
Running heading author breaks the line

A Technical results and complementary experiments

A.1 Proof of Lemma 1

We prove the result for D2. The result for Dk holds following a similar argument.

Fix D2,α ∈ D2, α ∈ Λ . According to (1), we have, for x ∈ Rd , D2,α(x) = fq ◦ · · · ◦ f1(x), where fi(t) = σ2(Vit + ci) for
i = 1, . . . ,q−1 (σ2 is applied on pairs of components), and fq(t) =Vqt + cq. Therefore, for (x,y) ∈ (Rd)2,

‖ f1(x)− f1(y)‖∞ 6 ‖V1x−V1y‖∞

(since σ2 is 1-Lipschitz)
= ‖V1(x− y)‖∞

6 ‖V1‖2,∞ ‖x− y‖
6 ‖x− y‖

(by Assumption 1).

Thus,

‖ f2 ◦ f1(x)− f2 ◦ f1(y)‖∞ 6 ‖V2 f1(x)−V2 f1(y)‖∞

(since σ2 is 1-Lipschitz)
6 ‖V2‖∞ ‖ f1(x)− f1(y)‖∞

6 ‖ f1(x)− f1(y)‖∞

(by Assumption 1)
6 ‖x− y‖.

Repeating this, we conclude that, for each α ∈Λ and all (x,y) ∈ (Rd)2, |D2,α(x)−D2,α(y)|6 ‖x− y‖, which is the desired
result.

A.2 Proof of Lemma 2

Recall that m f > 2. Throughout the proof, we let · refer to the dot product in Rd . Let (i, j) ∈ {1, . . . ,m f }2, i 6= j. There
exist (ai,bi) ∈Rd×R and (a j,b j) ∈Rd×R such that `i = ai · x+bi and ` j = a j · x+b j. Therefore,

`i(x)− ` j(x)6 0 ⇐⇒ x · (ai−a j)6 b j−bi.

So, there exist two subdomains Ω̃1 and Ω̃2, separated by an affine hyperplane, in which `i− ` j does not change sign. By
repeating this operation for the m f (m f −1)/2 different pairs (`i, ` j), we get that the number M f of subdomains on which
any pair `i− ` j does not change sign is smaller than the maximal number of arrangements of m f (m f −1)/2 hyperplanes.

Denoting by Cn,d the maximal number of arrangements of n hyperplanes in Rd , we know that when d > n then Cn,d = 2n,
whereas if n > d the upper bound Cn,d 6 (1+n)d becomes preferable (Devroye et al., 1996, Chapter 30). Thus, we have

m f 6 M f 6 min
(
2m2

f /2,(m f /
√

2)2d).
A.3 Proof of Proposition 1

We prove the first part of the proposition by using an induction on n. The case where n = 1 and thus m = 21 is clear
since the function f = max(f1, f2) can be represented by a neural network of the form (1) with depth q+ 1 and size
s1 + s2 +1. Now, let m = 2n with n > 1. We have that m/2 = 2n−1. By the induction hypothesis, g1 = max(f1, . . . , fm/2)
and g2 = max(fm/2+1, . . . , fm) can be represented by neural networks of the form (1) with depths q+n−1, and sizes at most
s1 + · · ·+ sm/2 +m/2−1 and sm/2+1 + · · ·+ sm +m/2−1, respectively. Consequently, the function G(x) = (g1(x),g2(x))
can be implemented by a neural network of the form (1) with depth q+n−1 and size s1 + · · ·+ sm +m−2. Finally, by
concatenating a one neuron layer, we have that the function f = max(g1,g2) can be represented by a neural network of the
form (1) with depth q+n = q+ log2(m) and size at most s1 + · · ·+ sm +m−1.

