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Abstract

Current meta-learning approaches focus
on learning functional representations
of relationships between variables, i.e.
estimating conditional expectations in
regression. In many applications, however,
the conditional distributions  cannot
be meaningfully summarized solely by
expectation (due to e.g. multimodality). We
introduce a novel technique for meta-learning
conditional densities, which combines
neural representation and noise contrastive
estimation together with well-established
literature in conditional mean embeddings
into reproducing kernel Hilbert spaces. The
method shows significant improvements over
standard density estimation methods on
synthetic and real-world data, by leveraging
shared representations across multiple
conditional density estimation tasks.

1 Introduction

The estimation of conditional densities p(y|z) based on
paired samples {(z;, y;)}_; is a general and ubiquitous
task when modelling relationships between random
objects x and y. While standard regression problems
focus on estimating the conditional expectations
E[y|x] of responses y given the features x, many
scenarios require a more expressive representation of
the relationship between x and y. In particular, the
distribution of y given x may exhibit multimodality
or heteroscedasticity. A simple example of such a
relation between x and y can be seen in the equation
of a circle, as for any given x € [—1,1] there are
two potential values =v/1 — 22 the model could regress
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on. In this case, any standard regression model would
fail to capture the true dependence between y and x,
because clearly E[y|z] = 0.

Thus conditional density estimation requires a flexible
nonparametric model of the conditional density and
not just the expectation. Estimating conditional
densities becomes even more challenging when the
sample size is small. Hence, we approach this problem
from a meta-learning perspective, where we are faced
with a number of conditional density estimation tasks,
allowing us to transfer information between them via
a shared learned representation of both the responses
y and the features x.

Our contribution can be viewed as a development
which parallels that of Neural Processes (NP) (Garnelo
et al., 2018b) and conditional Neural Processes (CNP)
(Garnelo et al., 2018a) in the context of regression
and functional relationships. Our proposed method
is applicable to a much broader set of relationships
between random objects, i.e. cases where for a given x
there are multiple potential responses y. To that end,
we will make use of the framework of conditional mean
embeddings (CME) of distributions into reproducing
kernel Hilbert spaces (RKHSs) (Muandet et al., 2017;
Song et al., 2013), which we discuss in Section 2.

In the RKHS literature, the feature maps that
yield kernel mean embeddings that fully characterize
probability distributions correspond to the notion of
characteristic kernels (Sriperumbudur et al., 2011)
and are infinite-dimensional. However, such kernels
can often be too simplistic for specific tasks (e.g. a
simple Gaussian RBF kernel is characteristic) (Wilson
et al., 2016; Wenliang et al., 2018). Moreover,
even though they give a unique representation of a
probability distribution and can be a useful tool to
represent conditional distributions!, they do not yield
(conditional) density estimates, as they are merely
points in the RKHS, and it is not clear how to adopt

Tn particular, CME E[¢, (y)|z] can be used to estimate
conditional expectations E[h(y)|z] for a broad class of
functions h, namely functions in the RKHS determined by
the feature map ¢, .
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them for such tasks.

To address this challenge, we propose a technique
based on noise contrastive estimation (NCE)
(Gutmann and Hyvérinen, 2012), which treats
the CMEs as dataset features in a binary classifier
discriminating between the true and artificially
generated samples of (z;,y;) pairs. Although the
CME estimation for fixed feature maps is well
understood (Song et al., 2013; Muandet et al., 2017),
we are concerned with the challenge of linking our
CME estimates back to the conditional density
estimation (CDE) task. This requires learning the
feature maps, ¢;,¢,, that define the CME, which in
turn determines the binary classifier for NCE.

In particular, we propose to use neural networks to
learn appropriate feature maps ¢, and ¢, by adopting
the meta-learning framework, i.e. by considering a
number of (similar) conditional density estimation
tasks simultaneously. Our meta-learning setting is
concerned with CDE using small amounts of data
(e.g. in the synthetic data setting each dataset only
has 50 points). In this small data regime, standard
CDE methods cannot work well, even on simple
1D problems, despite having asymptotic (large data)
guarantees. Hence, in this paper, we mainly focus
on low dimensional problems and discuss the higher
dimensional problem in the conclusion.

