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Abstract

Recent advances in adversarial attacks and
Wasserstein GANs have advocated for use of neu-
ral networks with restricted Lipschitz constants.
Motivated by these observations, we study the
recently introduced GroupSort neural networks,
with constraints on the weights, and make a the-
oretical step towards a better understanding of
their expressive power. We show in particular
how these networks can represent any Lipschitz
continuous piecewise linear functions. We also
prove that they are well-suited for approximating
Lipschitz continuous functions and exhibit upper
bounds on both the depth and size. To conclude,
the efficiency of GroupSort networks compared
with more standard ReLU networks is illustrated
in a set of synthetic experiments.

1 Introduction

In the past few years, developments in deep learning have
highlighted the benefits of operating neural networks with
restricted Lipschitz constants. An important illustration is
provided by robust machine learning, where networks with
large Lipschitz constants are prone to be more sensitive to
adversarial attacks, in the sense that small perturbations
of the inputs can lead to significant misclassification er-
rors (e.g., Goodfellow et al., 2015). In order to circumvent
these limitations, Gao et al. (2017), Esfahani and Kuhn
(2018), and Blanchet et al. (2019) studied a new regular-
ization scheme based on penalizing the gradients of the
networks. Constrained neural networks also play a key role
in the different but not less important domain of Wasser-
stein GANs (Arjovsky et al., 2017), which take advantage
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of the dual form of the 1-Wasserstein distance expressed as
a supremum over the set of 1-Lipschitz functions (Villani,
2008). This formulation has been shown to bring training
stability and is empirically efficient (Gulrajani et al., 2017).
In this context, many different ways have been explored to
restrict the Lipschitz constants of the discriminator. One
possibility is to clip their weights, as advocated by Arjovsky
et al. (2017). Other solutions involve enforcing a gradient
penalty (Gulrajani et al., 2017) or penalizing norms of the
matrices of the weights (Miyato et al., 2018).

However, all of these operations are delicate and may signif-
icantly affect the expressive power of the neural networks.
For example, Huster et al. (2018) show that ReLU neural
networks with constraints on the weights cannot represent
even the simplest functions, such as the absolute value. In
fact, little is known regarding the expressive power of such
restricted networks, since most studies interested in the ex-
pressiveness of neural networks (e.g., Hornik et al., 1989;
Cybenko, 1989; Raghu et al., 2017) do not take into account
eventual constraints on their architectures. As far as we
know, the most recent attempt to tackle this issue is by Anil
et al. (2019). These authors exhibit a family of neural net-
works, with constraints on the weights, which is dense in
the set of Lipschitz continuous functions on a compact set.
To show this result, Anil et al. (2019) make critical use of
GroupSort activations.

Motivated by the above, our objective in the present article is
to make a step towards a better mathematical understanding
of the approximation properties of Lipschitz feedforward
neural networks using GroupSort activations. Our contribu-
tions are threefold:

(i) We show that GroupSort neural networks, with con-
straints on the weights, can represent any Lipschitz
continuous piecewise linear function and exhibit up-
per bounds on both their depth and size. We make a
connection with the literature on the depth and size of
ReLU networks (in particular Arora et al., 2018; He
et al., 2018).

(ii) Building on the work of Anil et al. (2019), we offer
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upper bounds on the depth and size of GroupSort neu-
ral networks that approximate 1-Lipschitz continuous
functions on compact sets. We also show that increas-
ing the grouping size may significantly improve the
expressivity of GroupSort networks.

(iii) We empirically compare the performances of Group-
Sort and ReLU networks in the context of function
regression estimation and Wasserstein distance ap-
proximation.

The mathematical framework together with the necessary
notation is provided in Section 2. Section 3 is devoted to
the problem of representing Lipschitz continuous functions
with GroupSort networks of grouping size 2. The extension
to any arbitrary grouping size is discussed in Section 4 and
numerical illustrations are given in Section 5. For the sake
of clarity, all proofs are gathered in the Appendix.

2 Mathematical context

We introduce in this section the mathematical context of
the article and describe more specifically the GroupSort
neural networks, which, as we will see, play a key role
in representing and approximating Lipschitz continuous
functions.

