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Supplementary Material

This supplement is structured as follows: In Appendix A we present proofs for all novel theoretical results stated
in Section 5 of the main text. In Appendices B and C we provide additional experimental results to support the
discussion in Section 4 of the main text.

A Proof of Theoretical Results

In what follows we let H denote the reproducing kernel Hilbert space H(k) reproduced by the kernel k and let
( · (H denote the induced norm in H.

A.1 Proof of Theorem 1

To start the proof, define
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and note immediately that am = (fm(2H. Then we can write a recursive relation
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We will first derive an upper bound for (∗), then one for (∗∗).
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In (8) we used the reproducing property, while in (9) we used the Cauchy–Schwarz inequality and in (10) we
used Jensen’s inequality. To bound the third term in (11), we write
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This linear combination is clearly minimised by taking each of the xi equal to a candidate point xj that
minimises fm−1(xj), and taking the corresponding cj = 1, and all other ci = 0. Now consider an element
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Combining this with (11) provides an overall bound on (∗).

Bounding (∗∗): To upper bound (∗∗) we can in fact just use an equality;

(∗∗) = −2s

3

4

m−1
/

i=1

s
/

j=1

2

k(xπ(i,j), x) dµ(x) + s(m− 1)

22

k(x, x′) dµ(x) dµ(x′)

5

6

+ s2
22

k(x, x′) dµ(x) dµ(x′)

= −2s〈fm−1, hµ〉H + s2(hµ(2H

where hµ =
#

k(·, x) dµ(x).

Bound on the Iterates: Combining our bounds on (∗) and (∗∗), we obtain
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The last line arises because

(hµ(2H =

22

k(x, x′) dµ(x) dµ(x′) =

22

〈k(x, ·), k(x′, ·)〉 dµ(x) dµ(x′) (12)

≤
22

|〈k(x, ·), k(x′, ·)〉| dµ(x) dµ(x′)

≤
22

(k(x, ·)(H(k(x′, ·)(H dµ(x) dµ(x′) (13)

=

;

2

,

k(x, x) dµ(x)

<2

≤
2

k(x, x) dµ(x) = C2
µ,k. (14)

In (12) we used the reproducing property, while in (13) we used the Cauchy–Schwarz inequality and in (14) we
used Jensen’s inequality.
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as an overall bound on the iterates am.

Inductive Argument: Next we follow a similar argument to Theorem 1 in Riabiz et al. (2020) to establish an
induction in am. Defining C2 := (Cn,k + Cµ,k)

2 for brevity and noting that C2 is a constant satisfying C2 ≥ 0,
we assert
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Overall Bound: To complete the proof, we first show that Φ2 ≤ C2 by writing

Φ2 = (hw − hµ(2H ≤ (hw(2H + 2(hw(H · (hµ(H + (hµ(2H
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as claimed. □

Remark: We observe that, in the myopic case only (s = 1), one can alternatively recover Theorem 1 as a
consequence of Theorem 1 in Riabiz et al. (2020) (refer also to Theorem 5 of Chen et al., 2019). This can be
seen by noting that MMDµ,k0(ν) = MMDµ,k(ν) for all ν ∈ P(X ), where k0 is the kernel
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A.2 Proof of Theorem 2

First note that the preconditions of Theorem 1 are satisfied. We may therefore take expectations of the bound
obtained in Theorem 1, to obtain that:

E

3

G

4

MMDµ,k

-

.

1

ms

m
/

i=1

s
/

j=1

δ(xπ(i,j))

0

1

2
5

H

6

≤ E

3

4 min
1Tw=1
wi≥0

MMDµ,k

C

n
/

i=1

wiδ(xi)

D2
5

6+ E[C2]

;

1 + logm

m

<

, (17)



Optimal Quantisation of Probability Measures Using Maximum Mean Discrepancy

To bound the first expectation we proceed as follows:
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To bound the second expectation we use the fact that C2 = (Cµ,k + Cn,k)
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Thus we arrive at the overall bound
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as claimed. □

Remark: We observe that, in the myopic case only (s = 1), one can alternatively recover Theorem 2 as a
consequence of Theorem 2 in Riabiz et al. (2020), once again using the observation that the kernel in (16)
satisfies the preconditions of Theorem 2 in Riabiz et al. (2020).
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A.3 Proof of Theorem 3

The following proof combines parts of the arguments used to establish Theorem 1 and Theorem 2, with additional
notation required to deal with the mini-batching involved.