Following the meta-learning principle that test and
train conditions must match Vinyals et al. (2016), we
consider the case where multiple small datasets are
available to train the system, such that it is able to
estimate the conditional density well on a new unseen
(also small) dataset. This is effectively a system
for sharing statistical strength across multiple CDE
problems. In contrast to prior state-of-the-art work
on meta-learning for regression, i.e. (attentive) Neural
Process (Garnelo et al., 2018b; Kim et al., 2019),
our proposed method is the first that can capture
multimodal and complex conditional densities.

The proposed method is validated on synthetic and
real-world data exhibiting multimodal properties,
namely the NYC taxi data used in (Trippe and
Turner, 2018) to model the conditional densities of
dropoff locations given the taxi tips, as well as the
Ramachandran plots from computational chemistry
(Grazulis et al., 2011), which represent relationships
between dihedral angles in molecular structures. We
demonstrate significant improvement in terms of held-
out loglikelihood over ”the” standard conditional
density estimation methods, including those based on
meta-learning.

2 Background

We first introduce the notation used throughout this
paper. Let D = {(z;,y;)}}-; be the observed dataset,
with z; € X being the mput and y; € )Y being the
output. We denote the learned RKHS of inputs X
and responses Y by Hx and Hy respectively. Kernels
of Hx and Hy are denoted k;(-,-) and ky(-,-), and
the corresponding feature maps are ¢ (-) and ¢y(-),
ie. ky(x1,x2) = (¢z(x1), Pz(x2)) and similarly for k.

2.1 Conditional Mean Embeddings (CME)

Kernel mean embeddings of distributions provide a
powerful framework for representing and manipulating
probability distributions (Song et al., 2013; Muandet
et al., 2017). Formally, given sets X and ), with a
distribution P over the random variables (X, Y") taking
values in X x ), the conditional mean embedding
(CME) of the conditional distribution of Y|X =

assumed to have density p(y|z), and is defined as:

/¢y

Intuitively, Eq.1 allows us to represent a probability
distribution p(y|z) in a function space (RKHS), b
taking the expectation of features ¢, (y) € Hy under
p(y|z). Hence, for each value of the conditioning
variable x, we obtain an element yy|x—, of Hy.

Following (Song et al., 2013), the CME can be
associated with the operator Cy|x : Hx — Hy, also

known as the conditional mean embedding operator
(CMEO) s.t

Py |x=2 = Ey|x=z[d, (Y p(ylz)dy. (1)

Py |x=2 = Cy|x ¢z (T) (2)

where Cy‘X = nyc)_(ﬁ(, CYX = EY’X[Qﬁy(Y) ®
¢1(X)] and CXX = EX’X[¢95(X) ® ¢I(X)]
As a result, (Song et al., 2013) have shown that the

finite sample estimator of Cy|x based on the dataset
{(xj,y;)}7—; can be written as

Cyix = Py(K +AI)~'oT (3)
where ®, = (¢y(¥1),...,0y(yn)) and &, :=
(¢px(21), ..., Pz(zn)) are the feature matrices, K :=
@z@w is the kernel matrix with entries K;; =

and A > 0 is a

ko(wiyzg) = (a(®), 0z (),

regularization parameter.

In fact, when using finite-dimensional feature maps ¢,
and ¢, the conditional mean embedding operator is
simply a solution to a vector-valued ridge regression
problem (regressing ¢,(y) to ¢,(zr)) (Grinewélder
et al., 2012), which allows computation scaling linearly
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Algorithm 1 MetaCDE Training

Input: Deontest = {(x§q7 y(f‘I) ce

(52 ysd VYo—y and Diarger = {(«7,419) ..

(mﬁgtq ) yfgtq) f]:l

Output: Optimized ¢?, 19/7 by, Note that we drop the ()¢ for ease of notation

forq=1,...,ldo

Compute Cy|x using D

context

> Eq.(3)

Generate x fake samples {yzfj #_, from the fake distribution p¢(y) for each y;q

Now construct the respective scoring functions se(xéq, yj»q) and sa(a:;q, nyJ) using ¢,

1:

2

3:

4: Compute ﬁY|X=x*‘.q’ J=1...my
J

5

6:

Optimize the parameters § of the NNs ¢, ¢y, by using Adam jointly over all tasks

> Eq.(7)
> Eq. (10)
> Eq.(11)

Algorithm 2 MetaCDE Testing

Input: D} {(@T,yi") .. (e cqx l D

context —

Input: Trained ¢, ¢y, bg, y
Output: p}(y|z'?*), for ¢ =1,....1

Megs) ymcq* g=1

for¢q=1,...,l do

Compute the CMEO CAY‘X using Eq.(3) with D%’

contex

t
target = {(mlq*) cee (xfrqltq*) f]:l

> Evaluating the CDE at y
> The conditional density functions for each task.

