Finding First-Order Nash Equilibria of Zero-Sum Games with the Regularized Nikaido-Isoda Function

A PROOFS

A.1 Regularized Nikaido-Isoda (RNI) Approach for FNEs

Example
1. Let f(x,y) = h(x) +xTQy — g(y). Then, consider the following cases:

(a) (Constrained) Strongly-convez strongly-concave objective : h(x) and g(x) are strongly convex functions.

(b) (Unconstrained) Bilinear objective : h(x) = g(y) =0; X =R", ) =R™.

(¢) (Unconstrained) Strongly-convex strongly-convex objective : h(x) is a strongly convex function, g(y) is a
strongly concave function; X = R", Y = R™.

For each of the above problem classes, the RNI reformulated objective is a convex function.

2. Consider an unconstrained objective f(x,y),x € R",y € R™ with n = m,

Tmin(Viy[(X,¥)) = A, ¥x €R",y €R™ (28)
Tmar(Viy f(x.¥)) <A Vx € Ry €R™, (29)
and for which the following conditions are satisfied:

a) — L, 2 V2, f(x,y) 2 L,1,¥x € R",y € R™ (30)
b) — L,] < Vi f(x,y) 2 L,],yx € R",y € R™ (31)

L+ L 9

c) )\Zmax{L+Lz (L3 +2LL,),

L+L, , o
L; +2LL 32
L+Ly ( Y + y) }7 ( )

where L > max{Lg, Ly} is the parameter of the RNI formulation . In addition, assume that L, = L, = E,
while we set L = 2L in . Then, if

[A - 5Z2} *4T2A > 0 (33)

holds the RNI reformulated objective is a strongly convex function.

Note that there exist nonconvezr-nonconcave min-max games that belong in the above problem class. For
instance, the (non-convez) quadratic function f(x,y) = %XTAX +xTQy + %yTBy +cTx+dTy+e, x€
R™ y € R® with —LI < A< LI, —LI < B X LI, and for which the inequalities and A = o2, (Q) > 5L>
hold, satisfies the above conditions.

Proof.
1. To begin with notice that

Vil (%,¥) = Vxh(x) + Qy, Vy f(x,¥) = =Vyg(y) + Q"x and
Vi f(xy) = Vi h(x), Vi, f(xy) = =Vi,g(y), Vi, f(x,y) = Q, Vi, f(x,y) =Q".
As a result
VxP(x,y) = L(X — x) + Vxh(x) + Q¥
VyP(x,y) = L(Y - y) + Vyg(y) - Q"%,
where X = X(x,y) = arg min{f(z,y) + Lz — x[*} and ¥ = y(x,y) = arg rzxg}{—f(x, z) + 5llz - y|*}.

(a) Let (x*,y*) € X x Y be a stationary point of P(x,y) and X = X(x*,y*), ¥ = ¥(x*,y*). Then, from the
optimality conditions of P we get

(Vxh(x")+ Qy + L(X—x"),z —x*) > 0,Vz € X (34)
(Vyg(y") = Q"X+ Ly —y*),2—y") 2 0,Vz €Y (35)
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Moreover, the optimality conditions of X = X(x*,y*) and y = y(x*,y*) imply that
(Vxh(X)+Qy*+ L(X—x"),z—%X) > 0,Vz e X (36)
<vyg(y)_QTX*+L(y_y*)7Z_y> ZO,VZGJ}. (37)
Setting z = X in , z =Xx* in and adding them together we get

(Vxh(x*) = Vxh(X)+ QF —y"),x—x*) > 0.

Similarly, setting z =¥ in , y=y"in and adding them together we get

(Vyg(y") = Vyg(¥) + Q" (x* — %), —y*) > 0.

Adding the above two inequalities yields

(Vyh(x*) — Vih(X), % — x*)
)

(Vyg(y") = Vyg(¥),y ¥
(Vxh(x") = Vxh(X),x" —(Vyg(y") = Vyg(¥),y" = ¥), (38)
where in the second line we used (Q(¥ —y*),X — x*) = <y —y5, QT (%X — x*)> =— <y -y, QT (x* — i)>

If h and g are strongly convex function then we have

(Vxh(x") = Vxh(%),x* =) > pa[[x* — x|*

—(Vyg(y") = Vyg(3). 5" = ¥) < —myly" = 5I*
for some 1z > 0,y > 0.
Plugging the above expressions into (38]|) gives
0 < pr[[X = x*[[? < (Vich(x*) = Vh(X), x* = %) < = (Vyg(y*) = Vyg(7),y* = ¥) < = Iy = y*[I* <0

which implies that
<vxh<X*> - vxh(i)v x" — §> = <vyg(y*) - Vyg(y)a y* - y> =0.

Then, we can deduce that X = x* and ¥ = y™*; the strong convexity of h and g exclude the possibility
of finding points x* # X, y* # ¥ such that Vih(x*) = Vxh(X) and Vyg(y*) = Vyg(¥). Note that if
x* = X(x*,y*),y* = y(x*,y*) then (x,y) is a global minimum of P. Consequently, every stationary point
(x*,y*) of P(x,y) is also global min (of P(x,y)) and thus P(x,y) is a convex function. l

(b) To begin with, we have that
: L
.. (x,y) = min {z' Qy + 7[lz — x|*}.
The above problem is strongly convex and thus its minimum satisfies the following equation
1
Qy+L(z—x):0:>z:x—zQy.

Then,
1
P, (x,y) = (x — ny )T Qy + *II Qy||2 =x"Qy — ||QY||2 + 57 llQyl* = x"Qy — fIIQy\IQ

Similarly, w.r.t variable y we have the expression

®y(x,y) = min {-x"Qz+ IIZ—yIIQ}
yeR’"L
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whose minimum satisfies the following equation,
1
QTx+Lz-y)=0=z=y+ EQTX.