Now, let us prove the case where m is arbitrary. Let f1, . . . , fm : Rd → R be a collection of functions (m > 2), each
represented by a neural network of the form (1) with depth q and size si, i = 1, . . . ,m. We prove below by an induction on n

Running heading title breaks the line

that there exists a neural network of the form (1) with depth q+ dlog2(m)e, a final layer of width νq−1 = 2, and a size at
most s1 + · · ·+ sm +2dlog2(m)e−1 that represents the functions f = max(f1, . . . , fm) and g = min(f1, . . . , fm) (the symbol
d·e stands for the ceiling function and the symbol b·c stands for the integer function).

The base case m = 2 is clear using the GroupSort activation and ν1 = 2. For m > 2, let n > 2 be such that 2n−1 6 m < 2n. Let
g1 = max(f1, . . . , f2n−1) and g2 = max(f2n−1+1, . . . , fm). From the first part of the proof, we know that g1 can be represented
by a neural network of the form (1) with depth q1 = q+ blog2 mc= q+n−1 and size s1 + · · ·+ s2n−1 +2n−1−1. Also, by
the induction hypothesis, g2 can be represented by a neural network of the form (1) with depth q2 = q+ dlog2(m−2n−1)e
and size at most s2n−1+1 + · · ·+ sm +2dlog2(m−2n−1)e−1. Therefore, by padding identity matrices with two neurons (recall
that νq2−1 = 2) on layers from q+ dlog2(m−2n−1)e to q+n−1, we have:

2dlog2(m−2n−1)e−1+2(n−2−dlog2(m−2n−1)e) =
k=dlog2(m−2n−1)e−1

∑
k=0

2k +
k=n−2

∑
k=dlog2(m−2n−1)e

21

6
k=n−2

∑
k=0

2k = 2n−1−1.

Thus, g2 can be represented by a neural network of the form (1) with depth q2 = q+ blog2 mc and size at most s2n−1+1 +
· · ·+ sm +2n−1−1. Now, the bivariate function G(x) = (g1(x),g2(x)) can be implemented by a neural network of the form
(1) with depth q+ blog2(m)c and size s such that

s 6 s1 + · · ·+ sm +2(2n−1−1) = s1 + · · ·+ sm +2n−2.

By concatenating a one neuron layer, we have that the function f = max(g1,g2) can be represented by a neural network of
the form (1) with depth q+ dlog2(m)e and size at most s1 + · · ·+ sm +2n−1 = s1 + · · ·+ sm +2dlog2 me−1. The conclusion
follows using the inequality 2dlog2 me 6 2m.

A.4 Proof of Theorem 1

Let f ∈ Lip1(R
d) that is also m f -piecewise linear. We know that each linear function can be represented by a 1-neuron

neural network verifying Assumption 1 (no need for hidden layers). It is easy to see, using a small variant of Proposition 1,
that any collection of m̃ linear functions with m̃ 6 m can be represented by a neural network of depth dlog2(m)e+1 and size
at most 3m−1. Thus, combining (2) with Proposition 1, for each k ∈ {1, . . . ,M f } there exists a neural network of the form
(1), verifying Assumption 1 and representing the function mini∈Sk `i, with depth equal to dlog2(m f)e+1 (since |Sk|6 m f)
and size at most 3m f −1.

Using again Proposition 1, we conclude that there exists a neural network of the form (1), verifying Assumption 1 and
representing f , with depthdlog2(M f)e+ dlog2(m f)e+1 and size at most 3m f M f +M f −1.

A.5 Proof of Corollary 1

According to He et al. (2018, Theorem A.1), the function f can be written as

f = max
16k6m f

min
i∈Sk

`i,

where |Sk|6 m f . Using the same technique of proof as for Theorem 1, we find that there exists a neural network of the form
(1), verifying Assumption 1 and representing f , with depth equal to 2dlog2(m f)e+1 and size at most 3m2

f +m f −1.

A.6 Proof of Proposition 2

Let f ∈ Lip1(R) that is also m f -piecewise linear. The proof of the first statement is an immediate consequence of Corollary
1 since connected subsets of R are also convex.