. and trained ¢, ¢,

1:

2

3: Compute sg(z'7*,y) using Eq.(10) with é\y‘X and trained ¢, ¢,

4 Compute the conditional density pj(y|z'?*) using Eq.(4) i.e. with s§(z'%*,y) and by

in the number of observations n. The Woodbury
matrix identity allows us to have computations of
either order O(n?) or O(d?) + O(d*n), where d is the
dimension of the feature map ¢,. In the meta-learning
setting, the dataset size n is small and hence the CME
can be efficiently computed.

Now that we can compute the CME for a given new
x, i.e. embed the conditional distribution p(y|x) into
a RKHS, the problem is how we are going to model
the conditional density using the CME. In order to do
that, we use ideas from noise contrastive estimation.

2.2 Noise Contrastive Estimation (NCE)

The seminal work on noise contrastive estimation
(Gutmann and Hyvérinen, 2012) allows converting
density estimation into binary classification, via
learning to discriminate between noisy artificial data
and real data.

To understand the methodology more concretely, let
us first assume that the true underlying density of
the data is p(y|z) and that the distribution of the
fake/artificial data is py(y) (taken to be independent
of z). Following (Gutmann and Hyvérinen, 2012) we
formulate the classification problem, by sampling x
times more fake examples than the real ones, which
are all fed together with their labels (True/Fake) into
the classifier. Hence, the data arises from %Hp(ybc) +
SDf (y) and the probability that, conditioned on a

x, any given y comes from the true distribution is

p(y|)

P(Truely, z) = .
p(yle) + rpy(y)

Since our goal is to learn the true density p(y|x), we

construct the probabilistic classifier, by imposing a

parameterized form of p(y|x) as pg(y|z). In particular,

we consider a generic density model given by

_ elsu(a)
P = o (sate, )y

= exp(sg(z,y) + bo(x)).
(4)

for some functions by : X — R and sg : X x) — R, the
latter is referred to as the scoring function, following

terminology in (Mnih and Teh, 2012). Hence the
model for our classifier will be
Py(Truely, z) = ——LoWIE) (5)

po(ylz) + kps(y)”

Note that the parameters of the classifier are the
parameters of sy and by. Assuming for the moment
that the learned probabilistic classifier Py(Truely, )
attains Bayes optimality, we can deduce the point-
wise evaluations of the true conditional density pg(y|z)
directly from expression Eq.5 by simply rearranging
for the density po(y|lr). We would also like to
highlight some recent theoretical results with regards
to NCE that have been developed in (Arora et al.,
2019; Gutmann and Hyvérinen, 2012). (Gutmann
and Hyvérinen, 2010, Theoreml) state that one only
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requires the support of the noise distribution to cover
the true density support to recover the underlying
density.

In section 3, we will merge the idea of NCE together
with CME to estimate the conditional density in the
meta-learning setting. In particular, we will link our
problem of computing the conditional density from the
CME to NCE, by relating CME to sg(z,y) as defined
in Eq.4.

2.3 Meta-Learning

Meta-learning is a growing area of which allows
machine learning models to extract information from
similar problems, and use this extracted (prior)
information to solve new unseen problems quickly.
Meta-learning and multi-task learning differ in the
following way according to (Finn, 2020):

e “The meta-learning problem: Given data /
experience on previous tasks, learn a new task
more quickly and/or more proficiently”

o “The multi-task learning problem: Learn all of
the tasks more quickly or more proficiently than
learning them independently”

In our case we perform meta-learning, by sharing
statistical strength across multiple CDE problems.
Standard CDE models usually require a lot of prior
information to be useful in low data settings. In meta-
learning however, this prior information is learned
through the meta-learning phase, where the model is
presented with multiple small datasets during training
such that given a new unseen dataset, the model is
able to estimate the density well.