Throughout the paper, the ambient space Rd is assumed to
be equipped with the Euclidean norm ‖·‖. For E a subset of
Rd , we denote by Lip1(E) the set of 1-Lipschitz real-valued
functions on E, i.e.,

Lip1(E)=
{

f : E→R : | f (x)− f (y)|6 ‖x− y‖, (x,y)∈E2}
Let k > 2 be an integer. We let Dk = {Dk,α : α ∈Λ} be the
class of functions from Rd to R parameterized by feedfor-
ward neural networks of the form

Dk,α(x) = Vq
1×vq−1

σk( Vq−1
vq−1×vq−2

· · ·σk( V2
v2×v1

σk( V1
v1×D

x+ c1
v1×1

)

+ c2
v2×1

)+ cq−1
vq−1×1

)+ cq
1×1

, (1)

where q > 2 and the characters below the matrices indicate
their dimensions (lines× columns). For q = 1, we simply
let Dk,α(x) = V1x+ c1 be a simple linear regression in R
without hidden layers. Thus, a network in Dk has (q− 1)
hidden layers, and hidden layers from depth 1 to (q− 1)
are assumed to be of respective widths vi, i = 1, . . . ,q−1,
divisible by k. Such a network is said to be of depth q and
of size ν1 + · · ·+νq−1. The matrices Vi are the matrices of
weights between layer i and layer (i+1) and the ci’s are the
corresponding offset vectors (in column format). So, alto-
gether, the vectors α = (V1, . . . ,Vq,c1, . . . ,cq) represent the
parameter space Λ of the functions in Dk. With respect to
the activation functions σk, we propose to use the GroupSort
activation, which separates the pre-activations into groups
and then sorts each group into ascending order.

Figure 1: GroupSort activation with a grouping size 5.
Source: Anil et al. (2019).

The GroupSort function splits the input into n different
groups of k elements each: G1 = {x1, . . . ,xk}, . . . ,Gn =
{xnk−(k−1), . . . ,xnk}, and then orders each group by decreas-
ing order. Thus, the GroupSort function with a grouping size
k > 2 is applied on a given vector (x1, . . . ,xkn) as follows:

σk(x1, . . . ,xk, . . . ,xnk−(k−1), . . . ,xnk) =(
xG1
(k), . . . ,x

G1
(1), . . . ,x

Gn
(k), . . . ,x

Gn
(1)

)
,

where (xGi
(k), . . . ,x

Gi
(1)) corresponds to the decreasing ordering

in the group Gi.

This activation is applied on groups of k components, which
makes sense in (1) since the widths of the hidden layers are
assumed to be divisible by k. GroupSort has been introduced
in Anil et al. (2019) as a 1-Lipschitz activation function that
preserves the gradient norm of the input. An example with
a grouping size k = 5 is given in Figure 1. With a slight
abuse of vocabulary, we call a neural network of the form
(1) a GroupSort neural network. We note that the Group-
Sort activation can recover the standard rectifier function.
For example, σ2(x,0) = (ReLU(x),−ReLU(−x)), but the
converse is not true.

Throughout the manuscript, the notation ‖ · ‖ (respec-
tively, ‖ · ‖∞) means the Euclidean (respectively, the supre-
mum) norm on Rp, with no reference to p as the con-
text is clear. For W = (wi, j) a matrix of size p1 × p2,
we let ‖W‖2 = sup‖x‖=1 ‖Wx‖ be the 2-norm of W . Sim-
ilarly, the ∞-norm of W is ‖W‖∞ = sup‖x‖∞=1 ‖Wx‖∞ =

maxi=1,...,p1 ∑
p2
j=1 |wi, j|. We will also use the (2,∞)-norm of

W , i.e., ‖W‖2,∞ = sup‖x‖=1 ‖Wx‖∞. The following assump-
tion plays a central role in our approach:
Assumption 1. For all α = (V1, . . . ,Vq,c1, . . . ,cq) ∈Λ ,

‖V1‖2,∞ 6 1, max(‖V2‖∞, . . . ,‖Vq‖∞)6 1,
and max(‖ci‖∞ : i = 1, . . . ,q)6 K2,

where K2 > 0 is a constant.