In a natural extension to the proof of Theorem 1, we define
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We will first derive an upper bound for (∗), then one for (∗∗).
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In (22) we used the reproducing property. In (23) we used the Cauchy–Schwarz inequality. In (24) we used
Jensen’s inequality.

To bound the third term, we write
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i , . . . , xm

i ) we have that

Mm =

A

n
/

i=1

cik(·, xm
i ) : ci ≥ 0,

n
/

i=1

ci = 1

B

Then we have for any h ∈ Mm

〈fm−1, h〉H =

=

fm−1,

n
/

i=1

cik(·, xm
i )

>

H

=

n
/

i=1

cifm−1(x
m
i )

This linear combination is clearly minimised by taking the xm
j ∈ {xm

i }bi=1 that minimises fm−1(x
m
j ), and taking

the corresponding cj = 1, and all other ci = 0. Now consider the element hm
w =

!b
i=1 w

m
i k(·, xm

i ) for which the
weights are equal to the optimal weight vector wm. Clearly hm

w ∈ Mm. Thus

min
S∈{1,...,b}s

/

j∈S

fm−1(x
m
j ) = s · inf

h∈Mm

〈fm−1, h〉H ≤ s · 〈fm−1, h
m
w 〉H.

Bounding (∗∗): Our bound on (∗∗) is actually just an equality:

(∗∗) = −2s

3

4

m−1
/

i=1

s
/

j=1

2

k(xi
π(i,j), x) dµ(x) + s(m− 1)

22

k(x, x′) dµ(x) dµ(x′)

5

6

+ s2
22

k(x, x′) dµ(x) dµ(x′)

= −2s〈fm−1, hµ〉H + s2(hµ(2H

where hµ =
#

k(·, x) dµ(x).

Bound on the Iterates: Combining our bounds on (∗) and (∗∗) leads to the following bound on the iterates:

am ≤ am−1 + s2C2
b,m,k + 2s2Cb,m,kCµ,k + 2s〈fm−1, h

m
w 〉H − 2s〈fm−1, hµ〉H + s2(hµ(2H

= am−1 + s2C2
b,m,k + 2s2Cb,m,kCµ,k + 2s〈fm−1, h

m
w − hµ〉H + s2(hµ(2H

≤ am−1 + s2C2
b,m,k + 2s2Cb,m,kCµ,k + 2s(fm−1(H · (hm

w − hµ(H + s2(hµ(2H
≤ am−1 +

*

s2C2
b,m,k + 2s2Cb,m,kCµ,k + s2C2

µ,k

+

+ 2s
√
am−1 · (hm

w − hµ(H

The last line arises because

(hµ(2H =

22

k(x, x′) dµ(x) dµ(x′) =

22

〈k(x, ·), k(x′, ·)〉 dµ(x) dµ(x′) (25)



Teymur, Gorham, Riabiz, Oates

≤
22

|〈k(x, ·), k(x′, ·)〉| dµ(x) dµ(x′)

≤
22

(k(x, ·)(H(k(x′, ·)(H dµ(x) dµ(x′) (26)

=

;

2

,

k(x, x) dµ(x)

<2

≤
2

k(x, x) dµ(x) = C2
µ,k (27)

In (25) we used the reproducing property. In (26) we used the Cauchy–Schwarz inequality. In (27) we used
Jensen’s inequality.