Before we introduce our method, we would like to
outline the meta-learning experimental setup that we
will be using throughout the experiments in Section 5.
Our setup is closely related to the one introduced in
the papers on Neural Process (Garnelo et al., 2018b,a).

Let us define the set of tasks T = {T1,...,T;} to be
a set of [ conditional density estimation tasks, such
that T, corresponds to the dataset DI = {(x7, y?)}*,
where 2! € X and y] € Y share the same domains
across the tasks. During training, we split the task T;
into a “context set” and a “target set”. The context
set is used to summarize the task, whereas the target
set is used to evaluate the summary of the context set.
Hence, we use the target set to compute the loss and
update the parameters of our model. We train our
model jointly across multiple tasks and we can thus
use this shared information to make better inference
on similar tasks at testing time. During testing time,

we will only be presented with m"**** samples (i.e.

only a context set) and are then asked to do inferences
on any given set of target points.

3 Methodology

3.1 Conditional Density Estimation

As described in Section 2.2, the key ingredient of
NCE is a classifier which can discriminate between the
samples, i.e. {y;}7;, from the true density, in our case
the conditional p(y|x) , and fake samples, i.e. {ny Ll
from the fake density py(y).

Using the parameterization of Eq.4 for our density
model, the probabilistic classifier we will adopt is:
exp(sg(z,y) + bo(2))
exp(so(@,y) + bo(x)) + Kpr(y)
=0 (so(z,y) + bo(x) — log(kps(y)))

Py(Truely, z) =

where o(t) = 1/(1 + e7?) is the logistic function.
Learning the parameters 6 of sy and by through this
classification allows us to learn the density in Eq.4,
given that it defines the density. In the next section,
we discuss the scoring function sy (z, y) and its relation
to the feature maps ¢, and ¢,.

Note that We only have approximations to the Bayes
classifier, hence it will be useful following (Gutmann
and Hyvérinen, 2012) to model the normalizing
constant by separately. We should also note that
bo(z) = —log [exp(so(z,y'))dy’ from Eq.4. While
the contribution bg(x) is directly determined by the
choice of sy, the calculation of by is computationally
intractable, and we therefore model by(x) separately
as it adds an extra independent component of y and
is suggested in the original noise contrastive paper
(Gutmann and Hyvérinen, 2012). We empirically note
that learning by through a different network helps
training and keeps the learned density normalized (see
Appendix for details). To make fair comparisons to
other methods in terms of loglikelihood, we added
an extra post-normalization step which is described
in Section 5. For notation purposes, we collate all
parameters of sy and by into the parameter set 6.

3.2 The choice of the scoring function sy(x,y)

We first map z; and y; using feature maps ¢, : X —
Hx and ¢, : YV — Hy respectively, which will be
learned. We should note that we initially explored
a fixed kernel choice with a characteristic kernel e.g.
Gaussian RBF, but this resulted in poor empirical
performance as the RBF was not flexible enough due
to its restrictive stationarity constraints (see Appendix
for experiments). Hence, in order to facilitate learning
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Figure 1: The context data is first passed through the feature maps to construct the CMEO (CAY‘ x ), which is
then used to project the new target = (dark blue) to Hy. We then compare this projection to the True(green)
and Fake y’s(red). Finally, we can compute the classification loss and back-propagate to update the parameters

of the feature maps

of these feature maps, we parametrized them with
neural networks i.e. 6. Note that in this case (., )%,
is equivalent to a simple dot product between vectors.

Next, we compute the conditional mean embedding
operator (CMEO) Cy|x : Hx — Hy given in Eq.3.
Using CAY‘ x, we can estimate the conditional mean
embedding for any new x* as

Py |X=a2+ = é\y\x%(ﬂ”*)' (7)

Note that fiy|x—,- € Hy. Hence we can evaluate
the function for any given new y* € ) by using the
reproducing property of the RKHS, the linearity of
the inner product and the definition in Eq.1,

ﬁY|X:z* (y*) = <ﬁY\X:w*7¢y(y*)>’HY (8)
= [ el )