This type of compactness requirement has already been
suggested in the statistical and machine learning community
(e.g., Arjovsky et al., 2017; Anil et al., 2019; Biau et al.,
2020). In the setting of this article, its usefulness is captured
in the following simple but essential lemma:
Lemma 1. Assume that Assumption 1 is satisfied. Then, for
any k > 2, Dk ⊆ Lip1(R

d).
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Combining Lemma 1 with Arzelà-Ascoli theorem, it is easy
to see that, under Assumption 1, the class Dk restricted to
any compact K ⊆ Rd is compact in the set of continuous
functions on K with respect to the uniform norm. From this
point of view, Assumption 1 is therefore somewhat restric-
tive. On the other hand, it is essential in order to guarantee
that all neural networks in Dk are indeed 1-Lipschitz. Prac-
tically speaking, various approaches have been explored in
the literature to enforce this 1-Lipschitz constraint. Gulra-
jani et al. (2017), Kodali et al. (2017), Wei et al. (2018),
and Zhou et al. (2019) proposed a gradient penalty term,
Miyato et al. (2018) applied spectral normalization, while
Anil et al. (2019) have shown the empirical efficiency of the
orthonormalization of Björck and Bowie (1971).

Importantly, Anil et al. (2019, Theorem 3) states that, un-
der Assumption 1, GroupSort neural networks are universal
Lipschitz approximators on compact sets. More precisely,
for any Lipschitz continuous function f defined on a com-
pact, one can find a neural network of the form (1) verifying
Assumption 1 and arbitrarily close to f with respect to the
uniform norm. Our objective in the present article is to ex-
plore the properties of these networks. We start in the next
section by examining the case of piecewise linear functions.

3 Learning functions with a grouping size 2

For this section, we only consider GroupSort neural net-
works with a grouping size 2 and aim at studying their
expressivity. The capacity of GroupSort networks to approx-
imate continuous functions is studied via the representation
of piecewise linear functions. For feedforward ReLU net-
works, their ability to represent such functions has been
largely studied. In particular, Arora et al. (2018, Theo-
rem 2.1) reveals that any piecewise linear function from
Rd →R can be represented by a ReLU network of depth
at most dlog2(d +1)e (the symbol d·e stands for the ceiling
function), whereas He et al. (2018) specify an upper bound
on their size. In the present section, we extend these results
and first tackle the problem of representing piecewise linear
functions with constrained GroupSort networks. Then we
move to the non-linear case.

3.1 Representation of piecewise linear functions

Let us start gently by fixing the vocabulary.

Definition 1. A continuous function f :Rd →R is said to
be (continuous) m f -piecewise linear (m f > 2) if there exist
a partition Ω = {Ω1, . . . ,Ωm f } of Rd into polytopes and a
collection `1, . . . , `m f of affine functions such that, for all
x ∈Ωi, i = 1, . . . ,m f , f (x) = `i(x).

At this stage no further assumption is made on the sets
Ω1, . . . ,Ωm f , which are just assumed to be polytopes in Rd .
An example of piecewise linear function on the real line
with m f = 4 is depicted in Figure 2. As this figure suggests,

Figure 2: A 4-piecewise linear function on the real line
and the associated partitions Ω = {Ω1, . . . ,Ω4} and Ω̃ =
{Ω̃1, . . . ,Ω̃7}. The partition Ω̃ is finer than Ω .

the ambient space Rd can be further covered by a second
partition Ω̃ = {Ω̃1, . . . ,Ω̃M f } of M f polytopes (M f > 1), in
such a way that the sign of the differences `i− ` j, (i, j) ∈
{1, . . . ,m f }2, does not change on the subsets Ω̃1, . . . ,Ω̃M f .
It is easy to see that the partition Ω̃ is finer than Ω since, for
each i ∈ {1, . . . ,M f } there exists j ∈ {1, . . . ,m f } such that
Ω̃i ⊆Ω j. This implies in particular that M f > m f .

The usefulness of the partition Ω̃ is demonstrated by He et al.
(2018, Theorem 5.1), which states that any m f -piecewise
linear function f can be written as

f = max
16k6M f

min
i∈Sk

`i, (2)

where each Sk is a non-empty subset of {1, . . . ,m f }. This
characterization of the function f is interesting, since it
shows that any m f -piecewise linear function can be com-
puted using only a finite number of max and min operations.
As identity (2) is essential for our approach, this justifies
spending some time examining it.

Lemma 2. Let f :Rd→R be an m f -piecewise linear func-

tion. Then m f 6 M f 6 min(2m2
f /2,(m f /

√
2)2d).

Lemma 2 is an improvement of He et al. (2018, Lemma 5.1),
which shows that M f 6 m f !. Our proof method exploits
the inequality M f 6Cm f (m f−1)/2,d , where Cn,d denotes the
number of arrangements of n hyperplanes in a space of
dimension d (Devroye et al., 1996, Chapter 5). Another
application of (2) is encapsulated in Proposition 1 below,
which will be useful for later analysis, in combining maxima
and minima in neural networks of the form (1).