Then, ®,(x,y) admits the following form

1 L 1 1
_ _ T AT it oTo12 — T T 112
@y (x,y) = X" Qy + 7Q"X) + ol 7 Q" x]? = —x"Qy — - Q"x?.
As a result,

1 1 1 1
Plx,y) = —xTQy + 5@y I? +xQy + S 1Q7xI> = - Qyl* + 57 197

2L
_ L 77 U vy _ L rr o [QQT 0 x
=opY @O+ QQx=gr YN0 oo |y

The above matrix is positive semidefinite and thus P(x,y) is a convex quadratic function. B

(c) Let (x*,y*) € X x Y be a stationary point of P(x,y) and X = X(x*,y*), ¥ = y(x*,y*). Using a similar
reasoning as in (a), consider the expressions in , (135), (36)), (37). For unconstrained problems these admit the
form

Vih(x*) + Q¥ + L(X —x*) =0 (39)

Vyg(y") = Q"X+ Ly —y*) =0 (40)
and

Vxh(X)+Qy* + L(X—x")=0 (41)

Vyg(¥) - Q"x" + L(y —y*) = 0. (42)

Combining with and with we get
Vxh(x") = Vxh(X) + Q¥ —y") =0

Vya(y*) = Vyg(¥) + Q" (X — x*) = 0.
The above two conditions imply that

(Vxh(x") = Vxh(X) + QF — ¥*),x" = %) = (Vyg(y") = Vyg(¥) + QT (X~ x"),y" - ¥)
(Vich(x") = Vih(R),x" = %) = (Vyg(y") = Vy9(9),y" = ¥),

since (Q(¥y —y*),x* —X) =(y—y*, QT (x* — X)) = (y* =¥, QT (X — x*)). Also, h is a strongly convex function
and g is a strongly concave function and so we get

allx* — P < (Vieh(x") - Vah(R),x" %) = (Vygly") = Vy9(®),y" ~F) <~y ly" — 5%
The above expression implies that
(Vih(x*) = Vxh(X),x* —-X)=0=>x" =X
and
(Vyg(y*) = Vyg(¥),y" -¥) =0=y" =¥.
Using the same reasoning as in a) we conclude that, P(x,y) is a convex function. B

2. We want to show that under the conditions specified in — the objective P is strongly convex. We are
going to do that by showing that the Hessian of P is positive definite, that is V2P(x,y) = 0,Vx € R", y € R™
(Step 2). Therefore, the first step towards that goal is to compute the Hessian of P(x,y) (Step 1). Also, assume
that throughout this proof it holds that n = m.
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Step 1 - Hessian Computation

First, we need the expressions of the gradients of the argmin functions X(x,y) and ¥(x,y). Specifically, we have
that
- - . L 2
X =X(x,y) = arg min{f(z,y) + 5[z — x[|"}
z€ER® 2
=Vxf(X(x,y),y) + LX(x,y) —x) =0,¥x € R",y € R™.
Taking the gradient w.r.t x of the above expression yields
VaX (%, ¥) Vi [ (X(%,¥),¥) + L(VxX(x,y) = I) = 0
ViX(x,y) (Vi f(X(x,y),y) + LI) = LI
VxX(x,y) =L (Vixf(i(xy),y) + LI)f1 =LH(x,y),Vx e R",y € R™,

where in the last equality we used the fact that L > L,, which makes the matrix V2, f(X(x,y),y) + LI invertible,

and we introduced the notation H(x,y) = (VZ, f(X(x,y),y) + LI)_l. Next, consider the gradient w.r.t y of the
same expression,

VyX(x,¥) Vi (X(%,¥),¥) + (Vay) T f(X(x,¥),y) + LV, X(x,y) = 0
VIR(x,y) (VIS (X(x,¥),y) + LI) = (V2T f(X(x,),¥)
VIR(x,y) = —(V2) T f(X(x,¥),¥) (Vi f(X(x,¥),¥) + LI)
VIx(x,y) = —(V2,)T f(X(x,y),y)H(x,y),Vx € R",y € R™.

Moreover, we have that

¥ = ¥(x.y) = arg min (~f(x,2) + 5 15— I}
= —Vy[(x,¥(x,y)) + L(¥(x,y) —y) =0,¥x e R",y e R™.
Taking the gradient w.r.t y of the above expression yields
~Vy¥(x,¥)Vyy f(x,5(x,¥)) + L(Vy¥(x,y) = I) =0
Vy¥(x,¥)[-Viy f(x,7(x,¥)) + LI] = LI
Vy¥(xy) = L (- Vi f(x.¥(x.y) + LI) ' = LG(x.y).¥x € R".y € R",
where we used the fact that L > L,, which makes the matrix Vf,y f(x,¥(x,y)) + LI invertible, and we introduced

the notation G(x,y) = (=V2, f(x,¥(x,y)) + Lf)f1 . Then, considering the gradient w.r.t y we get

_(V)Q/x)Tf(X7 y(X,Y)) - sz(xv y)viyf(xa y<x> Y)) + LVE?(X, y) =0

VIN(x,y) (~V2, f(x,¥(x,¥)) + LT) = (V2,07 f(x,7(x,))
VIV(x,y) = (V20T f(x,5(x,y)) (Vi f(x,5(x,y)) + LI)
VIy(x,y) = (V2" f(x,7(x,y))G(x,y),Vx € R,y € R™.

Next, from Lemma [T we know that

VXP(X7 y) = L(i(xv Y) - X) + fo(xvy(xv Y))
VyP(xy) = L¥(xy) —y) = Vy /(X% ¥),y)

—~

Thus,

Vi P(x,y) = L(ViX(x,y) = I) + Vi f (%, 7(x,¥)) + V¥ (x,¥)(Vay) " f(x,¥7(x,))
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where we have used the fact that Vi, f(x,y) = (V3,)7 f(x,y). For the V2  submatrix of the Hessian we have

V§,yP(X, y) = L(vyy(xv Y) - I) - vgi()g y) (vix)Tf(i(Xa y)v Y) - V§,yf(i(X, Y)7 y)
= LQG(X, Y) — LI - viyf(iv y) + V?le(iﬂ Y)H(x7 y)(vix)Tf(i> y),Vx € an ye R™.

Also, for the non-diagonal submatrices of the Hessian of P(x,y) we have that

vf{yp(xa y) = Lvyi(xa y) + viyf(x7y(x7 Y))vyy(xa y)
= —LH(x,y)Vy, (X,y) + LV, f(x,7)G(x.y),Vx € R",y € R™

and

Vi P(xy) = LVxY(x,y) — Vi, f(X(x,y),y) VxX(x,y)
= LG(x,y)Vi f(x,¥) — LV., f(X,y)H(x,y),Vx € R",y € R™.

Therefore, the Hessian of P is

Vi P(x,y) VI P(x,y) Vi P(x,y) V2, P(x,y)
VQP(X, y) — XX ’ Xy ’ _ XX ’ Xy ) )
VixP(x,y) Vi P(x.y) (Viy)"P(x,y) Vi P(x.y)

Note that it is a symmetric matrix.

