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Abstract

Efficiently finding First-order Nash Equilibria
(FNE) in zero-sum games can be challenging,
even in a two-player setting. This work pro-
poses an algorithm for finding the FNEs of a
two-player zero-sum game, in which the local
cost functions can be non-convex, and the
players only have access to local stochastic
gradients. The proposed approach is based on
reformulating the problem of interest as mini-
mizing the Regularized Nikaido-Isoda (RNI)
function. We show that the global minima of
the RNI correspond to the set of FNEs, and
that for certain classes of non-convex games
the RNI minimization problem becomes con-
vex. Moreover, we introduce a first-order
(stochastic) optimization method, and estab-
lish its convergence to a neighborhood of a
stationary solution of the RNI objective. The
key in the analysis is to properly control the
bias between the local stochastic gradient and
the true one. Although the RNI function
has been used in analyzing convex games, to
our knowledge, this is the first time that the
properties of the RNI formulation have been
exploited to find FNEs for non-convex games
in a stochastic setting.

1 INTRODUCTION

In this work we consider the following two player zero-
sum games, in which one player (the "min" player) aims
to minimize the objective (payoff) f(x,y), while the
other one (the "max" player) aims to minimize the
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negative of the objective (that is, to maximize it):
x* = argmin f(x,y*), y" =argmin—f(x",y). (1
gmin f(x,y7), ¥ gmin —f(x"y). (1)

Here f(x,y) can be a usual deterministic function, or
can take the form of an expectation over certain real-
izations of the objective, i.e., f(x,y) := E[F(x,y;w)],
where w is some random variable. Moreover, the solu-
tion (x*,y*) of the above problem is called the (global)
Nash equilibrium (NE) of the game (Jin et al.| [2020).

Recently, problem has received renewed interest,
since it has found many applications in machine learn-
ing, such as reinforcement learning (Cai et al., 2019)),
adversarial learning (Madry et al.l |2017; [Shafahi et al.|
2018) and Generative Adversarial Networks (GAN)
(Goodfellow et al. 2014} |Arjovsky et al., [2017). How-
ever, in these applications, the objective f is typically
non-convex with respect to (w.r.t) x and non-concave
w.r.t 'y, making it extremely difficult to find the NEs
of the resulting games (e.g., the problem is NP-hard in
the general case (Jin et al.,[2020))). As a result, one has
to resort to a relaxation of the above solution concept.
To be more precise, a useful alternative to the NE are
the solutions that satisfy the first-order stationarity
conditions of the min and the max problem in . We
refer to those as First-order Nash equilibria (FNE)
(Pang and Scutaril 2011} Nouiehed et al., [2019), and
formally define them below as solutions (x*,y*) that
satisfy the following conditiongﬂ

<vxf(X*7y*)7X7X*> 203 VxeX? (2)
(Vyf(x*y"),y —y") <0, Vy € ). (3)

Despite such a simple description, the problem of find-
ing FNEs in nonconvex-nonconcave min-max games is
challenging, and there has been various research inves-
tigating this matter (Pang and Scutari, |2011; Nouiehed
et al., 2019; (Ostrovskii et al., |2020)). Among others, a

! Note that in unconstrained games (i.e., X = R™",) =
R™) the FNE conditions for reduce to the stationarity
conditions Vi f(x*,y") =0, Vy f(x*,y") = 0.
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key challenge here is that it is difficult to find a well-
defined merit function, which not only captures the
essence of problem —, but is also easy to optimize.
The major objective of this paper is to find a simple
but meaningful way to re-formulate the FNE problem
from an optimization perspective, and design efficient
(stochastic) algorithms.

1.1 Related Work

Merit Function-Based Approaches for (F)NE.
The well-known Nikaido-Isoda (NI) function (Nikaido
et al., |1955) has been used in literature to construct
merit functions for finding NEs (Uryas’ ev and Rubin;
stein) |1994)). Specifically, for a N-player game (not
necessarily zero-sum), with x;, X; and f; as the strat-
egy, the strategy space and the payoff of the i player,
respectively, the NI function is defined as

N

R =3 (o) = i fivxn) . @

=1

where x_; = (X1,...,X;-1,Xi+1.. .. Xn). Nonetheless,
the minimization problem in can be potentially
difficult to solve and as a result a regularized extension
of the original NI function was subsequently proposed,
the Regularized Nikaido-Isoda (RNI) function. The
RNT is defined as

N

S = (fi(xz',Xi) — min {£i(y,x-) + 5 Iy - xi”?}) ,

i=1
(5)
and it has been used in the context of Nash equilib-
ria (Gurkan and Pang, [2009) and generalized Nash
equilibria games (Von Heusinger and Kanzow), |2009a,b;
Qu and Zhao, [2013)). However, note that in the works
that use the RNI formulation the analysis is restricted
to the case where the objectives (utilities) are convex
functions.