Proposition 1. Let f1, . . . , fm :Rd →R be a collection of
functions (m > 2), each represented by a neural network of
the form (1), with common depth q and sizes si, i = 1, . . . ,m.

In the specific case where m = 2n for some n > 1, there exist
neural networks of the form (1) (with grouping size 2) with
depth q+ log2(m) and size at most s1 + · · ·+ sm +m− 1
that represent the functions f = max( f1, . . . , fm) and g =
min( f1, . . . , fm).
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If m is arbitrary, then there exist neural networks of the form
(1) with depth q+dlog2(m)e and size at most s1+ · · ·+sm+
2m−1 that represent the functions f and g.

Interestingly, Arora et al. (2018, Lemma D.3), which is
the analog of Proposition 1 asserts that the size with ReLU
activations is at most s1+ · · ·+sm+8m−4. For the specific
computation of maxima/minima of functions, it should be
stressed that GroupSort activations slightly reduces the size
of the networks. By combining Lemma 2, Proposition 1,
and identity (2), we are led to the following theorem, which
reveals the ability of GroupSort networks for representing
1-Lipschitz piecewise linear functions.

Theorem 1. Let f ∈ Lip1(R
d) that is also m f -piecewise

linear. Then there exists a neural network of the form
(1) verifying Assumption 1 that represents f . Besides, its
depth is dlog2(M f )e+dlog2(m f )e+1 and its size is at most
3m f M f +M f −1.

This result should be compared with state-of-the-art results
known for ReLU neural networks. In particular, Arora et al.
(2018, Theorem 2.1) reveals that any m f -piecewise linear
function f can be represented by a ReLU network with
depth at most dlog2(d +1)e. The upper bound of Theorem
1 can be larger since it involves both M f and m f . On the
other hand, the upper bound O(m f M f ) on the size signifi-
cantly improves on He et al. (2018, Theorem 5.2), which
is at least O(d2m f M f ). This improvement in terms of size
can be roughly explained by the depth/size trade-off results
known in deep learning theory. As a matter of fact, many
theoretical research papers have underlined the benefits of
depth relatively to width for parameterizing complex func-
tions (as, for example, in Telgarsky, 2015, 2016). For a fixed
number of neurons, when comparing two neural networks,
the deepest is the most expressive one (Lu et al., 2017).

It turns out that Theorem 1 can be significantly refined
when the partition Ω satisfies some geometrical proper-
ties. Our next proposition examines the case where the sets
Ω1, . . . ,Ωm f are convex.

Corollary 1. Let f ∈ Lip1(R
d) that is also m f -piecewise

linear with convex subdomains Ω1, . . . ,Ωm f . Then there
exists a neural network of the form (1) verifying Assumption
1 that represents f . Besides, its depth is 2dlog2(m f )e+ 1
and its size is at most 3m2

f +m f −1.

Corollary 1 offers a significant improvement over Theorem
1, since in general M f � m f . We note in passing that the
result of this proposition is dimension-free.

3.2 GroupSort neural networks on the real line

Piecewise linear functions defined on R deserve a special
treatment, since in this case, any connected subset is convex.

Proposition 2. Let f ∈ Lip1(R) that is also m f -piecewise
linear. Then there exists a neural network of the form (1)

verifying Assumption 1 that represents f . Besides, its depth
is 2dlog2(m f )e+1 and its size is at most 3m2

f +m f −1.

In the specific case where f is convex (or concave), then
there exists a neural network of the form (1) verifying As-
sumption 1 that represents f . Its depth is dlog2(m f )e+ 1
and its size is at most 3m f −1.

When f is convex (or concave) and m f = 2n for some n > 1,
then there exists a neural network of the form (1) verifying
Assumption 1 that represents f . Its depth is log2(m f )+ 1
and its size is at most 2m f −1.

This proposition is the counterpart of Arora et al. (2018,
Theorem 2.2), which states that any m f -piecewise linear
function fromR→R can be represented by a 2-layer ReLU
neural network with a size at least m f −1 . He et al. (2018,
Theorem 5.2) shows that the upper-bound on the size of
ReLU networks is O(2m2+2(m−1)). Thus, for the representa-
tion of piecewise linear functions on the real line, GroupSort
networks require larger depths but smaller sizes. Besides,
bear in mind that the obtained ReLU neural networks do
not necessarily verify a requirement similar to the one of
Assumption 1.

