1 Synthetic dataset setup and further
experiments

In order to measure the ability of our method metaCDE
to learn multimodality and heteroscedasticity in the
response variable, we construct the datasets as follows:
we sample y; ~ Uniform(0, 1) and set x; = cos(ay; +b)+
€;, where a and b vary between tasks, with noise €; ~
N(0,0?). Here we sample a from U(8,12) and phase
vary from U (0, 7). Intuitively, this just corresponds to
rotated sine curves as can be seen in the examples in
Section 5 of the Appendix. (see most left column for
best density estimate of the true density.)

In this experiment we are given a variable number
of context points during testing time ranging from
15,30 and 50. This is done to investigate the ability of
metaCDE to adapt even in small dataset situations.

MetaCDE/Neural Process/MetaNN are trained with
15,30 and 50 context points on the tasks and with 80
target points during training. At testing time, we sim-
ply pass the data through our model without having to
retrain on the new unseen dataset. Note that we report
again the p-values of the Wilcoxon signed one-sided test
and we can see that as we decrease the context points,
our methods is significantly outperforming the other
methods. See Section 5 of Appendix for additional

Each of the non meta learning models DDE, KCEF,
e-KDE, LSCDE are trained separately on each new
dataset as they cannot share information between tasks.

1.1 Model specifications

For our MetaCDE we used a 3-hidden layer Neural
Network with tanh activation functions and Adam op-
timizer for all of our feature maps ¢, ¢, bs. We cross-
validate on held out dataset, over 32 and 64 hidden
nodes per layer and A = 1.0,0.1,0.01 for the regular-
ization parameter. We fixed the learning rate at le-3.
We also set k = 10 as suggested by (2).

e KCEF: we used the CV function that was in built
in their Github repository (optimizing the parame-
ters from a range [le-1,10] https://github.com/
MichaelArbel/KCEF) as well as consulted the au-
thors to make sure we are using their method
correctly.

e LSCDE: We CV for ¢ in logspace(—3,5,20) and
A in logspace(—5, 5, 20)

e «KDE: We CV over ¢ in linspace(0.1,1,15) and
bandwidth in linspace(0.01, 1, 15)

e DDE: We CV over the bandwidth of 0.5 and 1.0

NOTE: We also tried to use a standard RBF kernel to
compute our CMEO and CME with 50 context points
on the synthetic data, however, these results were not
up to par with what we got with NN. We searched
for lengthscales over a range 0.01 to 10, however, the
results were not comparable on synth data (84.65 +-
21.15), see Table in section 5.1 for comparison.

The reason for this is first of all, the stationarity of the
Gaussian kernel and secondly, only having very little
data to construct a good CMEQO. Using NN and CMEs
we were able to capture the density by training it across
tasks and hence learning more efficient embeddings
than a gaussian kernel could. In addition, deep kernels
have recently shown impressive results (3]) and hence
using a NN as a feature map is well justified.

2 Neural Network version of our
method (MetaNN)

Furthermore, in order to investigate the importance of
the CMEO task representation, we developed a purely
neural version of our proposed method, which we call
MetaNN. It differs from MetaCDE solely in the task
representation. While MetaCDE uses kernel embed-
dings formalism to represents the task using CMEO
calculated on the context points, MetaNN uses the
DeepSets (4) approach, where the context pairs (z;,y;)
are simply concatenated into a vector, and then passed
through a neural network. The outputs are then aver-
aged to obtain the task embedding to which any new
Ttarget 1S concatenated to obtain the “neural” equiva-
lent to CME. This neural representation is then being
pushed through a Feed forward network in order to
have the same dimension as ¢, (Yiarget). This ensures
that we can take the inner product to compute sg.

The same training procedure as MetaCDE follows. We
note that the concatenation of x and y encodes the
joint distribution, rather than the conditional as in
MetaCDE. While such task representation does pre-
serve the relevant information, it is susceptible to
changes in the marginal of z across tasks and con-
ditional representations are intuitively better suited for
the task of conditional density estimation. The experi-
ments demonstrate the value of combining the CME
formalism with neural representations and we obtain
significantly better results with MetaCDE compared
to MetaNN. In our experiments we simply used a 3
layer MLP and cross-validate over either 32, 64 hidden
nodes and learning rates of le-3 or le-4.

2.1 Comparison of MetalNN to MetaCDE

Next we will compare the MetaNN and MetaCDE
algorithms in order to investigate the importance of the
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conditional mean embedding operator. As mentioned
above, we have now swapped out the computation of
the CMEO for a NN for MeatNN. This representation
is then concatenated with the new xi4,q4e¢ to give us an
element in Hy. We test out MetaNN on the synthetic
dataset described in the experimental section.

