyper-
parameters in the code base. Across all tasks, HER is run with M = 20 parallel MPI workers as specified in
[61].

Image-based architecture. When state or goal are image-based, the Q-function network/policy network
applies a convolutional network to extract features. For example, let s, g € R¥X%¥*3 where w € {48, 84} be raw
images, and let fy(s), fo(g) be the features output by the convolutional network. These features are concatenated
before passing through the fully-connected networks described above. The convolutional network has the following
architecture: [32,8,4] — relu — [64,4,2] — relu — [64, 3,2] — relu, where [ny,ry, sf] refers to: ny number of
feature maps, 7 feature patch dimension and sy the stride.

C.3 Ablation study

Ablation study on the effect of N. hEM collects N trajectories at each training iteration. We vary
N € {5,10,20, 40,80} on two challenging domains: Flip bit K = 50 and Fetch robot (image-based) and evaluate
the corresponding performance. See Figure 10. We see that in general, large N tends to lead to better performance.
For example, when N = 5, hEM learns slowly on Flip bit; when N = 80, hEM generally achieves faster convergence
and better asymptotic performance across both tasks. We speculate that this is partly because with large N the
algorithm can have a larger coverage over goals (larger support over goals in the language of Theorem 3). With
small IV, the policy might converge prematurely and hence learn slowly. Similar observations have been made for

Hindsight Expectation Maximization for Goal-conditioned Reinforcement Learning

HER, where they find that the algorithm performs better with a large number of MPI workers (effectively large
N).

Ablation on image-based goals. To further assess the robustness of hEM against image-based inputs, we
consider Sawyer robot where both states and goals are image-based. This differs from experiments shown in
Figure 5 where only states are image-based. In Figure 10(c), we see that the performance of hEM does not degrade
even when goals are image-based and is roughly agnostic to the size of the image. Contrast this with HER, which
does not make significant progress even when only states are image-based.

—— HER-dense-48 (image)
<~ batchsize=5 | ~4— hEM-48 (image goal)
=~ batchsize=10 | hEM-84 (image goal)
-l batchsize=20

¢ TR N~

-l batchsize=5
M- batchsize=10 ER
- batchsize=20 . 1

(a) Flip bit (b) Fetch robot (c) Sawyer robot

Figure 10: Ablation study. Plot (a) and (b): The effect of the data collection size N. Plot (c¢): The effect of image-based
inputs for both states and goals. ‘hEM-48’ refers to image-based inputs with size 48 x 48 x 3. Note also ‘HER-dense’ is
equivalent to ‘HER’(—1/0) - though the reward function does not provide additional information compared to (0/1), in
practice this transformation makes the learning much more stable.

C.4 Comparison between hEM and HPG

We do not list HPG as a major baseline for comparison in the main paper, primarily due to a few reasons: by design,
the HPG agent tackles discrete action space (see the author code base https://github.com/paulorauber/hpg),
while many goal-conditioned baselines of interest [2, 49, 50] are continuous action space. Also, in [23] the author
did not report comparison to traditional baselines such as HER and only report cumulative rewards instead of
success rate as evaluation criterion. Here, we compare hEM with HPG on a few discrete benchmarks provided in
[23] to assess their performance.

Details on HPG. The HPG is based on the author code base. [23] proposes several HPG variants with different
policy gradient variance reduction techniques [25] and we take the HPG variant with the highest performance as
reported in the paper. Throughout the experiment we set the learning rate to be 10~2 and other hyper-parameters
take default values.

Benchmarks. We compare hEM and HPG on Flip bit K = 25,50 and the four room environment. The details
of the Flip bit environment could be found in the main paper. The four room environment is used as a benchmark
task in [23], where the agent navigates a grid world with four rooms to reach a target location within episodic
time limit. The agent has access to four actions, which moves the agent in four directions. The trial is successful
only if the agent reaches the goal in time.

Results. We show results in Figure 11. For the Flip bit K = 25, HPG and hEM behave similarly: both algorithms
reach the near-optimal performance quickly and has similar convergence speed; when the state space increases to
K =50, HPG does not make any progress while the performance of hEM steadily improves. Finally, for the four
room environment, we see that though the performance of HPG initially increases quickly as hEM, its success rate
quickly saturates to a level significantly below the asymtotpic performance of hEM. These observations show that
hEM performs much more robustly and significantly better than HPG, especially in challenging environments.

C.5 Additional Results on Baseline Fetch Tasks

Details on Fetch tasks. Fetch tasks are introduced in [2]: Reach, Slide, Push and Pick and Place. We
have already evaluated on the Reach task in our prior experiments. Here, we focus on the other three experiments.

Issues with exploration. As we have alluded to in the main paper, exploration is a critical issue in goal-
conditioned RL, as exemplified through the Fetch tasks. Compared to the reaching tasks we considered, Fetch

https://github.com/paulorauber/hpg

Yunhao Tang, Alp Kucukelbir

success rate
success rate

-~ HPG lg.;‘
-l hEM N
- HPG :‘ B HPG
- hEM o w ~ill- hEM
N Ee ISR
(a) Flip bit K =25 (b) Flip bit K =50 (c) Four room

Figure 11: Comparison between hEM and HPG. HPG performs well on Flip bit MDP with K = 25, but when K = 50 its
performance drops drastically. HPG also underperforms hEM on the four room environment where it makes fast progress
initially but saturates to a low sub-optimal level.

tasks in general have more complicated goal space - purely random exploration might not cover the entire goal
space fully. This observation has been corroborated in recent work [51, 52].

Details on algorithms. To solve these tasks, we build on the built-in exploration mechanism of HER im-
plementations [61], which have been shown to work in certain setups. Though hEM does not utilize any value
function critics, it shares the policy network with HER. We implement the aggregate loss function as

T—1
L(@) = Lhcr +n- Lhcm :E(s,g)ND [Q(b (8, WG(S),Q)] +n-]Eq('r,g) lz IOg 71—0(0’15 | st,g)] .
t=0

for the policy network. Here n € {0.1,0.2,0.5} is a hyper-parameter we selected manually to determine the
trade-offs between two loss functions. Intuitively, when the policy cannot benefit from the learning signals of HER
via Lyer, it is still able to learn via the supervised learning update through Lyey. In practice, we find n = 0.1
works uniformly well.

Results. See Figure 12 for the full results. Note that hEM provides marginal speed up on the learning on Push

and Pick & Place. On Slide, both algorithms get stuck at local optimal (similar observations were made in [2]).
We speculate that improvements in the exploration literature would bring further consistent performance gains.

s ow ow 5w T

"woom

—— HER(-1/0)
— hEM

success rate
success rate
success rate

5w

5o owm @ 5w ow o
epochs epochs

(a) Slide (b) Push (¢) Pick and Place

5w
epochs

Figure 12: Fetch tasks. Training curves of hEM and HER on two standard Fetch tasks. hEM provides marginal speed up
compared to HER. All curves are calculated based on 5 random seeds.

	Details on Graphical Models for Reinforcement Learning
	Details on proof
	Proof of Proposition prop:equiv
	Proof of thm:sparsity
	Proof of thm:hindsight
	Proof of thm:monotonic

	Additional Experiment Results
	Details on Benchmark tasks
	Details on Algorithms and Hyper-parameters
	Ablation study
	Comparison between hEM and HPG
	Additional Results on Baseline Fetch Tasks