Regarding the number of linear regions of GroupSort net-
works on the real line, we have the following result:

Lemma 3. Any neural network of the form (1) on the real
line, with depth q and widths ν1, . . . ,νq−1, parameterizes a
piecewise linear function with at most 2q−2× (ν1/2+1)×
ν2×·· ·×νq−1 linear subdomains.

We deduce from this lemma that for a neural network of
the form (1) with depth q > 2 and constant width ν , the
maximum number of linear regions is O(2q−3νq−1). Simi-
larly to ReLU networks (Montúfar et al., 2014; Arora et al.,
2018), the maximum number of linear regions for Group-
Sort networks with grouping size 2 is also likely to grow
polynomially in ν and exponentially in q.

Our next corollary now illustrates the trade-off between
depth and width for GroupSort neural networks.

Corollary 2. Let f ∈ Lip1(R) be an m f -piecewise linear
function. Then, any neural network of the form (1) verifying
Assumption 1 and representing f with a depth q, has a size
s at least 1

2 (q−1)m1/(q−1)
f .

The lower bound highlighted in Corollary 2 is dependent
on the depth q of the neural network. By looking at the
minimum of the function, we get that any neural network
representing f has a size s > e ln(m f )

2 . Thus, merging this
result with Proposition 2, we have that for any m f -piecewise
linear function from R→R, there exists a GroupSort net-
work verifying Assumption 1 with a size s satisfying

e ln(m f )

2
6 s 6 3m2

f −m f −3.
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We realize that this inequality is large but, up to our knowl-
edge, this is first of this type for GroupSort neural networks.

3.3 Approximating Lipschitz continuous functions on
compact sets

Following our plan, we tackle in this subsection the task of
approximating Lipschitz continuous functions on compact
sets using GroupSort neural networks. The space of con-
tinuous functions on [0,1]d is equipped with the uniform
norm

‖ f −g‖∞ = max
x∈[0,1]d

| f (x)−g(x)|.

The main result of the section, and actually of the article, is
that GroupSort neural networks are well suited for approxi-
mating functions in Lip1([0,1]

d).

Theorem 2. Let ε > 0 and d > 2, f ∈ Lip1([0,1]
d). Then

there exists a neural network D of the form (1) verifying
Assumption 1 such that ‖ f −D‖∞ 6 ε . The depth of D is
O(d2 log2(

2
√

d
ε

)) and its size is O(( 2
√

d
ε

)d2
).

To the best of our knowledge, Theorem 2 is the first one that
provides an upper bound on the depth and size of neural
networks, with constraints on the weights, that approximate
Lipschitz continuous functions.

As for the representation of piecewise linear functions, one
can, for the sake of completeness, compare this bound with
those previously found in the literature of ReLU neural net-
works. Yarotsky (2017) establishes the density of ReLU
networks in Sobolev spaces, using a different technique of
proof. In particular, Theorem 1 of this paper states that
for any f ∈ Lip1([0,1]

d) continuously differentiable, there
exists a ReLU neural network approximating f with preci-
sion ε , with depth at most c(ln(1/ε)+1) and size at most
cε−d(ln(1/ε)+1) (with a constant c function of d). Com-
paring this result with our Theorem 2, we see that, with
respect to ε , both depths are similar but ReLU networks
are smaller in size. However, one has to keep in mind that
both lines of proof largely differ. Besides, our formulation
ensures that the approximator is also a 1-Lipschitz function,
a feature that cannot be guaranteed under the formulation
of Yarotsky (2017).

It turns out however that our framework provides smaller
neural networks as soon as d = 1.

Proposition 3. Let ε > 0 and f ∈ Lip1([0,1]). Then there
exists a neural network D of the form (1) verifying As-
sumption 1 such that ‖ f −D‖∞ 6 ε . The depth of D is
2dlog2(1/ε)e+1 and its size is O(( 1

ε
)2).

Besides, if f is assumed to be convex or concave, then the
depth of D is dlog2(1/ε)e+1 and its size is O( 1

ε
).