We now note that

(hm
w − hµ(2H = 〈hm

w − hµ, h
m
w − hµ〉H

=

=

b
/

i=1

wm
i k(·, xm

i )−
2

k(·, x) dµ(x),
b

/

i′=1

wm
i′ k(·, xm

i′ )−
2

k(·, x′) dµ(x′)

>

H

=

b
/

i=1

b
/

i′=1

wm
i wm

i′ k(x
m
i , xm

i′ )− 2

b
/

i=1

wm
i

2

k(xm
i , x) dµ(x) +

22

k(x, x′) dµ(x) dµ(x′)

= MMDµ,k

C

b
/

i=1

wm
i δ(xm

i )

D2

=: Φ2
m,

which gives
am ≤ am−1 + s2(Cb,m,k + Cµ,k)

2 + 2s
√
am−1 · Φm.

We then follow a similar argument to Theorem 1 in Riabiz et al. (2020) to establish an induction in am.

Inductive Argument: Let c2m := (Cb,m,k + Cµ,k)
2. We assert

E[am] ≤ (sm)2E[Φ2
m +Km], with Km :=

1

m
(c2m − Φ2

m)

m
/

j=1

1

j

For m = 1, the induction holds since a1 ≤ s2c1. We now assume that E[am−1] ≤ s2(m − 1)2E[Φ2
m−1 +Km−1].

Then

E[am] ≤ E[am−1] + s2E[c2m] + 2sE[√am−1 · Φm]

= E[am−1] + s2E[c2m] + 2sE[√am−1] · E[Φm] (independence of am−1 and Φm)

≤ E[am−1] + s2E[c2m] + 2s
,

E[am−1] · E[Φm] (Jensen’s inequality)

≤ s2(m− 1)2E[Φ2
m−1 +Km−1] + s2E[c2m] + 2s2(m− 1)E[Φm]

:

E[Φ2
m−1 +Km−1]

≤ s2(m− 1)2E[Φ2
m +Km−1] + s2E[c2m] + 2s2(m− 1)E[Φm]

,

E[Φ2
m +Km−1] (since Φm−1

d
= Φm)

≤ s2(m− 1)2E[Φ2
m +Km−1] + s2E[c2m] + 2s2(m− 1)E[Φ2

m]1/2
,

E[Φ2
m +Km−1] (Jensen’s inequality)

≤ s2
(

(m− 1)2E[Φ2
m +Km−1] + E[c2m] + (m− 1)(2E[Φ2

m] + E[Km−1])
)

(28)

= s2E
(

(m2 − 1)Φ2
m +m(m− 1)Km−1 + c2m

)

= s2E
E

(m2 − 1)Φ2
m +m(c2m−1 − Φ2

m−1)

m−1
/

j=1

1

j
+ c2m

F

= s2E
E

(m2 − 1)Φ2
m +m(c2m−1 − Φ2

m−1)

m
/

j=1

1

j
−m(c2m−1 − Φ2

m−1)
1

m
+ c2m

F

= s2E
E

(m2 − 1)Φ2
m +m(c2m−1 − Φ2

m−1)

m
/

j=1

1

j
−m(c2m − Φ2

m)
1

m
+ c2m

F

(since cm−1
d
= cm, Φm−1

d
= Φm)
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= s2E
E

m2Φ2
m +m(c2m−1 − Φ2

m−1)

m
/

j=1

1

j

F

= (sm)2E[Φ2
m +Km]

which proves the induction. The line (28) follows from the second by the fact that for any a, b > 0, it holds that
2a

√
a2 + b ≤ 2a2 + b.

Overall Bound: We now show that Φ2
m ≤ c2m, by writing

Φ2
m = (hm

w − hµ(2H ≤ (hm
w (2H + 2(hm

w (H · (hµ(H + (hµ(2H

and noting that since
!n

i=1 w
m
i = 1, it holds that

(hm
w (2H =

b
/

i=1

b
/

i′=1

wm
i wm

i′ k(x
m
i , xm

i′ ) ≤ C2
b,m,k.

We have already shown that (hµ(2 ≤ C2
µ,k, thus it follows that Φ2

m ≤ C2
b,m,k + 2Cb,m,kCµ,k + C2

µ,k = c2m as

required. Using this bound in conjunction with the elementary series inequality
!m

j=1 j
−1 ≤ (1+logm), we have

Km ≥ 0 and

Km =
1

m
(c2m − Φ2

m)

m
/

j=1

1

j
≤ 1

m
c2m

m
/

j=1

1

j
≤

;

1 + logm

m

<

c2m

An identical argument to that used between (20) and (21) shows that

E[C2
b,m,k] =

log(nC1)

γ

and therefore

E[c2m] ≤ 2C2
µ,k + 2E[C2

b,m,k] ≤ 2C2
µ,k +

2 log(bC1)

γ
.