As for the second claim of the proposition, considering the case where f is convex, we know from He et al. (2018, Theorem
A.1) that f can be written as

f = max
16k6m f

`k.

Running heading author breaks the line

Each function `k, k = 1, . . . ,m f , can be represented by a 1-neuron neural network verifying Assumption 1. Hence, by
Proposition 1, there exists a neural network of the form (1), verifying Assumption 1 and representing f , with depth
dlog2(m f)e+1 and size at most 3m f −1.

The last claim of the proposition for m = 2n is clear using Proposition 1.

A.7 Proof of Lemma 3

The result is proved by induction on q. To begin with, in the case q = 2 we have a neural network with one hidden layer.
When applying the GroupSort function with a grouping size 2, every activation node is defined as the max or min between
two different linear functions. The maximum number of breakpoints is equal to the maximum number of intersections, that
is ν1/2. Thus, there is at most ν1/2+1 pieces.

Now, let us assume that the property is true for a given q > 3. Consider a neural network with depth q and widths
ν1, . . . ,νq−1. Observe that the input to any node in the last layer is the output of a R→R GroupSort neural network with
depth (q−1) and widths ν1, . . . ,νq−2. Using the induction hypothesis, the input to this node is a function from R→R with
at most 2q−3× (ν1/2+1)×·· ·×νq−2 pieces. Thus, after applying the GroupSort function with a grouping size 2, each
node output is a function with at most 2× (2q−3× (ν1/2+ 1)×ν2×·· ·×νq−2). With the final layer, we take an affine
combination of νq−1 functions, each with at most 2q−2× (ν1/2+1)×ν2×·· ·×νq−2 pieces. In all, we therefore get at
most 2q−2× (ν1/2+1)×ν2×·· ·×νq−1 pieces. The induction step is completed.

A.8 Proof of Corollary 2

Let f be an m f -piecewise linear function. For a neural network of depth q and widths ν1, . . . ,νq representing f , we have, by
Lemma 3,

2q−1× (ν1/2+1)×·· ·×νq−1 > m f .

By the inequality of arithmetic and geometric means, minimizing the size s = ν1/2+ · · ·+νk subject to this constraint,
means setting ν1/2+1 = ν2 = · · ·= νk. This implies that s > 1

2 (q−1)m1/(q−1)
f .

A.9 Proof of Theorem 2

The proof follows the one from Cooper (1995, Theorem 3). Tesselate [0,1]d by cubes of side s = ε/(2
√

d) and denote by
n = (d1/se)d the number of cubes in the tesselation. Choose n data points, one in each different cube. Then any Delaunay
sphere will have a radius R < ε/2M f . Now, construct f̃ by linearly interpolating between values of f over the Delaunay
simplices. According to Seidel (1995), the number m f of subdomains is O(nd/2) and each of them is convex. Besides, by
Cooper (1995, Lemma 2), f̃ guarantees an approximation error ‖ f − f̃‖∞ 6 ε .

Using Corollary 1, we know that there exists a neural network of the form (1) verifying Assumption 1 and representing
f̃ . Besides, its depth is 2dlog2(m f)e+1 and its size is at most 3m2

f +m f −1. Consequently, we have that the depth of the

neural network is 2dlog2(m f)e+1 = O(d2 log2(
2
√

d
ε

)) and the size at most O(m2) = O((2
√

d
ε

)d2
).

A.10 Proof of Proposition 3

Let f ∈ Lip1([0,1]) and fm be the piecewise linear interpolation of f with the following 2m + 1 breakpoints: k/2m,
k = 0, . . . ,2m. We know that the function fm approximates f with an error εm 6 2−m. In particular, for any m > log2(1/ε),
we have εm 6 ε . Besides, for any m, fm is a 1-Lipschitz function defined on [0,1], piecewise linear on 2m subdomains. Thus,
according to Proposition 2, there exists a neural network of the form (1), verifying Assumption 1 and representing fm, with
depth 2m+1 and size at most 3×22m +2m−1. Taking m = dlog2(1/ε)e shows the desired result.