4 Impact of the grouping size

The previous section paved the way for a better understand-
ing of GroupSort neural networks and their ability to ap-
proximate Lipschitz continuous functions. As mentioned
in Section 2, one can play with the grouping size k of the
neural network when defining its architecture. However, it
is not clear how changing this parameter might influence
the expressivity of the network. The present section aims at
bringing some understanding. Following a similar reason-
ing as in Section 3, we start by analyzing how GroupSort
networks with an arbitrary grouping size k > 2 can represent
any piecewise linear functions:

Proposition 4 (Extension of Proposition 1). Let f1, . . . , fm :
Rd → R be a collection of functions (m > 2), each repre-
sented by a neural network of the form (1), with common
depth q and sizes si, i = 1, . . . ,m.

In the specific case where m = kn for some n > 1, there exist
neural networks of the form (1) (with grouping size k) with
depth q+ logk(m) and size at most s1 + · · ·+ sm + m−1

k−1 −1
that represent the functions f = max( f1, . . . , fm) and g =
min( f1, . . . , fm).

Similarly to Section 3, this leads to the following corollary:

Corollary 3 (Extension of Corollary 1). Let f ∈ Lip1(R
d)

that is also m f -piecewise linear with convex subdomains
Ω1, . . . ,Ωm f such that m f = kn for some n > 1. Then there
exists a neural network of the form (1) verifying Assumption
1 that represents f . Besides, its depth is 2dlogk(m f )e+ 1

and its size is at most
m2

f−1
k−1 .

Proposition 4 and Corollary 3 exhibit the nice properties
of using larger grouping sizes. Indeed, for a given q > 1,
there exists a neural network with depth 2q+1 and grouping
size k representing a function with kq pieces. Consequently,
the use of larger grouping sizes helps have more expressive
neural networks. The efficiency of larger grouping sizes
may also be explained by the following result for GroupSort
networks on the real line:

Lemma 4 (Extension of Lemma 3). Any neural network
of the form (1) on the real line, with depth q, widths
ν1, . . . ,νq−1, and grouping size k, parameterizes a piece-
wise linear function with at most kq−2 × ( (k−1)ν1

2 + 1)×
ν2×·· ·×νq−1 linear subdomains.

Thus, the number of linear regions of a GroupSort network
is likely to increase polynomially with the grouping size,
which highlights the benefits of using larger groups. Sim-
ilarly to Section 3, when moving to the approximation of
Lipschitz continuous functions on [0,1]d , we are lead to the
following theorem:

Theorem 3 (Extension Theorem 2). Let ε > 0, d > 2, and
f ∈ Lip1([0,1]

d). Then there exists a neural network D
of the form (1) verifying Assumption 1 with grouping size
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Methods Up Depth Up Size Down Size Reference
Representing m = kn-PWL functions in Rd with a constant width ν

ReLU dlog2(d +1)e+1 O(d2m2
) O(m) He et al. (2018)

GroupSort GS = k d2logk(m)e+1 m2−1
k−1

ν logk(m)
2logk(ν)

present article

Approximating 1-Lipschitz continuous functions in [0,1]d

ReLU O(ln( 1
ε
)) O( ln(1/ε)

εd ) \ Yarotsky (2017)

GroupSort GS = d 2
√

d
ε
e O(d2) O(( 2

√
d

ε
)d2−1) \ present article

Approximating 1-Lipschitz continuous functions in [0,1]
ReLU (PWL representation) 2 O(21/ε2+2/ε) \ He et al. (2018)

ReLU (different approach) O(ln( 1
ε
)) O( ln(1/ε)

ε
) \ Yarotsky (2017)

Adaptative ReLU 6 O( 1
ε ln(1/ε) ) \ Yarotsky (2017)

GroupSort GS = d 1
ε
e 3 O( 1

ε
) \ present article

Table 1: Summary of the results shown in the present paper together with results previously found for ReLU networks. “Up
Depth” refers to upper bounds on the depths, “Up Size” to upper bounds on the sizes, and “Down Size” to lower bounds on
the sizes. The symbol “\” means that no result is known (up to our knowledge).

d 2
√

d
ε
e such that ‖ f −D‖∞ 6 ε . The depth of D is O(d2)

and its size is O(( 2
√

d
ε

)d2−1).

Using a grouping size proportional to 1/ε , we thus have a
bound on the depth that is independent from the error rate.
The uni-dimensional case leads to a different result:

Proposition 5 (Extension of Proposition 3). Let ε > 0 and
f ∈ Lip1([0,1]). Then there exists a neural network D of
the form (1) verifying Assumption 1 (with grouping size k)
such that ‖ f −D‖∞ 6 ε . The depth of D is 2dlogk(

1
ε
)e+1

and its size is at most O( 1
kε2 ).