An identical argument to (18)-(19) gives that

E[Φ2
m] ≤ log(C1)

bγ

From this the theorem follows by noting

E

3

G

4

MMDµ,k

-

.

1

ms

m
/

i=1

s
/

j=1

δ(xi
π(i,j))

0

1

2
5

H

6

=
E[am]

(sm)2
≤ E[Φ2

m] +

;

1 + logm

m

<

E[c2m]

≤ log(C1)

bγ
+ 2

;

C2
µ,k +

log(bC1)

γ

<;

1 + logm

m

<

.

□
This argument relied on independence between mini-batches and therefore it may not easily generalise to the
MCMC context.

Remarks: We observe that, in the myopic case only (s = 1), one can alternatively recover Theorem 3 as a
consequence of Theorem 6 in Chen et al. (2019), once again using the observation that the kernel in (16) satisfies
the preconditions of Theorem 6 in Chen et al. (2019).

The argument used to prove Theorem 3 relies on independence between mini-batches and therefore it may not
easily generalise to the MCMC context, in which this is unlikely to be true. Theorem 7 in Chen et al. (2019)
considered a particular form of dependence between mini-batches (once again, only for the case s = 1), but this
result does not directly apply to mini-batches sampled from MCMC output.



Teymur, Gorham, Riabiz, Oates

A.4 Proof of Theorem 4

The argument below is almost identical to that used in Theorem 2 of Riabiz et al. (2020), with most of the effort
required to handle the non-myopic optimisation having already been performed in Theorem 1. In particular, it
relies on the following technical result:

Lemma 1 (Lemma 3 in Riabiz et al. (2020)). Let X be a measurable space and let µ be a probability distribution
on X . Let k : X ×X → R be a reproducing kernel with

#

k(x, ·)dµ(x) = 0 for all x ∈ X . Consider a µ-invariant,
time-homogeneous reversible Markov chain (xi)i∈N ⊂ X generated using a V -uniformly ergodic transition kernel,
such that V (x) ≥

,

k(x, x) for all x ∈ X , with parameters R ∈ [0,∞) and ρ ∈ (0, 1) as in (7). Then we have
that

n
/

i=1

/

r∈{1,...,n}\{i}

E [k(xi, xr)] ≤ C3

n−1
/

i=1

E
&

,

k(xi, xi)V (Xi)
'

with C3 := 2Rρ
1−ρ . □

The proof starts in a similar manner to the proof of Theorem 2, taking expectations of the bound obtained in
Theorem 1 to arrive at (17).

An identical argument to that used in the proof of Theorem 2 allows us to bound

E[C2] ≤ 2

;

C2
µ,k +

log(nC1)

γ

<

.

Thus it remains to bound the first term in (17) under the assumptions that we have made on the Markov chain
(xi)i∈N. To this end, we have that

E

3

4 min
1Tw=1
wi≥0

MMDµ,k

C

n
/

i=1

wiδ(xi)

D2
5

6 ≤ E

3

4MMDµ,k

C

1

n

n
/

i=1

δ(xi)

D2
5

6

= E

3

4

1

n2

n
/

i=1

n
/

j=1

k(xi, xj)−
2

n

n
/

i=1

2

k(x, xi) dµ(x) +

22

k(x, y) dµ(x) dµ(y)

5

6

= E

3

4

1

n2

n
/

i=1

n
/

j=1

k(xi, xj)

5

6 (since
#

k(x, ·)dµ(x) = 0)

= E

I

1

n2

n
/

i=1

k(xi, xi)

J

+ E

3

4

1

n2

n
/

i=1

/

j ∕=i

k(xi, xj)

5

6 . (29)

The first term in (29) is handled as follows:

1

n2

n
/

i=1

E [k(xi, xi)] =
1

n2

n
/

i=1

E
E

1

γ
log eγk(xi,xi)

F

≤ 1

γn2

n
/

i=1

log
$

E
&

eγk(xi,xi)
'%

≤ log(C1)

γn

The second term in (29) can be controlled using Lemma 1:

E

3

4

1

n2

n
/

i=1

/

j ∕=i

k(xi, xj)

5

6 ≤ C

n2

n−1
/

i=1

E
&

,

k(xi, xi)V (Xi)
'

≤ C3

n2
(n− 1)C2 ≤ C2C3

n
.