Intuitively, since a kernel k, expresses the similarity
between its inputs, we expect k,(y*,y) to have high
value when y* is drawn from the true distribution and
low value when drawn from the fake distribution py,
which thus affects the value of the CME accordingly.
This suggests the following form of the scoring function
for our model:

Sg(x*,y*) = <ﬁY\X:m*7¢y(y*)>Hy’ (10)

Furthermore, we developed a purely neural version
of our proposed method, namely MetaNN, in order
to investigate the importance of the CMEO task
representation. It differs from MetaCDE solely in
the task representation. While MetaCDE uses kernel
embeddings formalism to represent the task with
CMEO calculation of the context points, MetaNN uses

the DeepSets (Zaheer et al., 2017) approach, where
the context pairs (x;,y;) are simply concatenated into

a vector, and then passed through a neural network.
The outputs are then averaged to obtain the task
embedding to which any new x* is concatenated to
obtain the “neural” equivalent to CME. The same
training procedure as MetaCDE follows.

We note that the concatenation of z and y encodes
the joint distribution, rather than the conditional as
in MetaCDE. While such task representation does
preserve the relevant information, it is susceptible
to changes in the marginal of =z across tasks
and conditional representations are intuitively better
suited for the task of conditional density estimation.
The experiments demonstrate the value of combining
the CME formalism with neural representations and
we obtain significantly better results with MetaCDE
compared to MetaNN. Additional details on MetaNN
and MetaCDE can be found in the Appendix.

Lastly, we also want to note that there are other
choices for sy that could have been considered, i.e
e-KDE etc. However, the reason we opted for CME
is firstly, its flexibility of parameterization using NN
and secondly, its ability and theoretical background of
capturing conditional densities in a RKHS.

3.3 Training our proposed model

For a given task T, corresponding to the dataset
D4 = {(«,y!);~ }, we sample a set of fake responses
{yi)j}i:1 from py, associated to each y;. In this case
ny ; is the it" sample from the fake distribution for
data point ;. We can now train the classifier using
the model given in Eq.6 by maximizing conditional
loglikelihood of the True/Fake labels, or equivalently,
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by minimizing the logistic loss:
N kps () )
min log [ 1+ + (11
0 ;{ g( exp(se(z;5,y;) + bo(x;)) (D

. ) .
Sl (1 \ oxploutes vl ol m) !

"Epf(yi,j)

After parameters 6 of the classifier have been learned,
the conditional density estimates can be read off from
Eq.4. Note that we need to be able to evaluate
the fake density pointwise. Hence we consider a
simple kernel density estimator (KDE) of p(y) as our
fake density, which we can easily evaluate pointwise.
To sample from the this fake density pf, we draw
from the empirical distribution of all the y’s (context
and target) and add Gaussian noise with standard
deviation being the bandwidth of the KDE (we use a
Gaussian KDE for simplicity). This simple approach
yielded good results and hence we leave other methods,
i.e. conditioning on z, for future work.

We also note that Eq.11 may be of an independent
interest when learning feature maps for CMEs, i.e.
where the goal is not necessarily density estimation,
but other uses of CMEs discussed in (Song et al.,
2013). Even though estimation of CME corresponds
to regression in the feature space, it is inappropriate
to use the squared error loss of the feature-mapped
responses to learn the feature maps themselves. The
reason being that the notion of distance in the loss
is changing as the feature maps are learned and as a
results they are not comparable across different feature
maps. In fact, it would be optimal for the feature map
¢y to be constant, as the squared error would then
be zero, without having learned anything about the
relationship between z and y.

3.4 Meta-Learning of Conditional Densities

The training procedure of our proposed method is
described in Section 2.3. Figure 1 outlines one meta-
training procedure for a given task, including the loss
calculation. This step are repeated for every training
task, as stated in Alg. 1. The procedures in testing
time is stated in Alg. 2.

In this case, the CMEO, CAY‘X will be estimated using
the context set, and the CMEs will be evaluated on the
target set. The CMEO acts as the task embedding and
the CME is used for the inferences on the target set.

During training, for each target example, we sample
r fake samples from ps(y) and represent them in Hy
using the feature map ¢,. Hence we can construct sg
so that Eq.6 can be computed for each of these x + 1
samples (1 true and  fakes). By providing the labels

(i.e. True(from data)/Fake(from noise distribution),
we proceed by training the classifier. Thus we learn
the parameters 6 of neural networks ¢?, qbz and by
using the objective in Eq.11 jointly over all tasks.

