Robust Imitation Learning from Noisy Demonstrations

A PROOFS

A.1 Proof of Lemma 1

We firstly restate the main assumption of our theoretical result:

Assumption 1 (Mixture state-action density). The state-action density of the learning policy 7 is a mixture of
the state-action densities of the expert and non-expert policies with a mizing coefficient 0 < k(m) < 1:

pr(x) = K(m)pp(x) + (1 — £(7))pN(x), (22)

where pr(x), pr(x), and px(x) are the state-action densities of the learning policy, the expert policy, and the
non-expert policy, respectively.

Under this assumption and the assumption that p/(s,a) = apg(s,a) + (1 — a)pn(s,a), we obtain Lemma 1.
Lemma 1. Letting lsym(-) be a symmetric loss that satisfies lsym(9(x)) + lsym(—g(x)) = ¢, Vx € X and a
constant c € R, the following equality holds.

1—a+ k()1 =X

R(g;p/7p7Ar>£sym) = (Oé - :‘i(ﬂ')(l - )‘)>R<g7 PEM’Nszm) + 9 C. (23)

Proof. Firstly, we define &(

m,A) = w(m)(1 — ) and 6(x) = £(g9(x)) + £(—g(x)). Then, we substitute p’(x) :=
app(x) + (1 - a)py(x) and py(

)
x) = k(m)pe(x) + (1 — k(7)) px(x) into the risk R(g; o', p2, £).
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(
+ + (1= R(m)(1 = NEpy [((=9(x))] + AEpy [((=9(x))]
= aly, [((g(x))] + (1 = )E,y [((g(x))] + A(m, ME,p [€(=g(x))] + (1 = &(m, A))Epy [((—g(x))]
= aBpg [((g(x)] + (1 = )Epy [6°(x) = £(—g(x))]
+ (N Epy, [6(x) = Ug(x))] + (1 = &, A)Epy [£(—g(x))]
= aBpg [((g(x)] + (1 = )Epy [6°(x)] = Epy [£(—9(x))] + aBpy [((—g(x))]
[

+ R, N By [0°(%)] = &(m, MEpg [€(9(3)] + Epy [E(—9(x))] = &(m, NEpy [((—g(x))]

( Epp, [0(9(0)] + Epy [((=g()]) + (1 = a)Epy [3°(x)] + A, MEpg [6°(x)]
R(g; p, o, £) + (1= @)Epy [0°(x)] + R(m, M) Epg [0°(x)]. (24)
For symmetric loss, we have §%m (x) = loym(g(X)) + lsym(—g(x)) = c for a constant ¢ € R. With this, we can
express the left hand-side of Eq. (23) as follows:

(1-a)

2

11—«
%EPN [e] +
1—a+ k()1 —-N)

5 c.

This equality concludes the proof of Lemma 1. Note that this proof follows Charoenphakdee et al. (2019). O

EPN [6Zsym (X)] n :‘@(77)(1 — )\) EPE [5€sym (X)]

2
=g, (o

R<g7 p/7p§agsym) = (CY - K;(ﬂ-)<1 - )‘))R(g;pE7pN7£sym) +

= (O[ - H(ﬂ—)(l - )‘))R(g;pEapNvgsym) +

= (o = &(m)(1 = A)R(9; pB; PN, bsym) + (25)

A.2 Proof of Theorem 1
Lemma 1 indicates that, when a — x(m)(1 — A) > 0, we have
g* = argmin R(g; o', p3, Loym)
g
= a‘rgmin R(gv PE; PN, ésym)- (26)
g

With this, we obtain Theorem 1 which we restate and prove below.
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Theorem 1. Given the optimal classifier g* in Eq. (26), the solution of max. R(g*; p', p}, lsym) is equivalent to
the expert policy.

Proof. By using the definitions of the risk and p(x), R(g*; ¢, oo, lsym) can be expressed as

* 1 * A * 1-A *
R(G"5 ', o bsym) = 5Bt [lsym (97 GO + SEpy [loym(=g" ()] + 5By [loym (= 9" (x))] (27)
Since the first and second terms are constant w.r.t. m, the solution of max, R(g*; o/, p;\r, Lsym) is equivalent to the
solution of max, E, [lsym(—g*(x))], where we omit the positive constant factor (1 —\)/2. Under Assumption 1
which assumes pr(x) = k(7)pr(x) + (1 — £(7))pn(x) , we can further express the objective function as

Ep, [Leym(—9" ()] = 500y oy (=97 G + (1= 5(m)Epy [feym(~9" ()]
() (g oy (=9 ()] — Epg [oym(=9 G ) + By [loym(=9")] - (28)

The last term is a constant w.r.t. 7 and can be safely ignored. The right hand-side is maximized by increasing
k(m) to 1 when the inequality E, [fsym(—9*(X))] — Epy [lsym(—g*(x))] > 0 holds. Since g* is also the optimal
classifier of R(g; pr, pn; lsym), the inequality E,, [lsym(—g*(x))] — Epy [lsym(—g*(x))] > 0 holds. Specifically,
the expected loss of classifying expert data as non-expert: E,_ [lsym(—g*(x))], is larger to the expected loss
of classifying non-expert data as non-expert: E,. [lsym(—g*(x ))] Thus, the objective can only be maximized
by increasing x(m) to 1. Because k(m) = 1 if and only 1f p=(x) = pr(x), we conclude that the solution of
max, R(g*; 0, p), lsym) is equivalent to 7g. O