Step 2 - Hessian is positive definite

From Horn and Johnson| (2012, Theorem 7.7.7, pg. 495) we know that

VixP(x,y) = 0 (4)

V2P(x, - |
(x,y) -0« {Vin(X7Y) — (V2,)"P(x,y) (V2. P(x,y)) Vi ,P(x,y) >0 (B)

The plan is to establish the positive definiteness of the above matrices by computing lower bounds for their
minimum eigenvalues and ensuring that these bounds are positive (over all x € R™y € R™) under the conditions
specified in —. Specifically, for the expression (B) we have that

A (v2 P(x,y) = (V3,)" P(x,¥) (ViP(x,¥)) " V3, P(x,y))

 Ain (V)T Px,y) (Vi Px,y) Vi Plx,))

mm( vy )
b mzn (v yP ) mzn X y /\min (_(vixP(va))_l)
> Amin (V P(x,5)) + 0z (Vay )" P(x,y)) Amin (—(Va P(x,y)) ")
min (Vy ¥)) —om

az (Viy) "P(%.¥)) Amaz (VaxP(x,¥)71) | (43)

where in (a) we used Weyl’s inequality (Horn and Johnson| [2012, Corollary 4.3.15, pg. 242); in (b),(c) we used a
corollary of Ostrowskii’s theorem (Horn and Johnson, [2012, Corollary 4.5.11, pg. 284) which establishes that for
every x € R"y € R™ there exists a 6,,;,(x,y) such that

/\min (—(Viy)TP(X,Y) (VixP(va))_l V%P(x,y)) = gmin(xa y))‘mzn (_ (vixp(xa Y))_l) ’

with o2,, ((Viy)TP(x, Y)) < Omin(x,y) < 02,00 ((Viy)TP(x, y)); in (d) we exploit the fact that for an eigenvalue
A of some matrix M, —\ is an eigenvalue of —M. From the above expression it is apparent that we need to derive
lower bounds for the minimum eigenvalues of V2, P(x,y) and V2 P(x,y), as well as an upper bound for the
largest singular value of V3 P(x,y).
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Towards that goal, we start from the fundamental assumption about the Hessian w.r.t V2, and we get,

- LII?I = V)chf(i(xa y)7y) = La:I
=0=<(L— L) =V f(X(x,¥),y) + LI = (L + L)1, for L > L,

1 -1 1
< 2 X =
= L_|_L$I — (vxxf(x(xvy)vy) +LI) -7 _LZI (44)
L? ) ) 2
_ _ < _ v) < o n m
;‘<L+LI L Lr>1_LH(X7Y) L1+Vxxf(x7y)_<L_LI L+Lm>I,Vx€R7yeR
—L?2 —2LL,
= Amin (L2H(x, y) — LI+ vazcxf(xvy)) > zT, (45)

where in the third line we utilized the positive definiteness of the matrix V2_f(X(x,y),y) + LI and the fact that
for an eigenvalue \ of some matrix M we know that % is an eigenvalue of M ~!. Similarly, using the respective
assumption w.r.t V?]y (31) we have that

- LyI = viyf(x7 y(X, Y)) = L?JI
0= (L—LyI ==V f(x,¥(x,y)) + LI < (L+Ly)I, for L > L,

1 —1 1
< (=V2 v <
T S Ve y ooy + L) S (46)
L2 ) 5 2
— n m
<L+Ly —L—Ly)IjL G(x,y) — LI - Vi f(X,y) = (LLy —L—i—Ly) ILvxeR" yeR
—L2 - 2LL
2 2 pi— 4
)\min (L G(X?Y) —LI- Vyyf(Xay)) > LZ/+ Ly (47)

Next, we want to lower bound the minimum eigenvalue of Vi f(x,¥(x,y))G(x,y)(Va,)" f(x,¥(x,y)). Specifi-
cally, we have that

Amin (Vay f (%, 7(x,¥)G(x,y) (Vi) f(x.¥(x,y)))

(i) Omin (X7 Y) Amin (G(X, y))

Y 02 i (V2 F(, 506 ¥))) Ain (G, 7))

A
L+L,

A
o IV

(48)

Y

where in (a), (b) we use Ostrowskii’s theorem (Horn and Johnson) [2012, Corollary 4.5.11, pg. 284) and

the respective inequality 02,;, (Va, f(X,7(X,¥))) < Omaz(%,¥) < Omaz (Vxy (X, 7(x,y))); in (c) we use the

assumption 02,;,, (V2, f(x,¥(x,y))) > X, Vx € R",y € R™ and the bound in (46). Moreover, we want to bound
2 iz 2 \T f(x ;

V2, (%%, ¥),3) H(%,3) (V)T £ (%(x, ), y) and in fact we have that

Amin (Vo f&(x,y), ¥)H(x,¥)(Va,) " f(X(x,y),y))

(;) gmin (X, }’)/\min (H(Xa Y))

(®)
Z U?nin(vixf(i(xa Y), y)))‘min (H(X7 }’))
D 02 (Vi ) YD)

@ A
>

AN 4
= L+1L, (49)

where in (a), (b) we use Ostrowskii’s theorem (Horn and Johnson| 2012, Corollary 4.5.11, pg. 284) and the
inequality o2,,, (Vixf(i(x,y),y)) < Onin(%,Y) < Omaa (Vf,xf(i(x,y),y)), in (c) we exploit the property
Omin (Vf,xf(x, y)) = Omin ((Viy)Tf(x, y)) = Omin (Viyf(x, y)) ,Vx € R", y € R™ and the bound in , and
in (d) the assumption o2,;,(Va, f(X(x,y),y)) > A\, Vx € R",y € R™.
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Combining the results in and , and using a corollary of Weyl’s theorem (Horn and Johnson, 2012|
Corollary 4.3.15, pg. 242) we can derive bounds for the minimum eigenvalue of V2, P(x,y), that is
Amin (VicP(%,)) = Amin (L2 H(x,y) = LI + Vi f(x,9)) + Amin (Vig f (%, 7)G(x,3) (V)" f(x,5))
—L? -2LL, A
- L+1L, +L+Ly' (50)

Notice that
L+1L,
L+ L,

Also, combining the results in and , and using a corollary of Weyl’s theorem (Horn and Johnsonl 2012,
Corollary 4.3.15, pg. 242) we get

Amin (viyp(xa Y)) Z )\mzn (LZG(X7 .Y) — LI - viyf(ia Y)) + )\an (vixf(iv y)H(Xv y)(vix)Tf(iv Y))
_Lz2/ —2LL, A