The resulting feature maps hence generalize across
tasks and can be readily applied to new, previously
unseen datasets, where we are simply required
to compute the scoring function sp(z,y) and
normalization constant by(x).

3.5 Choice of the Fake Distribution in NCE

The choice of the fake distribution plays a key role
in the learning process here, especially because we are
interested in conditional densities. In particular, if the
fake density is significantly different from the marginal
density p(y), then our model could learn to distinguish
between the fake and true samples of y simply by
constructing a “good enough” model of the marginal
density p(y) on a given task while completely ignoring
the dependence on z (this will then lead to feature
maps that are constant in z).

This becomes obvious if, say, the supports of the fake
and the true marginal distribution are disjoint, where
clearly no information about x is needed to build a
classifier — i.e. the classification problem is “too easy”.

Thus, ideally we wish to draw fake samples from the
true marginal p(y) in a given task and hence, we
propose to use a kernel density estimate (KDE) of y’s
as our fake density in any given task.

In particular, a kernel density estimator of p(y) is
computed on all responses y (context and target)
during training. In our experiments we demonstrate
that this choice ensures that the fake samples are
sufficiently hard to distinguish from the true ones,
requiring the model to learn meaningful feature maps
which capture the dependence between x and y and
are informative for the CDE task.

4 Related Work

Noise  contrastive  estimation  for  learning
representations has been considered in the setting
of Natural Language Processing (NLP). Mnih and
Teh (2012) and Ma and Collins (2018) only focus
on learning discrete distributions in the context of
NLP using NCE. They achieved impressive speedups
over other word embedding algorithms as they avoid
computing the normalizing constant.

More recently, (Van den Oord et al., 2018) introduced
a NCE method for representation learning, however,
they focused on learning an expressive representation
in the unsupervised setting, by optimizing a mutual



Jean-Francois Ton, Lucian Chan, Yee Whye Teh, Dino Sejdinovic

Synthetic Chemistry NYC

MetaCDE (Ours) | Loglike | 197.84 + 22.4 -305.49 + 46.9 -1685.52+ 608.35

MetaNN (Ours) Loglike | 132.776£130.87 -317.91£51.3 -2276.55 £+ 608.9
p-value | 4.781e-06 le-03 3.89e-10

Neural Process Loglike | -81.11418.5 -426.754 47.3 -3050.2 £+ 822.8
p-value | <2.2e-16 <2.2e-16 3.89e-10

DDE Loglike | 162.98 + 69.0 -399.68 £+ 41.3 -2236.07 £+ 565.9
p-value | 8.14e-07 1.65e-15 3.89e-10

KCEF Loglike | -388.30 + 703.1 -724.40 4+ 891.6 -1695.89+435.4
p-value | <2.2e-16 9.72e-14 0.025

LSCDE Loglike | 44.95 4+ 74.3 -407.32 £+ 80.1 -2748.01 + 549.2
p-value | <2.2e-16 2.57e-14 3.89e-10

e-KDE Loglike | 116.31 £+ 236.9  -485.10 4+ 303.4  -2337.90 + 501.1
p-value | 2.38e-07 2.94e-14 4.13e-10

Table 1: Due to the varying difficulties in tasks, the variance in loglikelihoods is high. Hence we added the
p-values of a one-sided Wilcoxon test to show that MetaCDE is significantly outperforming competing methods

in terms of loglikelihood

information objective. Since they focused on
representation learning, they did not require to
evaluate the fake density point-wise. An alternative
method that used the idea of fake examples was
(Zhang et al., 2018), which trained a GAN in
order to use the resulting discriminator for few-shot
classification. = Their focus was on representation
learning, rather than density estimation.

RKHSs in density models have been proposed, for
example (Dai et al., 2018; Arbel and Gretton, 2017)
considered training kernel exponential family models,
where the main bottleneck was the calculation of the
normalizing constant. (Dai et al., 2018) exploited
the flexibility of kernel exponential families to learn
conditional densities and avoided computing the
normalizing constants by solving so-called nested
Fenchel duals. (Arbel and Gretton, 2017) trained
kernel exponential family models using score matching
criteria, which allowed them to bypass normalizing
constant computation. Their method however
required computing and storing the first- and second
order derivatives of the kernel function for each
dimension and each sample, and thus required O(n?d?)
memory and O(n3d?) time, for n datapoints in d
dimensions.