Thus we arrive at the overall bound

E

3

G

4

MMDµ,k

-

.

1

ms

m
/

i=1

s
/

j=1

δ(xπ(i,j))

0

1

2
5

H

6

≤ log(C1)

nγ
+

C2C3

n
+ 2

;

C2
µ,k +

log(nC1)

γ

<;

1 + logm

m

<

,

as claimed. □
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B Semidefinite Relaxation

In this supplement we briefly explain how to construct a relaxation of the discrete optimisation problem (5).
The standard technique for relaxation of a quadratic programme of this form is to construct an approximating
semidefinite programme (SDP). This not only convexifies the problem but also replaces a quadratic problem in
v with a linear problem in a semidefinite matrix M . To simplify the presentation we consider5 the BQP setting
of Remark 1, so that v ∈ {0, 1}n. We also employ a change of variable ṽj := 2vj − 1, so that ṽ ∈ {−1, 1}n. By
analogy with (4) we recast an optimal subset π as the solution to the following BQP.

argmin
ṽ∈{−1,1}n

ṽ⊤Kṽ + 2(1⊤K + ci⊤j )ṽ, s.t. 1⊤ṽ = 2s− n. (30)

The relaxation treats ṽ as a continuous variable whose feasible set is the entire convex hull of {−1, 1}n. Define
Ṽ = ṽṽ⊤ and then relax this non-convex equality, so that Ṽ − ṽṽ⊤ ≽ 0 rather than the Ṽ − ṽṽ⊤ = 0. Then
rewrite this as a Schur complement, using the relation:

M :=

;

1 ṽ⊤

ṽ Ṽ

<

≽ 0 ⇐⇒ Ṽ − ṽṽ⊤ ≽ 0

Consider now the two (n+ 1)× (n+ 1) matrices constructed as follows

A=

;

1⊤K 1+ 2ci⊤j 1⊤K + ci⊤j
K 1+ cij K

<

B=

;

0 1
21

⊤
1
21 00⊤

<

The SDP relaxation of (30) is then

minimise M •A s.t. diag(M) = 1

B •M = 2s− n

M ≽ 0

(31)

(X • Y ≡
!!n

i,j=1 XijYij). Note that (31) collapses to (30) when Ṽ = ṽṽ⊤ and ṽ ∈ {−1, 1}n are enforced.
Note that if the cardinality constraint B •M = 2s− n is omitted, then (31) is equivalent to the classical graph
partitioning problem MAX-CUT (Goemans and Williamson, 1995).

The SDP (31) is linear in M and is soluble to within any ε > 0 of the true optimum in polynomial time. Its
solution M∗, however, only solves the BQP (30) if Ṽ ∗ = ṽ∗ṽ∗⊤, or equivalently rank(M∗) = 1. This will not be
true in general and the second part of a relaxation procedure is to round the output ṽ∗ ∈ [−1, 1]n to a feasible
vector ṽ ∈ {−1, 1}n for the BQP. Goemans and Williamson (1995) introduced a popular randomised rounding
approach for MAX-CUT, and for the following exploratory simulations we adopted a similar approach. This
starts by performing an incomplete Cholesky decomposition Ṽ ∗ = UU⊤ with rank(U) = r. Since diag(Ṽ ∗) = 1,
the columns of U all lie on the unit r-sphere.