A > (L2 +2LL,) = Amin (Ve P(x,y)) > 0. (51)

> . 52
=131, I+L (52)
Then, notice that
L+ L,
Az T (L2 + 2LLy) = Amin (Viy P(x,y)) > 0. (53)
Yy

Next, we focus on the term 032,,, (V2,P(x,y)), that is
Tmaz (VayP(%,¥)) = Opmae (—LH(x,¥)Viy (X, ¥) + LV5, f(x,5)G(x.¥))

= Mnaz ( (_LH(Xa y)viy(i’ Y) + LViyf(X,y)G(X, Y)) ’
(CLH )T () + LV (56 )

— A (L2H<x, ¥)V2, F(&y)(V2,)T F (&, y)H(x,y)
+ LPVi, [(x,¥)G(x,y)G(x,y)
- LQH(X7 Y)Vaz(yf(ia y)G(Xa y)(Viy)Tf(x, y)
LPV2, (% 7)G(x, y) (V2T S (%, y) Hx, y>)

(@)
< Amaz (LPH(x,y)Va, f(X,5)(Vi,) (X y)H(x,y))

+ Amaz (L*Vi F (%, 7)G(x,y)G (%, ¥) (Vi) f (%, 7))
+ Amaa (= L2H(x,y)Viy f (X, ¥)G(x,¥)(V3y) f(x.7)
- L2v>2cyf(xvy)G(xv y)(viy)Tf(iv y)H(X7 }’)),

where in (a) we used Weyl’s inequality (Horn and Johnson) [2012, Corollary 4.3.15, pg. 242). Now let’s work
separately on the above three terms. Starting with the first one we have

Am{l-’ﬂ (LZH(Xv Y)viyf(ia Y)(Viy)Tf(ia y)H(X7 y)) = 0.7271,(1,:8 (LH(X7 y)viyf(ia Y))

< 020 (LH(X,Y)) 020n (Vi f(XY))

< A (54)
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where in (a) we used the property om4z(AB) < 0maz(A)0maz(B) (Hogbenl |2013 property 7c, pg. 17-8), in (b)
we utilize the assumption o2, (Vz, f(x,y)) < A, Vx € R",y € R™, and in (c) we use ([44). Similarly,

Amas (L Vi f(x,7)G(x, )G (%,¥) (Viy ) F(%,7)) = 0oz (LViy f(x,7)G(x,Y))

(? 020 (LG, ) 02, (V2 (. 5))

®
< L2074, (G(x,y)) A

= L* Ao (G(x,y)GT (x,y)) A

c L2
< A, 55
- L) )

—~
~

where in (a) we used the property 0.4z (AB) < 0maz(A)0maz(B) (Hogben) [2013] property 7c, pg. 17-8) in (b)
we utilize the assumption 02,,,(Va, f(x,y)) < A, Vx € R",y € R™, and in (c) we use ([46). For the third term
we have

Amas (~L2H(x,3)V2, F(%,3)G (%, ¥)(V2)T F(x,5) — L2V2, fx, 1), ¥)(V2)T F(&, ) H(x,¥))
Y e (D H(x,y)V2 (%, ¥)C(x. ¥)(V2)T f(x.7)
 20mas (LH(x,¥)) 0mas (LG(,¥)) 0mae (V2 FZo¥)) s (V2)T F(x.5))

< 200 (LH(%,5)) Omas (LG (x,y)) A

=2\/2 (PH(x,y)H" (x,y)) A2, (L*G(x,y)GT (x,y)) A
= 2L A g (H(%,¥)) Az (G(x,y)) A

(d) 212

S LI -1

A, (56)

where in (a) we used the properties Apae(M + MT) < 20,,4.(M) (Hogben, 2013, property 10, pg. 17-9) and
Omaz(—M) = Omaz (M), in (b) we used the property oumar(AB) < 0maz(A)omaz(B) (Hogben, [2013, property
7c, pg. 17-8), in (c) we utilize the assumption o7,,,(V3, f(x,y)) < A,¥x € R,y € R™, and in (d) we use the
bounds in 7 (46). As a result, combining the above three terms we have

L? L? 2L°

Tmos (Vo PV S oA T oM T ™ (57)

Then, by noting that for an eigenvalue A of some matrix M we have that % is an eigenvalue of M !, and by
considering the fact that V2, P(x,y) is a positive definite matrix (under the condition ), inequality
becomes

Anin (Vg P(x,y) = <viy>TP<x,y> (ViP(x,y) " Vi Plx.))

Z min (V P( )) Omaz (VQ (X,Y)) )\mln(V,zj(P(va))

Combining the results in , , ,, and assuming that condition holds, we get
Amin (Vg P(x,¥) = (Vig) T P(x,¥) (Vg P(x,¥)) ' Vi, P(x Y))
“L2-2UL, N whp M et M e mt

> + -
= —L2—2LL, B
L+ Ly L+ Lq itr. T L+L,

We want to ensure that

Amin (VyyP(x,y) = (Vi) T P(x,y) (Vix P(x,¥)) "' V3, P(x,y)) > 0.
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So A and A must satisfy the following condition

2

L
—L2 —2LL, N A T L )2A+ o= L A+2(L7Lm)(L7Ly)A =0
L+Ly L+Lx —L —2LL +
7L, L+Ly
L2 - 2LL A 12 —2LL A L L 7
N y Y z z — A>0
I+L, ' L+iL, { L+ L, L+LJ {L—LE+L—Ly] ~
—L? —2LL A —IL? -2LL, A 212 — LL, — LL,]*
L+ L, L+L, L+ L, L+ L, (L = La)(L = Ly)

where we have assumed in the above calculations that the conditions and hold.
Furthermore, assume that L, = L, = L and set L = 2L > max{L,, L,}. Then, becomes

A BL%| | A BL*| 4L2-4L7
3L 3L 3L 3L L2212
.72 ~
[)\ - 5L2} — 14412A > 0. (60)
In conclusion, under the conditions ., ., 53)), where the last two inequalities can be jointly expressed
as A > max { éiéy (L2 + 2LL ) , éiil (L2 + 2LL ) , as well as condition (where we additionally selected

L =2L > max{L,, L,}), we can ensure that V2P(x,y) = 0,Vx € R",y € R™.
O

Proposition |z|. Suppose that Assumption |1| holds. Then, provided that L > max{L,,L,}, P has Lipschitz
continuous gradients in z = (X,y), that is