Let ε > 0, let f be a convex (or concave) function in Lip1([0,1]), and let fm be the piecewise linear interpolation of f
with the following 2m +1 breakpoints: k/2m, k = 0, . . . ,2m. The function fm approximates f with an error εm = 2−m. In
particular, for any m > log2(1/ε), we have εm 6 ε . Besides, for any m, fm is a 2m-piecewise linear convex function defined
on [0,1]. Hence, by Proposition 2, there exists a neural network of the form (1), verifying Assumption 1 and representing
fm, with depth m+1 and size at most 2×2m−1. Taking m = dlog2(1/ε)e leads to the desired result.

Running heading title breaks the line

A.11 Proof of Proposition 4

We prove the result by using an induction on n. The case where n = 1 and thus m = k1 is true since the function
f = max(f1, . . . , fk) can be represented by a neural network of the form (1) with grouping size k, depth q+ 1, and size
s1+ · · ·+sk +1. Now, let m = kn with n > 1. We have that bm/kc= dm/ke= m/k = kn−1. Let g1 = max(f1, . . . , fm/k),g2 =
max(fm/k+1, . . . , f2m/k), . . . ,gk = max(f((k−1)m/k)+1, . . . , fm). By the induction hypothesis, g1, . . . ,gk can all be represented
by neural networks of the form (1) with grouping size k, width depths equal to q+n−1 and sizes at most s1 + · · ·+ sm/k +
kn−1−1

k−1 , . . . ,s(k−1)m/k+1 + · · ·+ sm + kn−1−1
k−1 , respectively.

Consequently, the function G(x) = (g1(x), . . . ,gk(x)) can be implemented by a neural network of the form (1) with grouping
size k, depth q+n−1, and size at most s1 + · · ·+ sm +m−2. Finally, by concatenating a one neuron layer, we see that the
function f = max(g1, . . . ,gk) can be represented by a neural network of the form (1) with depth q+n = q+ logk(m) and
size at most

s1 + · · ·+ sm + k
(kn−1−1

k−1

)
+1 = s1 + · · ·+ sm +

kn−1
k−1

= s1 + · · ·+ sm +
m−1
k−1

.

A.12 Proof of Corollary 3

According to He et al. (2018, Theorem A.1), the function f can be written as

f = max
16k6m f

min
i∈Sk

`i,

where |Sk|6 m f and m f = kn for some n > 1. It is easy to see, using a small variant of Proposition 4, that any collection
of m̃ linear functions with m̃ 6 m f can be represented by a neural network of depth logk(m)+ 1 and size at most m f−1

k−1 .
Therefore, by Proposition 4, there exists a neural network verifying Assumption 1 with grouping size k representing min

i∈Sk
`i

with depth logk(m)+1 and size at most m f−1
k−1 .

Using again Proposition 4, we find that there exists a neural network, verifying Assumption 1, with grouping size k,
representing f with depth 2logk(m f)+1 and size at most

m f

(m f −1
k−1

)
+

m f −1
k−1

=
m2

f −1

k−1
.

A.13 Proof of Lemma 4

The result is proved by induction on q. To begin with, in the case q = 2 we have a neural network with one hidden layer.
When applying the GroupSort function with a grouping size k, the maximum number of breakpoints is equal to the maximum
number of intersections of linear functions. In each group of k functions, there are at most k(k−1)

2 intersections. Thus, there
are at most k(k−1)

2 × ν1
k = (k−1)ν1

2 breakpoints, that is (k−1)ν1
2 +1 pieces.

