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Abstract

Predicting which action (treatment) will lead
to a better outcome is a central task in de-
cision support systems. To build a predic-
tion model in real situations, learning from
observational data with a sampling bias is
a critical issue due to the lack of random-
ized controlled trial (RCT) data. To han-
dle such biased observational data, recent ef-
forts in causal inference and counterfactual
machine learning have focused on debiased
estimation of the potential outcomes on a bi-
nary action space and the difference between
them, namely, the conditional average treat-
ment effect. When it comes to a large action
space (e.g., selecting an appropriate combina-
tion of medicines for a patient), however, the
regression accuracy of the potential outcomes
is no longer sufficient in practical terms to
achieve a good decision-making performance.
This is because a high mean accuracy on the
large action space does not guarantee the
nonexistence of a single potential outcome
misestimation that misleads the whole deci-
sion. Our proposed loss minimizes the classi-
fication error of whether or not the action
is relatively good for the individual target
among all feasible actions, which further im-
proves the decision-making performance, as
we demonstrate. We also propose a network
architecture and a regularizer that extracts
a debiased representation not only from the
feature but also from the biased action for
better generalization on large action spaces.
Extensive experiments on synthetic and semi-
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synthetic datasets demonstrate the superior-
ity of our method for large combinatorial ac-
tion spaces.

1 INTRODUCTION

Predicting individualized causal effects is an impor-
tant issue in many domains for decision-making. For
example, a doctor considers which medication would
be the most effective for a patient, a teacher consid-
ers which problems are most effective for helping stu-
dent learn, and a retail store manager considers which
assortment of items would improve the overall store
sales. To support such decision-making, we advocate
providing a prediction of which actions will lead to
better outcomes.

Recent efforts in causal inference and counterfactual
machine learning have focused on making predictions
of the potential outcomes that correspond to each ac-
tion for each individual target on the basis of obser-
vational data. Observational data consists of features
of targets, past actions actually taken, and their out-
comes. We have no direct access to the past decision-
makers’ policies, i.e., the mechanism of how to choose
an action under a given target feature. Unlike in nor-
mal prediction problems, pursuing high-accuracy pre-
dictions only with respect to the historical data car-
ries the risk of incorrect estimates due to the sampling
bias in the past policies. This bias may cause spurious
correlation (Simon, 1954; Pearl, 2009), which might
mislead the decision-making. For those cases where
real-world experiments such as randomized controlled
trials (RCTs) or multi-armed bandit are infeasible or
too expensive, causal inference methods provide debi-
ased estimation of potential outcomes from observa-
tional data.

While most of the existing approaches assume limited
action spaces such as a binary one, as in conditional
average treatment effect (CATE) estimation, there are
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many real-world situations where the number of op-
tions is large. For example, doctors need to consider
which combination of medicines will best suit a pa-
tient.

For such cases, it is difficult to apply existing methods
(as in (Shalit et al., 2017; Yoon et al., 2018; Schwab
et al., 2018; Lopez et al., 2020)) for two reasons. One
is the issue of sample-efficiency for large action spaces.
Since the sample sizes for each action would be limited,
building models for each action (or using a multi-head
neural network), which existing methods adopt, is not
sample-efficient. The other reason is the gap between
the decision-making performance and the regression
accuracy of the potential outcome. Even if we man-
age to achieve the same level of regression accuracy as
when the action space is limited, the same decision-
making performance is no longer guaranteed in a large
action space, as we demonstrate in Section 4. This
is because, in a nutshell, the overestimated potential
outcome of only a single action may mislead the de-
cision, even though it has only a small impact on the
mean regression accuracy over all actions.

To achieve informative causal inference for decision-
making in a large action space, we propose solutions
for the above two issues. For the sample-efficiency,
we propose extracting representations not only from
features but also from actions. We extend two existing
representation-based causal effect inference methods,
respectively, to balance the representation distribution
to be similar to that in the randomized trials.

For the gap between the decision performance and the
regression accuracy, we prove that we can further im-
prove the decision performance by minimizing the clas-
sification error of whether or not each action is rela-
tively good for each target, in addition to the regres-
sion error (MSE). Unlike the recommendation prob-
lems in which ranking losses can be used, we cannot
directly observe whether the action is relatively good
or not since only one action and its outcome is ob-
served for each target. We therefore propose a proxy
loss that compares the observed outcome to the es-
timated conditional average performance of the past
decision-makers, which is estimated by regular super-
vised learning.