In particular, if k is chosen to be equal to d 1
ε
e, then the depth

of D is 3 and its size is O( 1
ε
).

When approximating real-valued functions, the use of larger
grouping sizes can significantly decrease the required size
since it goes from O(1/ε2) in Proposition 3 to O(1/ε) in
Proposition 5. When f is assumed to be convex or concave,
the depth of the network D can further be reduced to 2.

Using a different approach for approximating Lipschitz
continuous functions in [0,1], Yarotsky (2017, Theorem
1) shows that ReLU networks with a depth of O(ln(1/ε)) is
needed together with a size O( ln(1/ε)

ε
) to approximate with

an error rate ε . To sum-up, when compared with ReLU net-
works, GroupSort neural networks with well-chosen group-
ing size can be significantly more expressive.

Table 1 summarizes the results shown in the present paper
together with results previously found for ReLU networks.
Bear in mind that GroupSort neural networks also have the
supplementary condition that any parameterized function
verifies the 1-Lipschitz continuity.

5 Experiments

Anil et al. (2019) have already compared the performances
of GroupSort neural networks with their ReLU counterparts,
both with constraints on the weights. In particular, they
showed that ReLU neural networks are more sensitive to ad-
versarial attacks while stressing the fact that if their weights
are limited, then these networks lose their expressive power.
Building on these observations, we further illustrate the
good behavior of GroupSort neural networks in the context
of estimating a Lipschitz continuous regression function
and in approximating the Wasserstein distance (via its dual
form) between pairs of distributions.

Impact of the depth. We start with the problem of learn-
ing a function f in the model Y = f (X), where X follows a
uniform distribution on [−8,8] and f is 32-piecewise linear.
To this aim, we use neural networks of the form (1) with re-
spective depth q = 2, 8, 14, 20, and a constant width ν = 50.
Since we are only interested in the approximation proper-
ties of the networks, we assume to have at hand an infinite
number of pairs (Xi, f (Xi)) and train the models by mini-
mizing the mean squared error. We give in the Appendix,
the full details of our experimental setting. The quality of
the estimation is evaluated using the uniform norm between
the target function f and the output network. In order to
enforce Assumption 1, GroupSort neural networks are con-
strained using the orthonormalization of Björck and Bowie
(1971). The results are presented in Figure 3. Note that
throughout this section, confidence intervals are computed
over 20 runs. In line with Theorem 1, which states that f is
representable by a neural network of the form (1) with size
at most 3× 322 + 32− 1 = 3104, we clearly observe that,
as the depth of the networks increases, the uniform norm de-
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(a) q = 2 (b) q = 20

(c) Uniform norm (d) Lipschitz constants

Figure 3: Reconstruction of a 32-piecewise linear function
on [−8,8] with a GroupSort neural network of the form (1)
with depth q= 2, 8, 14, 20, and a constant width ν = 50 (the
thickness of the line represents a 95%-confidence interval).

creases and the Lipschitz constant of the network converges
to 1. The reconstruction of this piecewise linear function is
even almost perfect for the depth q= 20, i.e., with a network
of size only 20×60 = 1200, a value significantly smaller
than the upper bound of the theorem.

We also illustrate the behavior of GroupSort neural net-
works in the context of WGANs (Arjovsky et al., 2017). We
run a series of small experiments in the simplified setting
where we try to approximate the 1-Wasserstein distance
between two bivariate mixtures of independent Gaussian
distributions with 4 components. We consider networks
of the form (1) with grouping size 2, a depth q = 2 and
q = 5, and a constant width ν = 20. For a pair of distribu-
tions (µ,ν), our goal is to exemplify the relationship be-
tween the 1-Wasserstein distance sup f∈Lip1(R

2)(Eµ −Eν)
(approximated with the Python package by Flamary and
Courty, 2017) and the neural distance sup f∈D2

(Eµ −Eν )
(Arora et al., 2017) computed over the class of functions
D2. To this aim, we randomly draw 40 different pairs of
distributions. Then, for each of these pairs, we compute an
approximation of the 1-Wasserstein distance and calculate
the corresponding neural distance. Figure 4 depicts the best
parabolic fit between 1-Wasserstein and neural distances,
and shows the corresponding Least Relative Error (LRE)
together with the width of the envelope. The take-home
message of this figure is that both the LRE and the width are
significantly smaller for deeper GroupSort neural networks.