IVP(z1) — VP(z2)| < L||z1 — 22|, V21,20 € X x ),

. + = . F 7 L*4+LL L,L,+LL, . | L.L,+LL,
with constant L = L, + L,, Ly = L+ L, + L+ Ly—Ly v L,=L+L, +L+LL 4 Lefutlle

Proof. For x1,%x5 € X, y1,y2 € Y we have

[VxP(x1,¥1) = Vi P(x2,¥2) || = [[1L(X1 — x1) + Vs f (%1, 51) = L(X2 = x2) = Vi f (%2, ¥
< L% = Kol + Llixy = Xl + [[Vxf(x1,¥1) = VS (%2, 72) |
< (LA Lo)lxi = xof| + L% = Xl + La[[y1 = ¥al, (61)

where in the first inequality we exploited the Lipschitz gradient property of f, and defined X; = arg mi/_{{l{ f(z,y1)+
z€
Sz — xi[?}, ¥ = arg min{—f(x1,2) + sz = yil?h % = argmin{f(z,y:) + 3z — x|}, ¥o =
arg miijl{—f(xQ,z) + £|lz — y2||?}. Then, the next step is to bound the terms ||X; — Xz|| and ||y, — ¥,|. In order
4SS

to derive a bound for the former term we consider the function
L 2
9(z.x,y) = fz.y) + S llz = x|,
which is strongly convex in z, for L > max{L,, L}, with modulus 3 = L — L,. As a result, we have
9(X2,%1,¥1) > 9(X1,x1,¥1) + (V29(X1,%x1,¥1),%X2 — X1) + %”il —Xo|?
9(X1,%1,¥1) > 9(X2,x1,¥1) + (V29(X2, X1,¥1),%1 — X2) + *”Xl —Xa*.
Adding the above inequalities yields

<vzg(ilﬂxl7y1) - vzg(i27X17YI)ai2 - i1> + ﬂl”il - i2H2 < 0.
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Then, combining the above with the respective optimality condition at Xi, that is (V,¢(X1,%1,¥1),X2 —X1) >0
we obtain

pa|®1 — X2||? < (V,9(X2,%x1,¥1), X2 — X1) -

Furthermore, adding to the above inequality the optimality condition of Xa, that is — (V,g(Xa, X2, y2),X2 — X1) > 0,
we get

% — %ol < (Vag(Xa,x1,y1) — Vag(Xa, X2, y2), X2 — X1)

%1 — %ol < (| V29(RK2, %1, ¥1) — Vag(Xa, X2, y2)||[[ K2 — X1 |

pl[Xr =X < [[Vaf(X2,y1) + L(X2 — x1) — V. f(X2,y2) — L(X2 — x2) |
pr|[Xr = Xa|| < |V f (X2, y1) — Vaf (X2, y2)|| + LJx2 — x|

_ L, L
%1 —%2| < —lly1 =yl + —lIx1 — %2, (62)
H1 H1

where the second inequality follows from Cauchy-Schwarz inequality, in the third inequality we compute the
gradient of g w.r.t z, and in the last inequality the Lipschitz gradient property of f is utilized.

In order to bound the ||y; — ¥,|| term we follow a similar path, that is we define the function

L
h(Z,X, y) = *f(X, Z) + §||Z - Y||2a
which is strongly convex in z, for L > max{L,, L,}, with modulus y = L — L,. Then, we have

— — — — — 2 —
h(Y27X1,Y1) Z h(Y17X1aY1) + <Vzh(Y17X1aY1)aY2 - y1> + 7”)’1 - YQ”Q
— — — — — 2 —
h(F1,%1,51) 2 7(F2, %1, 31) + (Vah(Fo, %1,51), 71 = Fo) + 5191 = Pl
The addition of the above inequalities yields

<th(ylaX17y1) - th(yanlay1)7y2 _y1> +:u’2||y1 - y2H2 < 0

Then, the utilization of the optimality condition of y; and ¥, (following the same approach as above), that is
<vzh(y15 X1, Y1)7y2 - y1> > 0 and — <vzh(y2a X2, y?)ayQ - y1> > Oa respeCtiVGIY7 leads to

p2ll¥1 = Fal? < (Vah(Ya, x1,¥1) = Vah(T2, X2, ¥2), ¥ — V1)

p2ll¥1 = Yall* < IV2h(Fa, %1, y1) — Vol (¥, x2,¥2) |72 — ¥4l

p2llyr = Voll <[l = Vaf(x1,¥2) + L(¥2 — y1) + Vo f(x2,¥2) — L(¥2 — y2)|
12|71 = Vall < IVaf(x1,¥2) — Vaf(x2,¥2)| + Llly2 — vl

L L
17, — Fall < —2lIx1 — x2fl + —ly1 — y2l|- (63)
125 M2

Combining , and we conclude that

L? L,L LL LL
. < xloy . T T . .
I9Pe1.30) = VP leaya)l| < (L Lot o+ 7 ) I =l + (o + g ) I =3l

Using a similar reasoning we get

L? L.L LL LL
195 Plx1yn) = Vo Plxayll < (L Lyt 2+ 222 Y I — vl + (o + po ) T = xal.

Combining the above results we notice that

|VP(z1) — VP(z2)| < L||z1 — 22|, V21,22 € X x ),

. F_F LT Fo_ L®+LLy | LyLy+LL, 7 o_ L*4LL, | LaLy+LL,
with constant L = L, + Ly, where Ly = L+ Ly + 1+ + LJ—Ly v and L, = L+ L, + 75 s Ey sy e O
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A.2 Proposed Algorithm and Theoretical Analysis

In order to facilitate the presentation we consider the following notation.
Notation 1. We define the following notation for x € X,y € Y:

L X =X(x,y) = argmin{f(z,y) + 5|z — x|’}
y=y(xy) = argmin{—f(x,2) + 3z - y[*}
VxP(x,y) = L(X — x) + Vx f(x,¥)

VyP(x,y) =Ly -y) - Vyf(Xy)
2. X=X(x,y,w) = arggg)g{f(z,y, w) + 5|z — x|}

3; = Y(Xa Y, W) = arg néin{—f(x,z,w) + %”Z - Y||2}

6x]D(an) = L(SE - ) ( y )
VyP(x,y)=L(F —y) - Vyf( Y, W)
3. ViP(x,y) = L(X — X) + Vx f(x,¥, W)
VyP(x,y) = L(F —y) — Vy[(X,y. W),

where w, W are random vectors whose elements are drawn from distribution VW, and X,y are approximate solutions
of the problems X(x,y,w), ¥(x,y,w), respectively, that will be specified later.