In summary, our proposed method minimizes both
the classification error and the MSE by using de-
biased representations of both the features and the
actions. We demonstrate the effectiveness of our
method through extensive experiments with synthetic
and semi-synthetic datasets.

x a Ya y

a = 0 a = 1

x1 0 1 – 1

x2 1 – 3 3

x3 1 – 2 2

x4 0 2 – 2

x a Ya y
a0 0 1
a1 0 1 0 1
a2 0 1 0 1 0 1 0 1

x1 (0, 0, 1) – 1 – – – – – – 1
x2 (0, 1, 0) – – 3 – – – – – 3
x3 (0, 0, 0) 4 – – – – – – – 4
x4 (1, 0, 1) – – – – – 6 – – 6

Figure 1: An example data table for our causal infer-
ence on a combinatorial action space. Dashes indicate
missing entries. Only factual outcomes are observed
(when a = a′, ya′ is observed) and the counterfactual
records {ya}a 6=a′ are missing.

2 PROBLEM SETTING

In this section, we formulate our problem and define
a decision-focused performance metric. Our aim is to
build a predictive model to inform decision-making.
Given a feature vector x ∈ X ⊂ Rd, the learned
predictive model f is expected to correctly predict
which action a ∈ A(x) leads to a better outcome
y ∈ Y ⊂ R, where A(x) is a feasible subset of a fi-
nite action space A given x. We hereafter assume that
the feasible action space does not depend on the fea-
ture, i.e., A(x) = A, for simplicity. A typical case of
large action spaces is when an action consists of mul-
tiple causes, i.e., A = {0, 1}m (combinatorial action
space).

We assume there exists a joint distribution
p(x, a, y1, . . . , y|A|) = p(x)µ(a|x)p(y1, . . . , y|A||x),
where µ(a|x) is the unknown decision-making pol-
icy of past decision-makers, called propensity, and
y1, . . . , y|A| are the potential outcomes corresponding
to each action. The observed (factual) outcome y
is the one corresponding to the observed action a,
i.e., a training instance is the triplet (xn, an, yan),
where n denotes the instance index, and the other
(counterfactual) potential outcomes are regarded as
missing, as shown in Fig. 1.

We make the following assumptions on the distribu-
tions of the observational data.

• (y1, . . . , y|A|) ⊥ a|x (unconfoundedness)

• ∀a ∈ A and ∀x, 0 < µ(a|x) < 1 (overlap)

These are commonly required to identify causal effects
(Imbens and Wooldridge, 2009; Pearl, 2009).
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ȳ

ȳ
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Figure 2: Example scatter plots of true vs. predicted potential outcomes for a target (fixed x) for different
models. Each point corresponds to an action. ERu

µ corresponds to the rate of instances in the shaded areas.
Assuming that the predicted best action â∗ := arg max

a
f(x, a) is adopted, minimizing the difference between its

outcome yâ∗ and the true optimal outcome ya∗ (regret) is our aim (see the definition in Section 4).

3 REGRET MINIMIZATION
NETWORK: DEBIASED
POTENTIAL OUTCOME
REGRESSION AND
CLASSIFICATION

For this problem of estimating the action evaluation
model, we propose our regret minimization network
(RMNet), which consists of two parts: 1) a decision-
focused risk to reduce the gap between the decision-
making performance and the regression accuracy, and
2) representation balancing methods for debiased and
sample-efficient learning.

3.1 Decision-Focused Risk

Most of the existing causal effect inference methods
aim at minimizing the MSE of the treatment effect
(a.k.a. the precision in estimation of heterogeneous
effect (PEHE) (Hill, 2011)) in the binary treatment
setting. In multiple treatment settings, a typical per-
formance measure is the MSE averaged uniformly over
all the actions (Schwab et al., 2018; Yoon et al., 2018):

MSEu(f) = E
x

[
1

|A|
∑
a∈A

E
ya|x

[(ya − f(x, a))2]

]
. (1)

We refer to MSEu as MSE, or specifically the uniform
MSE, in this paper.

On the other hand, there is a gap between the deci-
sion performance and the regression accuracy (MSEu).
Specifically, we do not necessarily have to accurately
estimate the outcomes of candidate actions, but it
is enough to identify better actions among others to
achieve a higher decision-making performance. This
is analogous to the personalized ranking approach in
recommender systems (Rendle et al., 2009), in which

pairwise comparison of the item preference for each
target user is considered.