MetaNN will perform worse on 50 context points as
show in the main text but better on 15, where MetaNN
achieves a log-likelihood of 114.43 + 26.44, whereas
MetaCDE achieved only 51.73 £+ 10.43 (see Figure .
This can be explained by two factors.

Firstly, a lower number of context points might give us
a worse estimate of the conditional mean embedding
operator. Secondly, we note that it takes significantly
more task examples for the MetaNN to achieve the
performance and hence this might have been due to
the limited variety in the training task i.e. variation in
the range of the period and phase parameter. Hence we
conjectured that MetaNN might have just memorized
the tasks well.

Therefore we have ran additional experiments to on
a harder synthetic dataset where we now sample a
from U (4, 14) and phase vary from U(—m,7) (i.e. more
variety in the tasks than before where we sampled a
from U(8,12) and phase from U(0,)). In this case,
MetaNN seems to completely fail and not able to learn
anything useful at all. As the tasks in this case are more
variable (see figure [2). Hence, we have not included
MetaNN in the below figures when comparing with
other conditional density methods.

To further investigate this phenomenon, we have cre-
ated a new task based on samples on Gaussian Pro-
cesses (GPs). Here we sample 2 GPs with an Gaussian
kernel with lengthscale 1 as well as a uniform random
variable from ¢ ~ U(1,3). We then added u to one
of the sampled GPs and hence created a multimodal
dataset in y (see figure [3]). This task has a lot more
variability than the previous synthetic dataset task.
Below, we illustrate how MetaCDE is still able to per-
form well whereas MetaNN completely fails to learn
anything useful. This illustrates that CMEO includes
useful additional inductive biases in our model. In par-
ticular, by using a CMEQ, we explicitly tell the model
which entries are covariates and which are responses
and that the relevant property of the data for this task
is the conditional distribution.

3 Normalization network by

First of all, we want to note that learning the by is not a
novel idea but in fact has been proposed by the seminal
paper on noise contrastive estimation (2)). (2) note that
one can actually learn the normalization constant and

show empirically that that the learnt density is actually
close to a properly normalized density. Intuitively, the
reason this happens is as follows.

Py(Truely, z) := .
(Truely, ) po(yle) + wpys(y)

Assuming that we have a Bayes optimal classifier above
and that py is normalized (we choose this distribution
so we know it is normalized), then assuming pg(y|z)
was not normalized by a factor of « then we could just
divide numerator and denominator by ~. This would
hence just correspond to modifying k to /. However
the Bayes optimal classifier sees exactly x more fake
samples then real ones and hence in the case Bayes
optimality was reached, we should have « close to 1,
i.e. normalized pg(y|x). We even show in experiments
that the normalziation needed is minimal (see Figure
. Additionally, we also noted that using by actually
helped in terms of stability in our training as it gives
an extra degree of flexibility.

Next, we note that byg(z) depends on sy(x,y) and hence
is task/context set dependent. Modelling by(z) as a
neural network that only takes input = would not be
task dependent, as it would be the same for each task
and only depend on x. Therefore, we set the input of by
to be the CME [iy—,|x—,, which thus incorporates all
task information compactly (as fiy—y|x—, is computed
using the CMEQO). We have done further studies of
this normalization network and show how it effectively
normalizes the density approximately.

To ensure a fair comparison between methods, we post-
normalize the densities for all our experiments, i.e.
whenever we compute a conditional density, p(y*|X =
), we first create a grid, {y;}1%9, and consider equally
spaced evaluations p(y;|X = x) over the range of the
data, and use them to re-normalize the density model
before evaluating performance by computing the log-

likelihood at y*.

We note that most methods are already producing
density models that are very close to being normalized
so the effect of the post-normalization is minimal.

Fig. [f] illustrates the post-normalization in our GP
experiments (i.e. the closer the line is to one the less
we need to normalize our density), demonstrating that
our approaches are able to learn an approximately
normalized density. We however still perform the post
normalization in order to remain fair compared to other
methods. Another thing to note is that including the
information of the CME by(x) compared to not using
it (no CME), allows us to have even less normalization
necessary when learning the density. We have also
found that the normalization network helps greatly in
keeping the learned density approximately normalized.
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Figure 1: Figure illustrating how MetaNN performs better in low context points settings but seems to learn
slower than MetaCDE. Top Row: 30 context points (left) MetaNN (right) MetaCDE; Bottom row: 15 context
points (left) MetaNN (right) MetaCDE (x-axis represents 1 unit=10k tasks, y-axis loglikelihood)
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Figure 2: Figure illustrating how MetaNN fails when task become more variable. Top Row: MetaNN; Bottom
row: MetaCDE (x-axis represents 1 unit=10k tasks, y-axis loglikelihood)
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Figure 3: Density maps of the GP example (Left)MetaCDE (Right)(MetaNN)
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Figure 4: Evolution of the log-likelihood (x-axis represents 1 unit=10k tasks, y-axis loglikelihood) (Left)MetaCDE
(Right)(MetaNN)



— NoCME | 16 — NocME

— NocME
— e

Figure 5: Post normalization needed after learning the density. Comparison shows the regimes where by network
includes CME as an input and the one where it does not.