CME-based sampling methods, such as kernel herding
(Chen et al., 2012; Kanagawa, 2016), have also been
proposed. These methods are interested in producing
representative samples using the CME as a reference.
However, we use the CME as a feature to model the
conditional density.

Another work that has recently used CME as
task embeddings is meta-CGNN (Ton et al., 2020).
However, Ton et al. (2020) are mainly interested in

the causal direction detection.

All the above methods, but the last one, assume
access to a large dataset to train on, as most of
the theoretical guarantees only hold in the large data
setting. We, however are interested in scenarios, where
we are presented with only little data i.e. around
50 datapoints at test time in our synthetic dataset
experiments. Hence, the work that come closest to
ours is the Neural Process (Garnelo et al., 2018b) as
they also consider the meta-learning setting for density
estimation. However, our method extends on their
methodology in two major ways. First of all, we embed
our task into an CMEQO which takes into account
the input covariates and responses in the context
sets. The NP on the other hand does not consider
this distinction, but rather concatenates them before
pushing them through a neural network, thus loosing
valuable information on their conditional relationship.
Secondly, the NP objective is constrained to Gaussian
output conditioned on the latent variable. In contrast,
our method is able to deal with any modality of
distributions as we consider a nonparametric model
for the density.

5 Experiments

5.1 Experiments on Synthetic Data

To assess the ability of our method in learning the
multimodality and heteroscedasticity in the response
variable, we construct a synthetic dataset as follows:
we sample y; ~ Uniform(0, 1) and set z; = cos(ay; +
b) + €;, where a and b vary between tasks, with noise
€; ~ N(0,0?) (See Appendix for examples of tasks).
This corresponds to a 90 degree rotated cosine curve
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Figure 2: Density plots of Synth data (top) and Chem data (bottom). MetaCDE(ours), MetaNN(ours), NP,
DDE, LSCDE, KCEF, e-KDE. Red: context points. Green: true density.

with noise, resulting multimodality of p(y|z).

Figure 2 shows the comparison between our method
and a number of alternative conditional density
estimations methods, including e-KDE (KDE applied
to the eneighbourhood of z), DDE (Dai et al.,
2018), KCEF (Arbel and Gretton, 2017), and LSCDE
(Sugiyama et al., 2010). We also include meta-learning
algorithms such as the Neural Process (Garnelo et al.,
2018b) and a pure neural network version of our
framework, MetalNN.

For the meta-learning algorithms, we use 50 context
points and 80 target points for each task. We also
fix k = 10 as suggested in (Gutmann and Hyvérinen,
2012) for all our experiments. At testing time, we
evaluate the method on 100 new tasks with 50 context
points each. We simply pass the new context points
to our model, which can evaluate the density with a
simple forward pass as in Eq.4. The non meta-learning
baselines are trained on each of the 100 datasets
separately. We have included additional experiments
with different dataset size, as well as details on
the neural network architectures, hyper-parameters
and experimental setup for our experiments in the
Appendix.

In Table 1, we report the mean loglikelihood over the
100 different datasets. Note that the NCE does not
give us a perfectly normalized density. To ensure a
fair comparison between methods, we post-normalize
the densities for all our experiments, i.e. whenever we
compute a conditional density, p(y*|X = x), we create
a grid, {y; }199, equally spaced evaluations p(y;| X = z)
over the range of the data, and normalize the density to
1 before computing the loglikelihood at y*. We should
also note that the post-normalization is minimal, see
Appendix for more details.

The reason for the high variance in some methods
stems from the varying difficulty of tasks. Hence,
we also report the p-values of the one-sided signed
Wilcoxon test. This allows us to confirm that our
likelihood of MetaCDE is statistically significantly
higher than all the other methods, including meta-
learning methods such as NP and MetalNN.