The pairwise ranking approach (Joachims, 2002;
Burges et al., 2005) measures the consistency between
the actual and predicted orders by means of the error
rate of pairwise comparison as

ERrank(f) = E
i,j

[I(yi ≥ yj ⊕ f(xi) ≥ f(xj))] ,

where ⊕ denotes the logical XOR. However, we cannot
apply a regular pairwise loss, since we typically only
have the outcome for one action observed among the
feasible actions. Instead, we propose minimizing the
following comparison loss to the average performance
of the past decision-makers as the personalized base-
line for the target (x):

ERu
µ(f) = E

x

[
1

|A|
∑
a∈A

I(ya ≥ ȳ ⊕ f(x, a) ≥ ȳ)

]
, (2)

where ȳ = Ea∼µ(a|x) [Ya|x] is the average performance
of the past decision-makers under x. As shown in
Fig. 2, minimizing ERu

µ leads to better models in terms
of decision performance. The MSE is the same in
Fig. 2(a) and Fig. 2(b), and thus MSE cannot be used
to determine which of these prediction models is bet-
ter. Minimizing ERu

µ enables us to correctly choose the
model in Fig. 2(a) with a high decision performance
(small regret).

Replacing the expected value ȳ with its estimation
g(x) and the 0-1 loss with cross entropy, we get the
following risk:

ẼR
u

g (f) =

E
x

[
− 1

|A|
∑
a∈A
{s log v + (1− s) log(1− v)}

]
, (3)
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where s := I(y− g(x) ≥ 0) and v := σ(f(x, a)− g(x)),
and g(x) ' Ea∼µ(a|x) [Ya|x] is the estimated average
performance of the past decision-makers. We first fit g
with the standard supervised learning procedure from
{(xn, yn)} and then plug it into (3).

Not only the classification error but also the regres-
sion error (MSE) matters to the decision-making per-
formance. This is because even with high classifica-
tion accuracy, decisions might be misleading if only
one misclassified action a is predicted as the best (ŷa
is the highest among others {ŷa′}a′) but is actually
quite bad (ya is quite low), as in Fig. 2(c).

Therefore, we propose minimizing a combination of
both of the regression and classification risks, i.e., the
geometric mean of them.

Lu(f ; g) =

√
ẼR

u

g (f) ·MSEu(f). (4)

The reason we chose the geometric mean will be ex-
plained theoretically in Section 4. Intuitively, it is
sufficient to make one of these losses small, e.g., if
the classification loss is zero, good decisions can be
made even if the MSE is large. As shown in Fig. 2(a),
a model that achieves ERu

µ = 0 (thus the geometric
mean is also zero) can at least outperform the past
decision-makers on average (yâ∗ ≥ ȳ) no matter how
large the MSEu is.

3.2 Debiased and Sample-Efficient Learning

While accessible observational data taken from p(x, a)
is biased by the propensity µ(a|x), our target expected
risk Lu(f ; g) is averaged over all actions uniformly,
i.e., pu(x, a) = p(x)pu(a), where pu(a) = Unif(A)
is the discrete uniform distribution. In this section,
therefore, we construct two debiasing methods for the
sampling bias that performs domain adaptation from
p(x, a) to pu(x, a) as extensions of two existing ap-
proaches. Also, we propose network architectures that
extract representations from both the feature and the
action for better generalization in a large action space.

There are two major approaches for debiased learn-
ing in individual-level causal inference. One is a den-
sity estimation-based method called inverse probabil-
ity weighting using propensity score (IPW) (Austin,
2011), in which each instance is weighted by the in-
verse propensity 1/µ(an|xn). Since the expected risk
matches that of the RCT, a good performance can be
expected asymptotically under accurate estimation of
µ or when it is recorded as in logged bandit problems.
However, in observational studies where the propen-
sity has to be estimated and plugged in, its efficacy
would easily decrease (Kang et al., 2007). It becomes
further difficult when it comes to a large treatment

space. Zou et al. (2020) proposed assuming an intrin-
sic low-dimensional structure for combinatorial treat-
ment assignments (bundle treatments) a ∈ {0, 1}p and
estimating weights on the latent space. While in this
study we examine a general case of large treatment
spaces without additional assumptions, it may be nec-
essary to introduce such assumptions to consider such
a huge treatment space of combinatorial interventions.

The other approach is representation balancing (Shalit
et al., 2017; Johansson et al., 2016; Lopez et al., 2020),
in which a representation extractor of the feature φx
is trained to eliminate the effect of confounding as
well as to preserve the relation to the outcome. Shalit
et al. (2017); Johansson et al. (2016) proposed regu-
larizing the conditional probabilities of representations
{p(φx|a)}a to be similar to each other by means of the
integral probability metric (IPM) regularizer (Müller,
1997; Sriperumbudur et al., 2012) (as in Fig. 3(a))
for limited action spaces such as the binary space
A = {0, 1}. Lopez et al. (2020) proposed regularizing
the representation φx to be independent from the ac-
tion a by means of the Hilbert-Schmidt Independence
Criterion (HSIC) (Gretton et al., 2005, 2008) for real-
valued action space A ⊂ R. We extend this approach
to large treatment spaces.