4 Choice of the Fake Distribution in NCE

The choice of the fake distribution plays a key role in the learning process here, especially because we are interested
in conditional densities. In particular, if the fake density is significantly different from the marginal density p(y),
then our model could learn to distinguish between the fake and true samples of y simply by constructing a “good
enough” model of the marginal density p(y) on a given task while completely ignoring the dependence on z (this
will then lead to feature maps that are constant in x).

This becomes obvious if, say, the supports of the fake and the true marginal distribution are disjoint, where
clearly no information about z is needed to build a classifier — i.e. the classification problem is “too easy”.

Thus, ideally we wish to draw fake samples from the true marginal p(y) in a given task. While we could achieve
this by drawing a y paired to another x, i.e. from the empirical distribution of pooled ys in a given task, recall
that we also require to be able to compute the fake density pointwise. Hence, we propose to use a kernel density
estimate (KDE) of y’s as our fake density in any given task.

In particular, a kernel density estimator of p(y) is computed on all responses y (context and target). To sample
from the this fake density, we draw from the empirical distribution of pooled y’s and add Gaussian noise with
standard deviation being the bandwidth of the KDE (we are using a Gaussian KDE for simplicity here; other
choices of kernels are of course possible with appropriate modification of the type of noise). As our experiments
demonstrate, this choice ensures that the fake samples are sufficiently hard to distinguish from the true ones,
requiring the model to learn meaningful feature maps which capture the dependence between x and y and are
informative for the CDE task.

Furthermore, we want to note that we chose « i.e. number of fakes samples to be 10, mainly because in the original
noise contrastive paper, they use also used 10 and we noticed in our experiments that even when increasing x the
performance didn’t increase by much and hence just fixed x = 10.

Finally, we note that in principle it is possible to consider families of fake distributions which depend on the
conditioning variable . We do not explore this direction here and will leave this for future work.



5 Illustration of Synthetic dataset

In this section we illustrate that our proposed method, metaCDE, performs well even when data becomes scarce.
Hence we applied our method on several tasks, where we have 50, 30 and 15 datapoints as context. In each of
the experiments we also plotted the corresponding density, the method gave us and we can clearly see that only
metaCDE is able to recover the "rotated sine curve" (synthetic data experiments) in all 3 cases, which is also
shown in the loglikelihood estimates.

5.1 Using 50 context points

MetaCDE NP DDE LSCDE KCEF «KDE
Sythn. Data Mean over 100 log-likelihoods 197.84 + 22.45 -81.114+18.53 162.98 + 69.01 44.95 + 74.36 -388.30 £ 703.17 116.31 + 236.99
Sythn. Data P-value for Wilcoxon test NA < 2.2e-16 8.144e-07 <2.2e-16 < 2.2e-16 2.384e-07
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Figure 6: In Order (synthetic dataset): MetaCDE (ours), NP, DDE, LSCDE, KCEF, -KDE
The red dots are the context/training points and the green dots are points from the true density.
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5.2 Using 30 context points

MetaCDE NP DDE LSCDE KCEF «KDE
Sythn. Data Mean over 100 log-likelihoods 113.27 + 17.36 -48.98+12.26 64.61 £ 54.33 -23.02 & 65.31 -233.38 &+ 528.99 29.64 £ 195.49
Sythn. Data P-value for Wilcoxon test NA < 2.2e-16 4.577e-14 <2.2e-16 < 2.2e-16 4.917e-13

Figure 7: In Order (synthetic dataset): MetaCDE (ours), NP, DDE, LSCDE, KCEF, -KDE
The red dots are the context/training points and the green dots are points from the true density.



5.3 Using 15 context points

MetaCDE NP DDE LSCDE KCEF eKDE
Sythn. Data Mean over 100 log-likelihoods 51.73 + 10.48 -24.39+8.20 0.58 + 40.70 -57.99 + 59.13 -142.19 + 259.59 -87.50 £ 224.13
Sythn. Data P-value for Wilcoxon test NA < 2.2e-16 4.577e-14 <2.2e-16 < 2.2e-16 < 2.2e-16
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Figure 8: In Order (synthetic dataset): MetaCDE (ours), NP, DDE, LSCDE, KCEF, -KDE
The red dots are the context/training points and the green dots are points from the true density.