Now, let us assume that the property is true for a given q > 3. Consider a neural network with depth q and widths ν1, . . . ,νq−1.
Observe that the input to any node in the last layer is the output of a R→R GroupSort neural network with depth (q−1)
and widths ν1, . . . ,νq−2. Using the induction hypothesis, the input to this node is a function from R→ R with at most
kq−3× ((k−1)ν1

2 +1)×·· ·×νq−2 pieces. Thus, after applying the GroupSort function with a grouping size k, each node
output is a function with at most k× (kq−3× ((k−1)ν1

2 + 1)× ν2× ·· · × νq−2). With the final layer, we take an affine
combination of νq−1 functions, each with at most kq−2× ((k−1)ν1

2 +1)×ν2×·· ·×νq−2 pieces. In all, we therefore get at
most kq−2× ((k−1)ν1

2 +1)×ν2×·· ·×νq−1 pieces. The induction step is completed.

A.14 Proof of Theorem 3

The proof of Theorem 3 is straightforward and follows the one of Theorem 2 combined with the result obtained in Corollary
3.

Running heading author breaks the line

A.15 Proof of Proposition 5

Let f ∈Lip1([0,1]) and fm be the piecewise linear interpolation of f with the following kn+1 breakpoints: i/kn, k = 0, . . . ,kn.
We know that the function fm approximates f with an error εm 6 k−n. In particular, for any n > logk(1/ε), we have εn 6 ε .
Besides, for any n, fkn is a 1-Lipschitz function defined on [0,1], piecewise linear on kn subdomains. Thus, according to
Corollary 3, there exists a neural network of the form (1), verifying Assumption 1 and representing fkn , with grouping size k,
depth 2n+1, and size at most k2n−1

k−1 . Taking n = dlogk(1/ε)e shows the desired result.

B Experiments: Extended comparison between GroupSort and ReLU networks

We provide in this section further results and details on the experiments ran in Section 5.

B.1 Task 1: Approximating functions

Piecewise linear functions. We complete the experiments of Section 5 by estimating the 6-piecewise linear function f in
the model Y = f (X) (noiseless case, see Figure 7 and Figure 8) and in the model Y = f (X)+ ε (noisy case, see Figure 9
and Figure 10). Recall that in both cases, X follows a uniform distribution on [−1.5,1.5] and the sample size is n = 100.

2 4 6 8
Network depth

0.012

0.075

0.138

0.200

0.263

Un
ifo

rm
 n

or
m

ReLU bjorckReLU bjorckGroupSort

2 4 6 8
Network depth

0.287

0.626

0.964

1.303

1.642

Lip
sc

hi
tz

 c
on

st
an

t

ReLU bjorckReLU bjorckGroupSort

2 4 6 8
Network depth

6.0

51.8

97.6

143.4

189.2

Nu
m

 li
ne

ar
 re

gi
on

s

ReLU bjorckReLU bjorckGroupSort

Figure 7: Estimating the 6-piecewise linear function in the model Y = f (X), with a dataset of size n = 100 (the thickness of
the line represents a 95%-confidence interval).

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

Target y Predicted y

(a) ReLU

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

Target y Predicted y

(b) bjorckReLU

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

Target y Predicted y

(c) bjorckGroupSort

Figure 8: Reconstructing the 6-piecewise linear function in the model Y = f (X), with a dataset of size n = 100.

Running heading title breaks the line

2 4 6 8
Network depth

0.058

0.108

0.157

0.207

0.256
Un

ifo
rm

 n
or

m

ReLU bjorckReLU bjorckGroupSort

2 4 6
Discriminator depth

0.312

1.256

2.200

3.144

4.089

||.
||

ReLU bjorckReLU bjorckGroupSort

2 4 6 8
Network depth

7.0

47.1

87.2

127.4

167.5

Nu
m

 li
ne

ar
 re

gi
on

s

ReLU bjorckReLU bjorckGroupSort

Figure 9: Estimating the 6-piecewise linear function in the model Y = f (X)+ε , with a dataset of size n = 100 (the thickness
of the line represents a 95%-confidence interval).