To deal with a large treatment space, we propose per-
forming representation extraction from the treatment
a as well as the feature x. RMNet-IPM (Fig. 3(b))
extracts the joint representation φx,a from x and a,
which is regularized to be distributionally similar to
that of the RCTs pu(φx,a). That is, IPM measures
the discrepancy between the distributions

p(φx,a) :=

∫ ∑
a′

p(φx,a|x′, a′)µ(a′|x′)p(x′)dx′,

pu(φx,a) :=

∫ ∑
a′

p(φx,a|x′, a′)pu(a′)p(x′)dx′,

where p(φx,a|x′, a′) = δ(φx,a − φ(x′, a′)). IPM is de-
fined for a pair of distributions (p1, p2) over S and a
function family G as follows.

IPMG (p1, p2) = sup
g∈G

∣∣∣∣∫
S
g(s) (p1(s)− p2(s)) ds

∣∣∣∣ .
We adopt the set of 1-Lipschitz functions as G (as in
(Shalit et al., 2017)), after which IPM is equivalent
to the Wasserstein distance. Specifically, we use an
entropy relaxation of the exact Wasserstein distance,
called Sinkhorn distance (Cuturi, 2013), to ensure the
compatibility with the gradient-based optimization.
This discrepancy upper-bounds the gap between our
target risk (4), which is averaged over the uniform dis-
tribution with respect to action pu(x, a) = p(x)pu(a),
and the one of observational distribution p(x, a). The-
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Figure 3: Network structures of counterfactual regres-
sion for CATE (Shalit et al., 2017; Schwab et al., 2018)
and our proposed methods. A broken line indicates no
backpropagation.

oretical analysis for this point can be found in Ap-
pendix B.

Note that minimizing the discrepancy between p(φx,a)
and pu(φx,a) and preserving the causal relation are not
necessarily incompatible. In this sense, our approach,
which directly regularizes the representation distribu-
tion p(φx,a) to be similar to that taken from RCTs
pu(φx,a), provides a weaker and sufficient condition
for this domain adaptation problem. We discuss this
point in Appendix C.

RMNet-HSIC (Fig. 3(c)) extracts each representation
φx and φa from x and a separately, and they are reg-
ularized to be independent from each other by mini-
mizing HSIC(p(φx), p(φa)). HSIC can be defined as a
special case of the (squared) maximum mean discrep-
ancy (MMD), which is an instance of the IPM with
the class of norm-1 reproducing kernel Hilbert space
(RKHS) functions, as follows:

HSIC(p(φx), p(φa)) = MMD2(p(φx, φa), p(φx)p(φa)).

Algorithm 1 Regret minimization network

Input: Observational data D = {(xn, an, yn)}n, a hy-
perparameter α

Output: Trained network parameter W
1: Train g by an arbitrary supervised learning

method with D′ = {(xn, yn)}n, e.g.:
g = arg min

g′

∑
(yn − g′(xn))2.

2: if Method is RMNet-HSIC then
3: Set weight βn = 1/p̂(an) for each instance,

where p̂(an) is the count |{n ∈ D | a = an}|.
4: else
5: Set βn = 1 for all n.
6: end if
7: while Convergence criteria is not met do
8: Sample mini-batch {n1, . . . , nb} ⊂ {1, . . . , N}.
9: Calculate the gradient of the supervised loss L

in (5):
g1 = ∇W 1

b

∑
L(f(xni , ani ;W ), yni ; g(xni), βn).

10: Calculate the gradient of the representation bal-
ancing regularizer:
g2 = ∇WDbal({φ(xni

, ani
;W )}).

11: Obtain step size η with an optimizer (e.g., Adam
(Kingma and Ba, 2015)).

12: W ← [W − η(g1 + αg2)].
13: Check convergence criterion.
14: end while
15: return W

This means the joint distribution is being separated,
i.e., p(φx, φa) = p(φx)p(φa), but it does not mean the
consistency with the RCTs pu(φx,a) = p(φx)pu(φa).
To compensate p(φa), we weight the loss according to
the estimated marginal probability of the actions β =
1/p̂(a).