6 Further insight to the Ramachandran plots

6.1 Further details on Ramachandran plots

To better understand the problem that we are tackling, consider the images below which represent different
molecules with their respective fragments whose dihedral angle chemist measure. "A dihedral angle is the angle
between two intersecting planes. In chemistry, it is the angle between planes through two sets of three atoms,
having two atoms in common. - Wikipedia".

8, 8, 5
— 8 —ll,
N 2 %
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Figure 9: Example of molecules and the respective angles 61, 05 that we are trying to model. From this image it
also becomes apparent how the multimodality arises as there are clearly some spatial symmetries. In the density
plots below, the x-axis is #; and the y-axis is 05

6.2 Additional information on the experimental setup

In this experiment, we look into the Ramachandran plots for molecules. Each plot indicates the energetically
stable region of a pair of correlated dihedral angles in the molecule. Specifically, we are interested in estimating
the distributions of these correlated dihedral angles. We compute the conditional density for each correlated
dihedral angles, given 20 context points at testing time. For our meta-learning training we use 20 context points
and 60 targets points.

Note that the data was extracted from crystallography database (I). It is possible that some specific pairs of
dihedral angles are rarely seen in the dataset, Hence, we may obtain a conditional density with high probability
on the region without any observations in some cases. This is reasonable as the database covered only a small
part of the chemical space and some potential area could be overlooked. Given that we assume that the support
of our conditioning variable x ranges from [—, 7), we will inevitable also compute conditional distribution on
areas where the configurations are not defined and hence the densities in those areas can be safely ignored as a
computational chemist would not have queried these configurations in the first place.

6.3 Model specifications

For our MetaCDE we used a 3 hidden layer NN with tanh activation functions for all of our feature maps. We
cross validate over 32 and 64 hidden nodes per layer and A = 1.0,0.1 for the regularization parameter and over
1.0,0.5,0.3 for the KDE lengthscale. We fix the learning rate at 1e-3 and set x = 10.

e KCEF: we used the CV function that was in built in their Github repository (optimizing the parameters
from a range [le — 1,10] https://github.com/MichaelArbel/KCEF)

e LSCDE: We CV for o in logspace(—3,5,20) and X in logspace(—5, 5, 20)

e ¢-KDE: We CV over ¢ in linspace(0.5, 3,15) and bandwidth in linspace(0.01, 3, 15)

e DDE: We CV over bandwidth of 0.5 and 1.0
NOTE: Furthermore it looks like our method is not able to always capture the true trend given the limited
amount of data. However, it seems to be able to capture some interesting multimodal patterns that would be
useful to scientist to include in their models. Recently, there has been work done on these Ramachandran plots

for Molecules by handcrafting the density maps. Our model allows us to compute the density maps without prior
knowledge.
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Figure 10: In Order (synthetic dataset): MetaCDE (ours), MetaNN (ours), NP, DDE, LSCDE, KCEF, e KDE
The red dots are the context/training points and the green dots are points from the true density.



7 Illustration of the NYC taxi dataset

7.1 Experimental Setup

We have extracted the publicly available dataset from the website [[] We have first of all restricted ourselves to
drop-off locations in from —74.1 to —73.7 in longitude and 40.6 to 40.9 in latitude. Next we have given our meta
learning model 200 datapoints for context during training and 300 for target. At testing time we are presented
with 200 context points and are required to compute the conditional density given a tip. In this case each task is
one specific pickup location. Again, we are using a 3-hidden layer NN and CV over 32,64, 128 nodes and A = 0.1
or 1.0 and over 1.0,0.5,0.3 for the KDE lengthscale. We use the Adam optimizer and fixed the learning rate to
le — 3. We also set k = 10.

7.2 Note on the dataset

In the main text we have seen how the drop-off density changes as we increase the amount of tips. This move of
density illustrates well the data itself, as one is more likely to pay higher tips for longer journeys. Below we have
plotted the drop-off locations of one specific pickup location colored with the respective tips paid.
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Figure 11: Density of the dropoff locations with increase in tips (right) the context and target points corresponding
to the pickup locations (Big red dot the the pickup location)
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'Data has been taken from: https://wwwl.nyc.gov/site/tlc/about /tlc-trip-record-data.page
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Figure 12: Density of the dropoff locations with increase in tips (right) the context and target points corresponding
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Figure 13: Density of the dropoff locations with increase in tips (right) the context and target points corresponding
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