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Target y Predicted y Training y

(a) ReLU

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Target y Predicted y Training y

(b) bjorckReLU

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Target y Predicted y Training y

(c) bjorckGroupSort

Figure 10: Reconstructing the 6-piecewise linear function in the model Y = f (X)+ ε , with a dataset of size n = 100.

The sinus function. We provide in this subsection additional details for the learning of the sinus function f (x) =
(1/15)sin(15x) defined on [0,1] (see Section 5). Figure 11 is the case without noise while Figure 12 is the case with noise.

0.4 0.2 0.0 0.2 0.4

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Target y Predicted y

(a) ReLU

0.4 0.2 0.0 0.2 0.4

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Target y Predicted y

(b) bjorckReLU

0.4 0.2 0.0 0.2 0.4

0.075

0.050

0.025

0.000

0.025

0.050

0.075

Target y Predicted y

(c) bjorckGroupSort

Figure 11: Reconstructing the function f (x) = (1/15)sin(15x) in the model Y = f (X), with a dataset of size n = 100.

Running heading author breaks the line

0.4 0.2 0.0 0.2 0.4
0.2

0.1

0.0

0.1

Target y Predicted y Training y

(a) ReLU

0.4 0.2 0.0 0.2 0.4
0.2

0.1

0.0

0.1

Target y Predicted y Training y

(b) bjorckReLU

0.4 0.2 0.0 0.2 0.4
0.2

0.1

0.0

0.1

Target y Predicted y Training y

(c) bjorckGroupSort

Figure 12: Reconstructing the function f (x) = (1/15)sin(15x) in the model Y = f (X)+ ε , with a dataset of size n = 100.

B.2 Task 2: Calculating Wasserstein distances

20 40 60
Neural distance computed with

4

6

8

10

12

14

16

W
as

se
rs

te
in

 d
ist

an
ce

LRE = 4.33
Envelope's width: 0.43

(a) D = ReLU network

4 6 8
Neural distance computed with

4

6

8

10

12

14

16

W
as

se
rs

te
in

 d
ist

an
ce

LRE = 2.49
Envelope's width: 0.35

(b) D = bjorckReLU network

4 5 6 7 8 9 10
Neural distance computed with

4

6

8

10

W
as

se
rs

te
in

 d
ist

an
ce

LRE = 1.54
Envelope's width: 0.17

(c) D = bjorckGroupSort network

Figure 13: Scatter plots of 40 pairs of Wasserstein and neural distances, for q = 2. The underlying distributions are bivariate
Gaussian distributions with 4 components. The red curve is the optimal parabolic fitting and LRE refers to the Least Relative
Error. The red zone is the envelope obtained by stretching the optimal curve.

C Study of increasing group sizes for GroupSort networks

(a) Grouping size = 2 (b) Grouping size = 5 (c) Grouping size = 10

Figure 14: Reconstruction of a 20-piecewise linear function with varying grouping sizes (k = 2,5,10).

Running heading title breaks the line

(a) Grouping size = 2 (b) Grouping size = 5 (c) Grouping size = 10

Figure 15: Reconstruction of a 40-piecewise linear function with varying grouping sizes (k = 2,5,10).

D Shared architecture for both GroupSort and ReLU networks

Operation Feature Maps Activation

D(x)
Fully connected - q layers width w {GroupSort, ReLU}
Width w {50}
Depth q {2, 4, 6, 8}

Batch size 256
Learning rate 0.0025
Optimizer Adam: β1 = 0.5 β2 = 0.5

Table 2: Hyperparameters used for the training of all neural networks

	Technical results and complementary experiments
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Proposition 2
	Proof of Lemma 3
	Proof of Corollary 2
	Proof of Theorem 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Corollary 3
	Proof of Lemma 4
	Proof of Theorem 3
	Proof of Proposition 5

	Experiments: Extended comparison between GroupSort and ReLU networks
	Task 1: Approximating functions
	Task 2: Calculating Wasserstein distances

	Study of increasing group sizes for GroupSort networks
	Shared architecture for both GroupSort and ReLU networks