The resulting objective function is

min
f

1

N

∑
n

L(f(xn, an), yn; g(xn), βn)

+ α ·Dbal ({φ(xn, an)}n) + R(f),

(5)

where L is the empirical instance-wise version of (4),
Dbal is the balancing regularizer (IPM or HSIC), and
R is a regularizer. The resulting learning flow is shown
in Algorithm 1.

4 RELATION BETWEEN
PREDICTION ACCURACY AND
DECISION-MAKING
PERFORMANCE

In this section, we analyze our decision-focused per-
formance metric. This analysis demonstrates the diffi-
culty of maximizing the decision performance only by
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minimizing the regression error when the action space
is large. At the same time, however, it is shown that
we can further minimize the upper-bound of the regret
by minimizing a classification error, which justifies our
proposed loss (4) in Section 3.1.

Here we define the decision performance of a model
f as the simple average of the potential outcomes for
the top-k predicted actions by f . We call that perfor-
mance metric the mean cumulative gain (mCG), and
also define its difference from the oracle’s performance
(regret).

mCGk(f) :=
1

k
E
x

 ∑
a:rank(f(x,a))≤k

ya

 , (6)

Regretk(f) :=
1

k
E
x

 ∑
a:rank(ya)≤k

ya

−mCGk(f), (7)

where rank(·) is the rank among all the feasi-
ble actions, e.g., rank(f(x, a); {f(x, a′)}a′) :=
|{a′ | f(x, a′) ≥ f(x, a), a′ ∈ A}|. Here,
(1−mCGk=1(f)) is known as the policy risk
(Shalit et al., 2017). Since the first term in (7) is
constant with respect to f , the mCG and the regret
are two sides of the same coin as the performance
metrics of a model.

The relation between the regret and the regression and
classification accuracies is the following (full proof and
analysis on the tightness can be found in Appendix A).

Proposition 4.1. The regret in (7) will be bounded
with uniform MSE in (1) as

Regretk(f) ≤ |A|
k

√
ERu

k(f) ·MSEu(f), (8)

where ERu
k(f) is the top-k classification error rate,

i.e.,

ERu
k(f) :=

E
x

[
1

|A|
∑
a∈A

I ((rank(ya) ≤ k)⊕ (rank(f(x, a)) ≤ k))

]
.

Proof Sketch. Let s(x, a) := I(rank(ya) ≤ k) −
I(rank(f(x, a)) ≤ k) denote the classification error.
Then, we have

k · Regretk(f)

= |A| E
x,a∼pu(x,a)

[s(x, a)ya]

≤ |A| E
x,a∼pu(x,a)

[s(x, a)(ya − f(x, a))] (9)

≤ |A|
√

E
x,a∼pu(x,a)

[s(x, a)2] E
x,a∼pu(x,a)

[(ya − f(x, a))2]

(10)

= |A|
√

ERu
k(f) ·MSEu(f).

Equation (9) is from the definition of s(x, a) and (10)
is from the Cauchy-Schwarz inequality. By dividing
both sides by k, we get the proposition.

Since ERu
k(f) ≤ 1 for any f , we see that only mini-

mizing the uniform MSE as in existing causal inference
methods leads to minimizing the regret. However, if
|A|/k is large, the bound would be loose, and only un-
realistically small MSEu provide a meaningful guaran-
tee for the regret.

At the same time, we see that the bound can be
further improved by minimizing the uniform top-k
classification error rate ERu

k(f) simultaneously, which
leads to our proposed method. Let k′ be the past
decision-makers’ average performance, i.e., ya∗

k′+1
≤

Ea∼µ(a|x)[ya|x] ≤ ya∗
k′

. Then, the proposed method
can be interpreted as minimizing the upper-bound of
Regretk′ . While training a model for a particular k is
an interesting direction, the proposed method is not so
sensitive to the difference between the decision-making
performance of the data k′ and the actual k to be eval-
uated, as we will see in Section 5. Another interesting
direction is optimizing k or the decision-making pol-
icy. The mCGk can be interpreted as the expected
performance (reward) of the following plug-in policy
that takes an action uniformly at random from the
predicted top-k actions.

πfk (a|x) :=

{
1/k if rank(f(x, a); {f(x, a′)}a′) ≤ k

0 otherwise,

Therefore, choosing k means choosing a policy. If we
choose k greater than 1, the oracle’s performance (the
first term in (7)) would be smaller, but the upper
bound of the regret (8) would be larger. Thus there
may exist an optimal k > 1 that maximizes the overall
performance of the decision-making.

5 EXPERIMENTS

We investigated the effectiveness of our method
through synthetic and semi-synthetic experiments. We
newly designed both datasets for the problem setting
with a large action space.