(a) q = 2 (b) q = 5

Figure 4: Scatter plots of 40 pairs of Wasserstein and neural
distances computed with GroupSort neural networks, for
q = 2,5. The underlying distributions are bivariate Gaus-
sians. The red curve is the optimal parabolic fitting and
LRE refers to the Least Relative Error. The red zone is the
envelope obtained by stretching the optimal curve.

Impact of the grouping size. To highlight the benefits of
using larger grouping sizes, we show the impact of increas-
ing the grouping size from 2 in Figure 5a to 5 in Figure
5b for the representation of a 20-piecewise linear function.
This is corroborated by Figure 5c, which illustrates that the
uniform norm with a 64-piecewise linear function decreases
when the grouping size increases. As already underlined in
Lemma 4, this may be explained by the fact that the num-
ber of linear regions significantly grows with the grouping
size—see Figure 5d.

(a) Grouping size = 2 (b) Grouping size = 6

(c) Uniform norm (d) Linear regions

Figure 5: Reconstruction of a 20-piecewise linear func-
tion on [−5,5] (top line) and a 64-piecewise linear func-
tion (bottom line) with GroupSort neural networks of the
form (1) with depth q = 4 and varying grouping sizes
k = 2,4,6,8,10.
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(a) Prediction quality (b) Lipschitz constants (c) Number of linear regions

(d) Prediction quality (e) Lipschitz constant (f) Number of linear regions

Figure 6: (Top line) Estimating the function f (x) = (1/15)sin(15x) on [0,1] in the model Y = f (X), with a dataset of size
n = 100. (Bottom line) Estimating the function f (x) = (1/15)sin(15x) on [0,1] in the model Y = f (X)+ ε , with a dataset
of size n = 100 (the thickness of the line represents a 95%-confidence interval).

Comparison with ReLU neural networks. Next, in a
second series of experiments, we compare the performances
of GroupSort networks against two baselines: ReLU neural
networks without constraints on the weights (dense in the
set of continuous functions on a compact set; see Yarotsky,
2017), and ReLU neural networks with orthonormalization
of Björck and Bowie (1971). The architecture of the ReLU
neural networks in terms of depth and width is the same as
for GroupSort networks: q= 2, 4, 6 ,8, and w= 20. The task
is now to approximate the 1-Lipschitz continuous function
f (x) = (1/15)sin(15x) on [0,1] in the models Y = f (X)
(noiseless case) and Y = f (X)+ ε (noisy case), where X
is uniformly distributed on [0,1] and ε follows a Gaussian
distribution with standard deviation 0.05. In both cases, we
assume to have at hand a finite sample of size n = 100 and
fit the models by minimizing the mean squared error.

Both results (noiseless case and noisy case) are presented in
Figure 6. We observe that in the noiseless setting Figure 6a,
6b, and 6c, ReLU neural networks without normalization
have a slightly better performance with respect to the uni-
form norm with, however, a Lipschitz constant larger than 1.
On the other hand, in the noisy case, ReLU neural networks
without constraints have a tendency to overfitting (a high
Lipschitz constant close to 2.7), leading to a deteriorated
performance, contrary to GroupSort neural networks. Fur-
thermore, in both cases (noiseless and noisy), ReLU with

constraints are found to perform worse (due to a Lipschitz
constant much smaller than 1) than their GroupSort counter-
parts in terms of prediction. Interestingly, we see in the two
examples shown in Figure 6e and Figure 6f, that the number
of linear regions for GroupSort neural networks is smaller
than for ReLU networks.

Finally, we quickly show in Appendix a comparison be-
tween GroupSort and ReLU networks when approximating
Wasserstein distances. The take home message is that, on
this specific task, GroupSort networks perform better.

6 Conclusion

The results presented in this article show the advantage
of using GroupSort neural networks over standard ReLU
networks. On the one hand, ReLU neural networks with-
out any constraints are sensitive to adversarial attacks (as
they may have a large Lipschitz constant) and, on the other
hand, lose expressive power when enforcing limits on their
weights. On the opposite, GroupSort neural networks with
constrained weights are proved to be both robust and expres-
sive, and are therefore an interesting alternative. Moreover,
by allowing larger grouping sizes for GroupSort networks,
one can further increase their expressivity. These proper-
ties open new perspectives for broader use of GroupSort
networks.
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