Lemma 2. For the mini-batch estimators of the objective f and its gradient —, and for anyx € X,y € Y,
W = (W, ..., Wy),w; ~ W, Vi, it holds that
E(f(x,y;w)] = f(x,¥),
E[Vaf(x.y:w)] = ,
E[Vyf(x,y;w)] = Vyf(x,y). (64)
Moreover, for any x € X,y € Y, it holds that

=

2

B[V (2,73 w) = VoS (¥ < -
~ 2
B[V (x.yiw) = Vy S,y < 7. (65)

Proof. Using Assumption [3] and taking expectation with respect to the random vector w we obtain

By wl) = B 3D Py = 3B (i) = 1 30 y) = f59),
and
B[V, (6, : W) = Zv Fleyiug)] = - 3 BIVAF(xyiw)) = - 30 Vuf(xy) = Val ()

Using a similar argument we can prove that IE[ yf(x,y;w)] = Vy f(x,y). Moreover, using the second part of
Assumption [3] we get

E[|Vxf(x,y; W) = Vi f(x,9)|°] = ]EHI% D (VRF(x,yiwi) = Vo f (x,3)) |I]

i=1

[~}

SR[|VaF(x,yiw1) — Vaf (5,32 < =,

n
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T n

where we used the following elementary result from probability theory: E[||2 > X;||?] = LE[||Xy]|%], with {X;}1,
=1

o
zero-mean random vectors. Finally, the results with respect to y follow similarly. O

Proposition Suppose that Assumption@ and@ hold. For the stochastic gradient of P defined in and for
everyx € X,y € Y and w ~ W, it holds that

Lo L,o

C—Lovn  (T-Ly)vn
Lo Lya

(L= Lyvi (L= LV

E[VxP(x,y)] = VxP(x,y) +e,, with [le,| <

E[VyP(x,y)] = VyP(x,y) +e,, with [le,| <

Moreover, for every x € X,y € Y, we have that
E[|VxP(x,y) = VxP(x,y)|*] <52, E[|VyP(x,y) = VyP(x,y)[’] <53, (66)

. 2 2 2 - 2 2 41,2
where 0320 = % ((LELLL)Q + (Lilfy)fz + 1) and 0'12/ = % ((Lzli/y)Q + (LiLyw)Q + 1).

Proof. First of all, for x € X,y € ), we have that

L ~ L ~
TP) = Llargmin{Fn.yow) + 5 la = %I}~ x] + Fuf (g min (Tl zw) + 5 - y1),5) =

= L[i_x] +6xf(x,§,\7V).

Then, taking expectation over w and w yields

E, 5[VxP(x,y)] = —Lx + LE ;[X] + E_ ;[Vif(x,7,W)]

W Ix 4 LEW[X] + Ew|Vef(x, )]

Y _Ix 4 LEW[R — %) + LR + By [Vo/(x,7) — Vaf(x.5)] + Vo f(x.5) =

= VXP(X,Y) + ex, (67)

where in (a) we used (64), in (b) we considered the fact that X,y are deterministic variables (X, ¥, X,y are defined
in Notation [1]) and ex = LEw[X — X] + Ew[Vxf(X,¥) — Vx f(x,¥)]. Next, we obtain a bound for ||ex||, that is

lexl < [ILEw[x = X[l + [Ew[Vif(x,¥) = Vxf(x, 3]l
S LEw[[IX = X[l + Ew[[IVxf(x,¥) = Vxf(x,9)I]
< LEw[[Ix = X[ + L Ew[lly — ¥1IJ,

where we used the Lipschitz gradient property of f.
In order to proceed we define the following functions :
L 2
9(zx,y) = f(z.y) + 5z — x|
~ L )
G(Z7X7Yaw) = f(ZaY7W) + §||Z - X” .
The above functions are strongly convex with respect to z with the same modulus py = L — L,, and their (global)
minima are attained at z = X and z = X, respectively. Therefore, we have that

<vzg(ivxvy)>z 7i> Z 07VZ € X = <vzg(ivx7y),sE 7i> Z 0
(V.G(x,x,y,w),z—X) >0,Vz € X = (V,G(X,x,y,W),X —X) > 0.
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Also, the strong convexity of g implies that

:u1||;( - in S <VZG(§E? XY, W) - Vsz(ia X, Y, W)7 X — i>

—
INg

(V.G(X,x,y,w), X —X) + (V,G(X,x,y,W),X — X) + (V,9(X,x,y),X — X)

b
S <vzg(i7 X, y) - VzG(iv X, Y, W), i - i>

@ <sz(i, y)+L(EX-—x)— 6zf(i,y,w) —L(X—x),X— i>

= (V& y) - Vol Xy, W), X~ %)

—~
=

(d) ~ o
S ||vZf(i7 Y) - vzf(iaY7W)||||X - X”7

where in (a) and (b) we used the fact that X and X are the minima of g and G, respectively, in (¢) we computed
the gradients of g and G w.r.t z, and in (d) the Cauchy-Schwarz inequality is utilized. The above inequality
implies that

mlR =% < Vo f(%y) = Vo f (X y, w)|. (68)

Taking expectation w.r.t w leads to

~ (a) =~ ® o
Ew[p X —X|l] < Ew[[|V2f(Xy) — Vo f (X y, W] < \/Ew[Hsz(i y) = Vo f(Xy,w)?] < 7

=

g

piy/n’

where the property in (a) follows from E[X] < /E[X?] and in (b) the bound is used. Following similar steps
we can deduce that

(69)

= Ew[lx —x|] <

g

IEw Y-V S ’ 70
[y =¥l = (70)
where pp = L — L,. Combining the above we get
lexll < Lo n L,o
ex|l < .
(L—Ly)yn (L—Ly)yn

Next, w.r.t y we have that

. L =~ T L -
Ty P(xy) = Llargmip -l 2. w) + 5 317} -1 - 9 (argmin(Fyow) + 5 o= x2),3,%) =

= L[y - y] - Vyf(§7Yaw)
Then, taking expectation over w and w and utilizing the same arguments as in expression we obtain

E, +[VyP(x,y)] = ~Ly + LE, 5[5] - E,, 5[V, /Xy, ®)]
= —Ly + LEw[y| - Ew[Vy f(X,¥)]
= —Ly + LEw[§ — 7] + LY + Ew[Vy f(X,y) = Vy f(X,y)] - Vy f(X,)
= vyP(X’Y) + ey7

where e, = LE,, [y — ] + E[Vy f(X,y) — Vy f(X,y)]. Following a similar reasoning as above we deduce that

Lo n Lyo
C—L)vn  (L—Lovi

eyl <
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The first part of the proof is complete. So, we proceed by showing the bound in . To begin with, we have

E,, 5[IVxP(x,y) = VxP(xy)|*] = E, SIILE = x] + Vi f (x,5, W) = L[X = x] = Vi f(x,3)I’]

(@) ~ - b~ ~ ~ _
E,, &2L%1% = X|* + 2| Vi f(x,¥, W) = Vi f(x,5)|]

®) = = S S N v
E, 202X = X[ +4[|Vaf(x,5, W) = V f(x, 5, W)||?