5.1 Experimental Setup

Compared Methods We compared our proposed
method (RMNet) with ridge linear regression (OLS),
random forests (Breiman, 2001) (RF), k-nearest neigh-
bor (kNN), Bayesian additive regression trees (BART)
(Hill, 2011), naive deep neural network (S-DNN), naive
DNN with multi-head architecture for each action
(M-DNN) (a.k.a. TARNET (Shalit et al., 2017)),
RankNet (Burges et al., 2005), and a straightforward
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extension of the existing action-wise representation-
balancing method (counterfactual regression network
(CFRNet)) (Shalit et al., 2017). We also made an ab-
lation study to clarify the contributions of each compo-
nent. The strength of representation-balancing regu-
larizer α in CFRNet and the proposed method was se-
lected from [0.1, 0.3, 1.0, 3.0, 10.0]. Other specifications
of the DNN parameters can be found in Appendix D.

Evaluation We used the normalized mean gain
(NMG) as the main metric, defined as follows.

NMG :=
∑
x

yâ∗(x)

/∑
x

ya∗(x),

where â∗ and a∗ are the predicted and true best actions
for each x, respectively. The NMG is proportional to
the mean CG (k = 1) (6). We can see NMG ≤ 1. Since
we have standardized the outcome, the chance rate is
NMG = 0. In addition to NMG, we have also evalu-
ated with respect to MSEu and ERu

k=1. The validation
and the model selection were based on the NMG. For
those cases where the complete validation dataset to
compute NMG is not accessible, an alternative vali-
dation strategy needs to be considered, e.g., imputing
missing values by 1-NN or BART (as in (Hassanpour
and Greiner, 2019)) or constructing a special method
(such as the counterfactual cross-validation in (Saito
and Yasui, 2020)).

Infrastructure All the experiments were run on a
machine with 28 CPUs (Intel(R) Xeon(R) CPU E5-
2680 v4 @ 2.40GHz), 250GB memory, and 8 GPUs.

5.2 Synthetic Experiment

Dataset We prepared four biased datasets with
sampling bias in total to examine the robustness of
the proposed and baseline methods. For a detailed de-
scription of the generation process, see Appendix D.
The feature space and the action space are fixed to R5

and {0, 1}5, respectively. The true causal models are
set as follows. Three settings (called Quadratic) have
a relation ya(x) = a2

Υ− 2xΥ + ε, where aΥ = w>a a and
xΥ = w>x x are the one-dimensional representations of
a and x, respectively, and where wa, wx ∼ N(0, 1/5)5.
The last setting (called Bilinear) has a bilinear relation
y = x>Wa + ε, where W ∼ N(0, 1/25)5×5. For train-
ing, only one action and the corresponding outcome
for each x are sampled as p(a|x) ∝ exp(10 |xΣ − aΣ|),
where xΣ and aΣ are additional representations of x
and a. The three settings for the quadratic patterns
correspond to the relation between ·Σ and ·Υ as il-
lustrated in Fig. 4(a)–(c), i.e., xΣ = xΥ (=: x∆) in
Setups A and C, and aΣ = aΥ (=: a∆) in Setups
B and C. These relations of variables were designed
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Figure 4: Data generation models for synthetic exper-
iment. Shaded variables denote the accessible vari-
ables in training. Non-shaded variables are latent one-
dimensional representations of x and a.

Table 1: Synthetic results on NMG (larger is better
and the maximum is one) and its standard error in
ten data generations. Best and second-best methods
are in bold.

Method Quadratic-A Quadratic-B Quadratic-C Bilinear

OLS 0.35 ± 0.13 0.74 ± 0.10 0.73 ± 0.12 0.02 ± 0.02

RF 0.71 ± 0.08 0.24 ± 0.02 0.91 ± 0.04 0.67 ± 0.03

kNN 0.58 ± 0.05 0.33 ± 0.04 0.53 ± 0.07 0.59 ± 0.03

BART 0.53 ± 0.12 0.91 ± 0.05 0.99 ± 0.00 0.14 ± 0.07

M-DNN 0.46 ± 0.09 0.42 ± 0.12 0.57 ± 0.12 −0.01 ± 0.04

S-DNN 0.63 ± 0.08 0.43 ± 0.07 0.60 ± 0.08 0.58 ± 0.09

CFRNet 0.46 ± 0.08 0.43 ± 0.12 0.63 ± 0.13 −0.01 ± 0.04

RankNet 0.62 ± 0.09 0.70 ± 0.05 0.68 ± 0.08 0.74 ± 0.04

RMNet-IPM 0.86 ± 0.04 0.84 ± 0.03 0.82 ± 0.05 0.77 ± 0.04

RMNet-HSIC 0.90 ± 0.02 0.88 ± 0.05 0.86 ± 0.07 0.14 ± 0.03

to reproduce spurious correlations, which mislead the
decision-making as follows. In Setup A, aΣ would have
dependence on y through its dependence on x∆ despite
aΣ itself having no causal relation to y. In the same
manner, in Setup B, xΣ would have dependence on y
through a∆, and the causal effect of a∆ may appear
discounted. Setup C has both effects. The sample
sizes for x were 1,000 for training, 100 for validation,
and 200 for testing.