Moreover, another approach is offered by the Gradi-
ent Nikaido-Isoda (GNI) (Raghunathan et al. |2019)
function, where the min problem in is solved ap-
proximately with the application of one gradient step,
that is the respective function takes the form

N
= (filxi,x—i) = filxi — @V, fi(x), X)) .
=1

(6)

The GNI formulation offers a simple way to address
the minimization problem in (4)), however note that the
objective () does not necessarily possess the Lipschitz
gradient property (when only the Lipschitz gradient
property of f is assumed). This property is crucial
for showing convergence to stationary solutions, and
in fact in the work of Raghunathan et al.| (2019) it is
stated in the theorems as an assumption.

We would like to mention that in all the above works
that involve an NI-type function, a deterministic set-
ting is considered. This is an important drawback
since a stochastic setting (i.e., stochastic objective and
algorithm) is crucial in large scale machine learning
applications.

A closely related approach to the NI-based ones is
provided by the Hamiltonian function. Specifically, we
can reformulate the problem of finding the FNEs of
(1), with X = R™", Y = R™ (in this case the FNEs
are the stationary solutions of )7 to the problem of
minimizing the following objective:

= LIV eI + 51V e I (7)

In the work of |Abernethy et al.| (2019) it is shown that
the gradient descent method on that is Hamiltonian

Gradient Descent (HGD), eXhlbltb last iterate conver-
gence to a stationary point of f, in certain problem
classes that may include some nonconvex-nonconcave
min-max games. Moreover, in the paper of [Loizou
et al.| (2020) the Hamiltonian approach is extended to
a stochastic setting, where the objective is expressed as
a finite-sum. However, note that the above formulation
cannot be applied directly to constrained problems.

H(x,y)

Min-Max Optimization Based Approaches for
(F)NE. There are some recent works in the literature
of min-max optimization problems that analyze and
develop algorithms for nonconvex-(strongly) concave
problems (Nouiehed et al. [2019; |Lu et al., 2020; |Lin
et al., |2020ayb; |Ostrovskii et al.l |2020) or special cases
of nonconvex-nonconcave problems (Nouiehed et al.l
2019; [Liu et al.| 2018; [Yang et al.| [2020} [Liu et al.,
2019; |Grimmer et al., [2020). To be more precise, |Liu
et al.| (2018, [2019)) assumes that the respective Minty
variational inequality problem has a solution. In the
work of Nouiehed et al.| (2019)) the main assumption
is that the game’s objective is non-convex in x and
satisfies the Polyak-Lojasiewicz (PL) condition in y,
while [Yang et al| (2020]) assumes that the PL condi-
tion holds for both x and y. Also, in the paper of
Grimmer et al.| (2020)) the convergence of a proximal
point algorithm to a stationary point is studied for a
problem with objective f(x,y) = h(x) +xT Qy — g(y),
non-convex functions h, g, and different “sizes” of the
coupling term xTQy. The common characteristic of
all these works, which they provide theoretical conver-
gence guarantees to first order stationary solutions (i.e.,
FNEs or stationary points in unconstrained problems),
is that they restrict their analysis only to special classes
of non-convex games.

In addition, there are works that develop min-max
algorithms motivated by applications in machine learn-
ing, such as the works by [Chavdarova et al.| (2020)
and |Gidel et al.| (2018). The former paper develops
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a stochastic variance-reduced extragradient algorithm
for the min-max game that arises in GAN training.
Also, the latter work treats the FNE finding problem
from a variational inequality (VI) perspective, and ex-
tends known VI methods for use in GAN problems.
Finally, there is a set of works (Adolphs et al.| |2018}
Daskalakis and Panageas, 2018} [Mescheder et al., 2017)
where the authors study the behavior of min-max algo-
rithms around local NEs, however this approach can
only be utilized for establishing local convergence to
these points.

1.2 Contributions

Finding first-order stationary solutions is a tractable
problem in non-convex optimization problems, under
mild assumptions. However, this is not the case in
non-convex min-max games where it is observed that
standard algorithms (such as gradient descent-ascent
with constant stepsize) can potentially fail to attain
solutions that satisfy the first order stationarity condi-
tions (i.e., FNESs), even in simple problems (e.g. bilin-
ear) (Daskalakis et al., |2017). Therefore, finding FNEs
in non-convex games remains an important problem.
For this reason in this work we focus on the latter con-
cept and consider a reduction of the problem of finding
the FNEs of the min-max game to a minimization
problem. Moreover, we propose a stochastic first-order
algorithm for the minimization problem and show con-
vergence to a neighborhood of a stationary solution.
The contributions of this work can be summarized as
follows :

e Using the RNI function we formulate an opti-
mization problem whose solution set (i.e., its global
minima) is equal to the set of FNEs of the two player
Zero-sum game . Although the RNI objective has
been utilized before in convex games, to the best of
our knowledge, this is the first time that it is used
and analyzed in a non-convex and stochastic setting.
Moreover, the power of the proposed formulation
is highlighted by the fact that a number of games,
such as certain classes of strongly convex, bilinear,
and non-convex ones, correspond to a convex mini-
mization problem after the reduction is performed.
Finally, among the attractive features of this formu-
lation are the following: 1) its gradient expression
does not require the use of the Hessian, 2) it can be
directly utilized for games over compact constraint
sets.