+ 4||vxf(xvyv VTI) - fo(X, y)”2]

< 2LPBy[|[X = X|°] +4E, [V f (%, 7, W) = Vaf (%, 57, W)|*]+

+4E~ [||fo(x Y. W) — Vi f(x,9)|%]

< 27 (1% - %) + 4L2EW (15 - 71 + 4%2 (71)

where in (a) we used the property (a + b)% < 2a2 + 2b2; in (b) we added and subtracted the term Vi f(x,¥, W),
and used the same property as in (a); in (c) we used the Lipschitz gradient property of F and the bound in (65).
Moreover, from the inequality in we can obtain

~ - 1 - S e
% —x|* < 2 IVaf&y) = Vaf (& y, w)|?
1
2

Ew[I%x —%|% < %Ew[Hsz(i, y) = Vaf (X y, w)|’] < UT (72)
1251 Him

where the bound in is used. Similarly, it holds that

~ 1 . =
Iy -51* < Ellvzf(xyy) ~ V. f(x5.w)|* =
2

L B IVaf(x7) - Vaf(x, 7, W)[?] < 2. (73)

Ew(lly —¥II°] <
v ﬂ% 2"

Combining , and yields

. 2 2 2 2L2 4L2
~[IV<P(x,y) — VxP(x, <2L20 +4L20 142 —J< n z +4) =52,

Finally, following the same reasoning

N 2 2 2 2 272 412
E[||VyP(x,y) — VyP Yot a2l 44T =2 Y4 =52
[Hvy (X,y) vy (X7y)H ] — M%” + ylu/%n + n n (L _ Ly)g + (L _ Lm)Q + o

O

Theorem Suppose that Assumption[q and[3 hold. In addition, assume that the gradients of f are bounded,
that is ||Vxf(x,¥)|| < ¢z and HVyf(x Yl <y, for everyx € X,y € Y. We run Algorithmfor T iterations,

with constant stepisize 0 < « <37 , L >max{L,,L,} and for given parameters 6,,0,. Then, we have
1« E[P°)/a 3La* , ca 3foz2~
LS Bl < BEVE Lt cap o ST,
2a o o a

where & = a — 3L°‘ , 0 =2(L+ Ly)by + 2(L + L)y, 6 = 64 + 6y, 6> = 2(62 +6,) and ¢ = 4LD + ¢, + ¢,

Proof. Consider the following notation:

z" = (x",y")

VP(z") = [VxP(z"), Vy P(z")]"
VP(z") = [VxP(2"), Vy P(z")]"
VP(z") = [VxP(z"),VyP(z")]"
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and
o _ L[ [proix (o - avxP<z’“>)”
“T | projy (y" — aVyP(z"))]]’

~ 1 projy (x" — a%xP(zr)

G =—|z" — _ ,
o projy (y" — aVyP(z")

~ 1 [ _proj X" — aVyP(z") 1]

G == |a— | % _ (74)
o projy (y" — aVyP(z")

Moreover, one iteration of the Algorithm 1 can be written as

proj x" — a@xP z"
o _ [t el 5
projy (y" — aVyP(z")

Also, let denote with F7 the history up to iteration r, that is the iterates {(x",y"),...,(x%,y")}. Note that

conditioning under " means that {(w" =1, w"~1) ... (w" w")} are not random variables; though (w”, w") is

still a random variable.

To begin with, we know that the function P(z) has Lipschitz continuous gradient with constant L. Thus, from
the descent lemma we get

L i
P(Zr-i-l) S P(Zr) + <VP(Z7")7ZT+1 _ Zr> + §HZ7"+1 g ||2

(a) ~ La? |
Pz ) < P(2) —a(VP@), Gy + 75| Gl
Pz < P(z") - a <VP(ZT), Gl - é;> —a <VP(ZT), G - G2> —a({VP(z"), Gy) +
L2 A o~ o~
+5IG; - GL+ G+ G - G

L) . N
Pz < P(z') —a <VP(zT), G - G;> —a <VP(zT)7 Gr - Gg> —a(VP(z"),G") +
3La? 3La? 3La?

+ G - Gl 4+ S IG) - Gl + P G, (76)

where in (a) we combine and (75)), and in (b) we used the inequality (a + b+ ¢)® < 3a® + 3b3 + 3¢®. Then,
the plan is to upper bound all the terms of the rhs of the above inequality.

First, our aim is to bound the quantities qu}-r[H(A}Z — G7|[] and IEWT‘].-T[HCN-}Z — G'||]. For the former bound we
consider the following inequalities,

IVP(z") = VP(z")|| < [|V<P(2") = Vi P(z")|| + | Vy P(z") — Vy P(z")|| =
= |LE —x") + Vu f(x", 5", %) — LX" —x") = Vi f(x". 5", %))
HILE —y") = Vy f& Y, W) = LT —y") + Vy f(&y", %)
<LK — X7 + [V f (X", 37, W) = Vi f(x", 57, W")||+
FLIF = F I+ Ve Ry W) = Vy (X, y", W)l
SLIR =X + Lo |l§" = 7| + LIF™ = §7I| + Ly %" — "]
< (L4 Ly)dz + (L + Ly)oy,

where in the third inequality the Lipschitz gradient property of F' is used, while in the fourth one we defined
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0y = ||X" —X"|| and 0, = ||y" — ¥"||. As a result,
||€;g — é;H (%) H; [XT — projy (xr - a@xP(z’"))] — é {xr — projy (XT - a%xP(zT))} H
+ Hcly {yr — projy (y’“ - oz§yP(z’”))} - é [yr — projy, (yr - a%_yP(zr))} H

¢ H%P(zr) VL P(z)

+ ||y P) - VPG
<2||VP(z") = VP(z")|| < 2(L + Ly)bs + 2(L + L,)3,, (77)

where in (a) we used the property ||[x, y]7 || = v/[Ix]]? + [ly[|* < |x||+]|y]l; and in (b) we used the non-expansiveness
of the projection operator. Thus,

Ewr 7 [|GL — G|l < 2(L + Ly)d, + 2(L + Ly)8, = 6. (78)
Next, we see that

-~ (a) ~ ~
Ewr 7 (1GG = Gl < Ewr 7 [IVxP(2") = Vi P(2")[[] + Evr 7+ [ Vy P(2") = Vy P(2")]]

(b) ~ =
< Bz [V P(z7) = Vi P(2")[?] + \/qufr[l\VyP(ZT) — VyP(z")|]?]