Results The results listed in Table 1 show that our
proposed method achieved the best or comparable per-
formance under all settings, while the other methods
varied in performance across settings. We analyze the
reason of the poor performance of RMNet-HSIC in Bi-
linear in the ablation study in Section 5.4.

5.3 Semi-Synthetic Experiment

Dataset (GPU Kernel Performance) For the
semi-synthetic experiment, we used the SGEMM GPU
kernel performance dataset (Nugteren and Codreanu,
2015; Ballester-Ripoll et al., 2019), which has 14 fea-
ture attributes of GPU kernel parameters and four tar-
get attributes of elapsed times in milliseconds for four
independent runs of each combination of parameters.
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Table 2: Semi-synthetic results on NMG with the standard error in ten different samplings of the training data.
The MSEu and ERu

k=1 are also shown. Best and second-best methods are in bold.

Normalized mean gain MSEu ERu
k=1

|A| 8 16 32 64 8 16 32 64 8 16 32 64
Method

OLS −0.04 ± 0.15 −0.08 ± 0.20 −0.10 ± 0.13 −0.01 ± 0.10 1.12 1.89 1.70 5.86 0.221 0.116 0.061 0.031
RF 0.24 ± 0.08 0.33 ± 0.07 0.33 ± 0.05 0.38 ± 0.05 1.03 0.87 0.93 1.07 0.214 0.114 0.059 0.030
kNN 0.35 ± 0.04 0.39 ± 0.04 0.33 ± 0.04 0.39 ± 0.02 0.59 0.64 0.64 0.63 0.211 0.113 0.059 0.030
BART −0.05 ± 0.13 0.13 ± 0.13 0.13 ± 0.10 0.04 ± 0.09 1.06 1.05 1.15 1.63 0.222 0.116 0.060 0.031
M-DNN 0.40 ± 0.05 0.48 ± 0.06 0.30 ± 0.07 0.37 ± 0.05 0.78 0.83 0.82 0.84 0.211 0.113 0.059 0.030
S-DNN 0.28 ± 0.09 0.25 ± 0.10 0.32 ± 0.07 0.45 ± 0.05 0.75 0.64 0.74 0.74 0.212 0.114 0.059 0.029
CFRNet 0.50 ± 0.06 0.39 ± 0.14 0.39 ± 0.10 0.35 ± 0.05 0.78 0.80 0.87 0.86 0.210 0.113 0.058 0.030
RankNet 0.35 ± 0.07 0.29 ± 0.09 0.38 ± 0.06 0.45 ± 0.05 6.08 10.13 8.47 2.42 0.210 0.113 0.058 0.029

RMNet-IPM 0.68 ± 0.01 0.61 ± 0.05 0.61 ± 0.04 0.51 ± 0.06 0.76 0.81 0.85 0.75 0.204 0.109 0.055 0.029
RMNet-HSIC 0.59 ± 0.04 0.57 ± 0.06 0.55 ± 0.06 0.69 ± 0.06 0.48 0.66 0.61 0.39 0.207 0.109 0.056 0.028

We used the inverse of the mean elapsed times as the
outcome, resulting in 241.6k instances in total. By
treating some of the feature attributes as action di-
mensions, we obtained a complete dataset, which has
all the entries (potential outcomes) in Fig. 1 observed.
Then we composed our semi-synthetic dataset by bi-
ased subsampling of only one action a and the corre-
sponding potential outcome ya for each x. The details
of this preprocess can be found in Appendix D.

The sampling policy in the training data was
p(a|x, y) ∝ exp(−10|y− [x>, a>]>w|), where w is sam-
pled from N (0, 1)d+m. This policy reproduces a spu-
rious correlation; that is, a random projection of the
feature and the action [x>, a>]>w is likely to have
little causal relation with y but does have a strong
correlation due to the sampling policy. This policy
also depends on y, which violates the unconfounded-
ness assumption. However, the dataset we used has
a low noise level, i.e., y ' g(x, a) for some function
g, and thus the violation is limited, i.e., p(a|x, y) '
p(a|x, g(x)).