B DATASETS AND IMPLEMENTATION

We conduct experiments on continuous-control benchmarks simulated by PyBullet simulator (Coumans and Bai,
2019). We consider four locomotion tasks, namely HalfCheetah, Hopper, Walker2d, and Ant, where the goal
is to control the agent to move forward to the right. We use true states of the agents and do not use visual
observation. To obtain demonstration datasets, we collect expert and non-expert state-action samples by using
6 policy snapshots trained by the trust-region policy gradient method (ACKTR) (Wu et al., 2017), where each
snapshot is obtained using different training samples. The cumulative rewards achieved by the six snapshots
are given in Table 2, where snapshot #1 is used as the expert policy. Visualization of trajectories obtained by
the expert policy in these tasks is provided in Figure 7. Sourcecode of our datasets and implementation for
reproducing the results is publicly available at https://github.com/voot-t/ril_co.

All methods use policy networks with 2 hidden-layers of 64 hyperbolic tangent units. We use similar networks
with 100 hyperbolic tangent units for classifiers in RIL-Co and discriminators in other methods. The policy
networks are trained by ACKTR, where we use a public implementation (Kostrikov, 2018). In each iteration,
the policy collects a total of B = 640 transition samples using 32 parallel agents, and we use these transition
samples as the dataset B in Algorithm 1. Throughout the learning process, the total number of transition samples
collected by the learning policy is 20 million. For training the classifier and discriminator, we use Adam (Kingma
and Ba, 2015) with learning rate 10~2 and the gradient penalty regularizer with the regularization parameter of
10 (Gulrajani et al., 2017). The mini-batch size for classifier/discriminator training is 128.

For co-pseudo-labeling in Algorithm 1 of RIL-Co, we initialize by splitting the demonstration dataset D into
two disjoint subset D; and Dy. In each training iteration, we draw batch samples U = {x,}V_; ~ Dy and

= {x,}V_; ~ D1 from the split datasets with U = V = 640. To obtain pseudo-labeled datasets P; for training
classifier g1, we firstly compute the classification scores g2(x,,) using samples in . Then, we choose K = 128
samples with the least negative values of g2(x,) in an ascending order as P;. We choose samples in this way to
incorporate a heuristic that prioritizes choosing negative samples which are predicted with high confidence to be
negative by the classifiers, i.e., these samples are far away from the decision boundary. Without this heuristic,
obtaining good approximated samples requires using a large batch size which is computationally expensive. The
procedure to obtain Ps is similar, but we use V instead of U and g¢;(x,) instead of ga(x,,). The implementation
of RIL-P variants in our ablation study is similar, except that we have only one neural networks and we do not
split the dataset into disjoint subsets.

For VILD, we the log-sigmoid reward variant and perform important sampling based on the estimated noise, as
described by Tangkaratt et al. (2020). For behavior clonig (BC), we use a deterministic policy neural network
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Table 2: Cumulative rewards achieved by six policy snapshots used for generating demonstrations. Snapshot 1 is
used as the expert policy. Ant (Gaussian) denotes a scenario in the experiment with the Gaussian noise dataset
in Section 4.3, where Gaussian noise with different variance is added to expert actions.

Task || Snapshot #1 | Snapshot #2 | Snapshot #3 | Snapshot #4 | Snapshot #5 | Snapshot #6
HalfCheetah 2500 1300 1000 700 -1100 -1000
Hopper 2300 1100 1000 900 600 0
Walker2D 2700 800 600 700 100 0

Ant 3500 1400 1000 700 400 0

Ant (Gaussian) 3500 1500 1000 800 500 400

Figure 7: Visualization of the first 100 time steps of expert demonstrations. Time step increases from the leftmost
figure (¢t = 0) to the rightmost figure (¢ = 100). Videos are provided with the sourcecode.

and train it by minimizing the mean-squared-error with Adam and learning rate 1073. We do not apply a
regularization technique for BC. For the other methods, we follow the original implementation as close as possible,
where we make sure that these methods perform well overall on datasets without noise.

C ADDITIONAL RESULTS

Here, we present learning curves obtained by each method in the experiments. Figure 8 depicts learning curves
(performance against the number of transition samples collected by the learning policy) for the results in Sec-
tion 4.1. Since BC does not use the learning policy to collect transition samples, the horizontal axes for BC
denote the number of training iterations. It can be seen that RIL-Co achieves better performances and uses less
transition samples compared to other methods in the high-noise scenarios where ¢ € {0.2,0.3,0.4}. Meanwhile
in the low-noise scenarios, all methods except GAIL with the unhinged loss and VILD perform comparable to
each other in terms of the performance and sample efficiency.

Figure 9 shows learning curves of the ablation study in Section 4.2. RIL-Co with the AP loss clearly outperforms
the comparison methods in terms of both sample efficiency and final performance. The final performance in
Figures 2 and 5 are obtained by averaging the performance in the last 1000 iterations of the learning curves.
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Figure 8: Performance against the number of transition samples in continuous-control benchmarks. For BC, the
horizontal axes denote the number of training iterations. Clearly, RIL-Co with the AP loss is more robust than
comparison methods when the noise rate increases.
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Figure 9: Performance against the number of transition samples in the ablation study. RIL-Co with the AP loss
is more robust than its variants that use non-symmetric losses and naive pseudo-labeling.