To select exactly m points we draw a random hyperplane through the origin of this sphere and translate it affinely
until exactly m points are separated from the rest (it is this translation that is a modification of the original
approach for non-cardinality constrained problems, and which means the analysis of Goemans and Williamson
(1995) is not directly applicable). The resulting approximations are presented only as an empirical benchmark
for Algorithms 1-3 and the detailed analysis of rounding procedures is well beyond the scope of this work.

We also find improved output by drawing R > 1 points on the r-sphere and choosing the one for which the
points separated off are best, in the sense of lowest cumulative KSD. This process imposes trivial additional
computational cost. The semi-definite optimisations are performed using the Python optimisation package MOSEK.

Figure 5 shows that the semi-definite relaxation approach can be competitive in time-adjusted KSD. Each line
in left pane represents the drawing of 1000 samples. The non-relaxed and best-of-50 SDR approaches closely
mirror each other in time-adjusted KSD, though the non-relaxed approach is more efficient in that it achieves the
same KSD in the same time with fewer samples chosen. Choosing R > 1 imposes little additional computation
time, leading to a performance improvement for R = 50 over R = 10, though past a certain point (visible here
for R = 200) this additional computation does become significant and harms performance.

5The more general IQP setting, in which candidate points can be repeatedly selected, can similarly be cast as an SDP
by proceeding with s copies of the candidate set and v ∈ {0, 1}ns.



Teymur, Gorham, Riabiz, Oates

Figure 5: KSD vs. wall-clock time, and time-adjusted KSD vs. number of selected samples, for the 4-dim
Lotka–Volterra model also used in Section 4, and with the same kernel specification. We draw 1000 samples
using batch-size b = 100 and choosing s = 10 points simultaneously at each iteration. The four lines refer to
the non-relaxed method (generated using the same code as in Figure 3), as well as the approach employing
semi-definite relaxation (taking the best of 10, 50 and 200 point selections, determined by drawing that many
points on the sphere).

C Choice of Kernel

As with all kernel-based methods, the specification of the kernel itself is of key importance. For the MMD
experiments in Section 4.1, we employed the squared-exponential kernel k(x, y; ℓ) = exp(− 1

2ℓ
−2(x − y(2), and

for the KSD experiments in Section 4.2 we followed Chen et al. (2018, 2019) and Riabiz et al. (2020) and used
the inverse multi-quadric kernel k(x, y; ℓ) = (1 + ℓ−2(x − y(2)−1/2 as the ‘base kernel’ k in (3) from which the
compound Stein kernel kµ is built up. The latter choice ensures that, under suitable conditions on µ, KSD
controls weak convergence to µ in P(Rd), meaning that if MMDµ,kµ

(ν) → 0 then ν ⇒ µ (Gorham and Mackey,
2017, Thm. 8).

The next consideration is the length scale ℓ. There are several possible approaches. For the simulations in
Sections 4.1 and 4.2, we use the median heuristic (Garreau et al., 2017). The length-scale ℓ̂ is calculated from

the dataset themselves, using the formula ℓ̂ =
:

1
2Med{(xi − xj(2}. The indices i, j can run over the entire

dataset, or more commonly in practice, a uniformly-sampled subset of it. For the large datasets in Section 4, we
use 1000 points to calculate ℓ̂.

To explore the impact of the choice of length scale on the approximations that our methods produce, in Figure
6 we start with ℓ̃ = 0.25 (the value used to produce Figure 1 in the main text) and now vary this parameter,
considering 0.1ℓ̃ and 10ℓ̃. The difference in the quality of the approximation of ν to µ is immediately visually
evident, even for such a simple model. It appears that, at least in this instance, the median heuristic is helpful
in avoiding pathologies that can occur when an inappropriate length-scale is used.
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Figure 6: Investigating the role of the length-scale parameter ℓ in the squared-exponential kernel k(x, y; ℓ) =
exp(− 1

2ℓ
−2(x − y(2). Model and simulation set-up as in Figure 1. Here 12 representative points were selected

using the myopic method (left column), a non-myopic method (centre column), and by simultaneous selection
of all 12 points (right column). The kernel length-scale parameter ℓ̃ set to 0.025 (top row), 0.25 (middle row; as
Figure 1) and 2.5 (bottom row).