5.2 Experiments on NYC taxi data

Next, we illustrate our algorithm on real world data
such as the NYC taxi dataset from January 20162
We are interested in estimating conditional densities
Ppickup (dropoff|tips). Hence, for each task, i.e. given
the pick up location, our goal is to model the dropoff
density conditionally on the tip amount. Different
tasks correspond to different pickup locations and thus
different conditional densities.

During training, we use 200 context and 300 target
points. At testing time, we are given 200 datapoints
of dropoff locations for an unseen pickup location and
model the conditional density based on those.

In Appendix we added figures to show how the density
evolves as the tip amount increases. In particular,
we see that given a pickup location in Brooklyn, as
the tip amount increases the trips are more likely to
end in Manhattan. Note that this pickup location
has not been seen during training. We illustrate
additional unseen pickup locations in the Appendix
as well as additional information on the experimental
setup. We compute the loglikelihood on 50 unseen
pickup location and perform a one-sided Wilcoxon test
as in the above section (see Table 1).

?Data from: https://wwwl.nyc.gov/site/tlc/about/
tlc-trip-record-data.page
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5.3 Experiments on Ramachandran plots for
molecules

Lastly, we apply our algorithm on a challenging
chemistry dataset. Finding all energetically favourable
conformations for flexible molecular structures in both
bound and unbound state is one of the biggest
challenges in computational chemistry (Hawkins,
2017) as the number of possibilities increases
exponentially with the number of degrees of freedom
in a molecule. The distribution of a pair of
dihedral angles in molecules can be represented
by Ramachandran plots (Mardia, 2013), and the
knowledge of the correlated dihedral angles is limited
by the library curated by the chemists.  Here,
we attempt to apply MetaCDE in order to learn
richer relationships between dihedral angles, which can
improve the current sampling scheme.

Our experimental data was extracted from
crystallography database (Grazulis et al., 2011).
A task T; consists of a pair of dihedral angles defined
in a molecular fragment ¢, which is composed of
2 smaller fragments, F1 and F2. In this case, we
have D9 = {(6],,05,);"4}, where 6f /s are the
dihedral angle of F1 and 9‘2171.’5 are the corresponding
dihedral angles of F2. For more clarification, see
Appendix. The multimodality arises from the
molecular reflectional and rotational symmetry. Even
though this dataset is a 1D problem is constitutes an
important problem in chemistry and we show that
conventional methods are unable to capture the true
underlying density of the Ramachandran plots.

In our meta-learning setup, we use 20 context and
60 target points. At testing time we are given 20
datapoints. We again fix x = 10 as suggested in
(Gutmann and Hyvérinen, 2012) and evaluate our
method using loglikelihood on 100 examples of pairs of
dihedral angles, which are unseen during training. We
perform a one-sided signed Wilcoxon test to confirm
that MetaCDE achieves a significantly higher held-out
mean loglikelihood than other methods, as presented
in Table 1. Figure 2 also shows that our method is
able to successfully capture the multimodality in the
data (i.e. 2 parallel lines), whereas other methods fail
on this task, by either modelling the mean or focusing
only on one mode. For more patterns see Appendix.

6 Conclusions and Future Work

We introduced a novel method for conditional density
estimation in a meta-learning setting. We applied
our method to a variety of synthetic and real-world
data, with strong performance on applications in
computational chemistry and NYC taxi data. Owing

to the meta-learning framework, the experiments
shows the ability of our method in capturing the
correct density structure even when presented with
small sample sizes at testing time. In contrast
to Neural Process (Garnelo et al.,, 2018b), we
construct the task embedding using a conditional
mean embedding operators, coupled with features
maps learned using noise contrastive estimation.

In this work we only considered low-dimensional
problems (1D and 2D) similar to Garnelo et al.
(2018b,a), mainly because even in this setting,
standard method still fail. We have demonstrated
significant advantages of our method MetaCDE
against the competition in important real-world
applications such as the Ramachandran plots in
chemistry. One weakness of the proposed method is
that it would not scale well in the dimension of y given
the post-normalization/NCE needed. We leave this to
future work to amend.

Lastly, an interesting avenue would be in modelling
conditional distributions in the reinforcement learning
setting. In particular, (Lyle et al., 2019) have shown
the benefits of using distributional perspective on
reinforcement learning as opposed to only modelling
expectations of returns received by the agents.
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