()
< G, +5y, =6, (79)

where in (a) we applied the reasoning used in (77), in (b) the property E[X] < \/E[X?] and in (c) we used the
bounds from .

Moreover, for the bound of the gradient of P we have
[VP(z)|| < ILX = %) + Vi f(x. I + [ LT —y) = Vy [ (XY
< LK+ DIl + LU+ [y ll] + Ve )+ [ Vy fE y)l
<2LD +2LD + ¢, + ¢y :=c. (80)
Next, notice that Eyr 2-[|G5]?] = [|G4]%, implies that qufr[H(A}g — G7||2] < 62 and

~ (a) ~
Evr 7 (1G5 — GL|2] £ 2B [|VP(2") — VP

= By 7 (| VP (2") = VicP(2")[*] + 2Bor 7 | Vy P(2) = Vi P(27)]%]

(®)
< 252 +25, =357, (81)

where in (a) we used the inequality in (79)), while in (b) we used the bounds in (66). Furthermore, using the
Cauchy-Schwarz inequality, and the results in , , we can see that

Ever 7 [(VP(2), G = G1 )] = ~Bur i IV P(2") |G — G| = —5, (82)

Buwr 7 [(VP(), G = Gy )] = —Buwr 5 (| VPG — G| > —c5, (83)

Finally, in order to bound the expectation of (VP(z"), G.) consider the projection operation (w.r.t x) which can
be written as 1
projy (x” — aViP(z")) = argmin{(VP(z"),u — x") + — ||lu — x"||*}.
uex 2¢
The optimality condition of the above problem implies that
1
<VXP(ZT) + a(projx (x" —aVxP(z")) —x"),x" — projy (x" — onxP(zT))> >0

. . . : 1, . X
(ViP(27),x" = proj (x" = aVxP(2"))) = —|x" = projx (x" = aVxP(2") |*
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Deriving the respective expression w.r.t y and combining it with the one above yields

Ewri7-[(VP(2"), Gy)] = (VP(2"), Gp) > |Gy (84)

Taking expectations on both sides of conditioned on F" and using the results from , , , we
get

3La?

La? La?
Ewr 70 [P(# )] < P) + ac(6 +6) — al| G + 257 4 22057 4 30
3La? 3La? -
(o= N IGLIE < P ~ B [P+ + o +6) 4 25 (6% 4 32) (55)

Taking expectation over F” (we denote the total expectation Ez+[Ewr z+[-]] as E[]) and summing over r =
0,...,7 — 1 we obtain

(a 3o > i E[||G;|*] < E[P(z")] — E[P(z")] + i {ac(é ro)+ 6 15

2 2
r=0 r=0
T-1 _
1 E[P° 3La? 3La? _
LS may)y < HENE B g, g S
T = T 2a a o) a
where we used the fact that P(z) > 0 and we set @ = o — @ O

B EXTENSION OF THE HAMILTONIAN METHOD TO CONSTRAINED
GAMES

The Hamiltonian method for finding FNEs of unconstrained games, or more precisely stationary points, has been
analyzed in literature (Abernethy et al., [2019; Loizou et al., [2020). However, a major limitation of this approach
is the fact that it cannot be directly utilized to min-max games with constraints. Below we propose a formulation
which can be seen as an extension of the Hamiltonian method to the constrained case. Specifically, consider the
following objective

~ 1 . 1 .
H(x,y) = 5lx = projx (x = aVa f(x,3)) I + 5lly = projy (v + BV, f(x,¥)) | (86)
and the respective optimization problem
in H : 87
oin H(x,y) (87)

Note that for X = R",) = R™ (unconstrained problem) and a = 1, § = 1 the objective reduces to the
Hamiltonian , that is

1 1
H(x,y) = 5lx = x+aVe f,y)|* + 5 lly =y = BV, f(x¥)|* =

1
= IV GV + IV, f e3P = Hixy).

For the sake of completeness we are going to establish formally the equivalence between the FNEs of and the
global minima of the (constrained) Hamiltonian H(x,y) [eq. (86)].

Proposition 4. Suppose that Assumption holds. Then, the function f[(x, y) possesses the following properties:

1. The global minimum of ﬁ(x,y) is 0.

2. A point (x*,y*) is a FNE of if and only if (x*,y*) is a global minimum of ﬁ(x,y).



Ioannis Tsaknakis, Mingyi Hong

Proof. First of all, note that Assumption [I| ensures the existence of an FNE of the game (1) (Nouiehed et al.,
2019, Theorem 2.2, pg.3). Secondly, consider the optimality conditions of the projection operators involved in the

formulation of H(x,y):

R . o1

Pz(x,y) = projy (x —aVaf(x,y)) = ggg{g\\p —x+ aVif(x,y)|*}

<~ <f)z(X, Y) — X+ avxf(xa)’)ap - f’x(xv y)> Z O,Vp € X (88)
and

. . .1

py(x,y) = projy (y + 8V, f(x,y)) = glelg{gllp —y = BV )P}

& (Py(x,y) —y = BVy f(x,¥),p — Dy(x,¥)) > 0,¥p € V. (89)
Then, assume that (x*,y*) is an FNE of (I)). Equivalently, it holds that

(Vaf (X" y"),x—x") >20,Vx e X & (X" —x"+aV.f(x*,y"),x—x") >0,Vxe X
(Vyf(x"y ),y =y S0Vye Yo (y -y - BV f(x"y"),y—y") 20,Vy € ).

From the optimality conditions of the projection operator (88)), (89), equivalently we get

x" = projy (x* — aV,f(x",y"))
y* = projy, (y* + BV, f(x*,y7)).

Finally, notice that H(x,y) = 0 < x = projy (x — aVaf(x,y)),y = projy (y + BV, f(x,y)) and H(x,y) >
0, Vx € X,y € Y. The proof is now complete. O