We split the feature set {xn}n into 80% for training,
5% for validation, and 15% for testing. Then, for the
training set, only one action a and the corresponding
outcome y was taken for each x. The resulting training
sample size for each setting of m is listed in Table 5 in
Appendix D. We repeated the training and evaluation
process ten times for different splits and samplings of
a.

Results The results listed in Table 2 show that our
proposed methods outperformed the others in NMG
in all cases. The decision performance (NMG) was
more consistent with ER than MSE, indicating that
ER as well as MSE needs to be considered. The per-
formance of multi-head DNNs (M-DNN and CFRNet)
decreased in larger action spaces, while single-head
DNNs (S-DNN and the proposed methods) maintained
their performance. This demonstrates the importance

of sample efficiency by extracting the representation
of both the feature and the action.

5.4 Ablation Study

We examined the effect of each component of the pro-
posed method, i.e., the balancing regularizer (Dbal),
each component of the risk (MSE and ER), and the
representation extraction from the action (φa) and the
reweighting with respect to the marginal distribution
of the action (β) for RMNet-HSIC. Table 3 shows the
results.

The effectiveness of Dbal was verified in the setting of
|A| = 32. Also, the effectiveness of ER was significant
in the Bilinear setting. Extracting representation from
the action (φa) was quite effective in Semi-synthetic
settings. The reweighting (β) was also effective in the
Semi-synthetic settings, while it decreased the perfor-
mance in the Bilinear setting. A possible reason is
the estimation variance induced by plugging the es-
timated marginal distribution of the action p̂(a) into
weights as its inverse, which is the same issue as the
inverse propensity score weighting approach.

6 SUMMARY

In this paper, we have investigated causal inference
on a large action space with a focus on the decision-
making performance. We analyzed the decision-
making performance brought about by a model
through a simple prediction-based decision-making
policy. We showed that the bound with only the
regression accuracy (MSE) gets looser as the action
space gets large, which demonstrates the difficulty of
utilizing causal inference in decision-making in a large
action space. At the same time, however, our bound
indicates that minimizing not only the regression loss
but also the classification loss leads to a better perfor-
mance. From this viewpoint, our proposed methods
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Table 3: Ablation study of the proposed methods (indicated by (†)) on semi-synthetic dataset. Dbal indicates the
type of balancing regularizer. MSE and ER are the used loss. φa indicates whether or not the representation is
also extracted from the action, i.e., if φa is not checked, identity function is used for φa (i.e., φa = a). β indicates
the reweighting with 1/p̂(a), which is needed only in the HSIC-based methods (as explained in Section 3.2). Best
and second-best methods are in bold.

Normalized mean gain
Synthetic Semi-synthetic

Dbal MSE ER φa β Bilinear |A| = 32 |A| = 64

† IPM X X X — 0.77 ± 0.04 0.61 ± 0.04 0.51 ± 0.06

IPM X X — 0.73 ± 0.03 0.61 ± 0.05 0.58 ± 0.05

IPM X X — 0.55 ± 0.10 0.55 ± 0.05 0.49 ± 0.05

None X X X 0.72 ± 0.03 0.39 ± 0.07 0.49 ± 0.06

†HSIC X X X X 0.14 ± 0.03 0.55 ± 0.06 0.69 ± 0.06

HSIC X X X 0.11 ± 0.02 0.56 ± 0.07 0.72 ± 0.02

HSIC X X X 0.16 ± 0.05 0.59 ± 0.05 0.68 ± 0.06

HSIC X X X 0.04 ± 0.03 0.31 ± 0.08 0.23 ± 0.09

HSIC X X X 0.51 ± 0.07 0.38 ± 0.07 0.49 ± 0.06

HSIC X X 0.63 ± 0.05 0.29 ± 0.07 0.22 ± 0.09

minimize both the MSE and the classification loss of
whether or not the outcome is better than the aver-
age performance of the past decision-makers. Specif-
ically, we adopt the cross-entropy with a teacher la-
bel indicating whether an observed outcome is better
than the estimated average decision performance of
the past decision-makers under a given feature. For
the sample efficiency in a large treatment space, we
proposed extracting representations from both the fea-
ture and the action. To generalize in the distribution
of RCTs, we proposed two balancing regularizers that
encourage the representation distribution to be similar
to that of RCTs as extensions of existing approaches.
Experiments on synthetic and semi-synthetic datasets,
which were designed to have misleading spurious corre-
lations, demonstrated the superior performance of the
proposed methods with respect to the decision perfor-
mance.
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