e We introduce a stochastic algorithm for the proposed
minimization problem. Note that the stochastic set-
ting we consider is more realistic, since in many
applications the large amount of data or the nature
of the objective necessitate the use of that type of

Char.\Form. RNI | GNI | Ham.
No Hessian Required | YES | NO NO
Constraints YES | NO NO

YES | NO NO
YES | NO | YES
NO — | YES

Lipschitz gradient
Stochastic algorithm
Unbiased Estimator

Table 1: Summary of the characteristics of the three formu-
lations described above, that is the Gradient Nikaido-Isoda
(GNI) (Raghunathan et al.,|2019), the Hamiltonian (Ham.)
(Abernethy et al.l 2019} Loizou et al.,|2020) and the Regular-
ized Nikaido-Isoda (RNI) (this work). Starting from the top
row we note the following: 1) whether the gradient formula
requires the use of the Hessian, 2) whether the formulations
can be used for min-max games with constraints, 3) assum-
ing that the objective f of game is Lipschitz gradient,
and without any additional assumptions on f, whether the
respective formulation also possesses the Lipschitz gradient
property 4) whether a stochastic algorithm is available for
the respective formulation, 5) if a stochastic algorithm is
available, whether the respective gradient estimators are
unbiased. The cells that exhibit the desired behavior are
highlighted.

algorithms. Moreover, we observe that the form of
the objective leads naturally to a biased gradient
estimator. This characteristic makes the respective
analysis more complicated, however by properly con-
trolling the magnitude of the bias term we manage to
show convergence to a first-order stationary point of
the RNI objective, up to some additive error terms.

In order to highlight the main advantages of this work,
we provide in table [I] a comparison of the Gradient
Nikaido-Isoda @, the Hamiltonian and the Regu-
larized Nikaido-Isoda (this work) formulations, along a
number of key characteristics, such as the existence of
a stochastic algorithm.

2 REGULARIZED NIKAIDO-ISODA
(RNI) APPROACH FOR FNE

2.1 RNI Formulation
To begin with, we consider games where the following
assumptions hold.

Assumption 1. The game (1)) satisfies the following
assumptions:

1. The objective f(x,y) is a two times continuously
differentiable function.

2. The sets X and Y are non-empty, conver and
compact.

3. The function f has Lipschitz continuous gradients
in both x andy, that is for all x1,%x3 € X,y1,y2 €
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Y it holds that

[Vxf(x1,¥1) = Vi f(x2,y2) ||
< La (Ix1 = x2fl + llyr — y2l)
Hvyf(X1>YI) - Vyf(X27}’2)H
< Ly (Ilx1 — %2l + [lyr — w21 -

Then, we define the following auxiliary functions:
@,06y) =minlfey) + 5 s - xh (®)
x4 = 1 ) Ry —X )
Y = e YTyl
) L
@, (x,y) = min{~f(x,2) + g l2 -y} (9)

From the Lipschitz gradient assumption of f, it fol-
lows that f is an L,-weakly-convex (in x), L,-weakly-
concave (in y) function. As a result, for L >
max{L,, Ly} the arguments of the problems in (g)),(9)
are strongly convex. This implies that the respective
minimization problems have a unique solution (the exis-
tence of the solution is established by the compactness
of the sets X and )) and thus ®,(x,y) and ®,(x,y)
are well-defined. Moreover, using the above elements
we define the RNI objective, that is

P(x,y) = [f(x,y) = ®a(x,¥)] + [ f(x,¥) — ®y(x,Y)]
= —@,;(X, Y) - (I)y(X, Y)

. L
= —min{f(z,y) + 5[z - x[|*}
, L
—min(-70e#) + ol -y (10)

Then, the optimization problem we propose for finding
the FNEs of is

min
xEX,yEY

P(x,y). (11)

Remark 1. The RNI formulation can be used to re-
formulate constrained min-mazx games (over compact
sets). This property highlights the flexibility of the RNI
formulation, compared to the GNI @ and Hamiltonian
ones, since the latter formulations cannot be directly
used in constrained problems (for a proposed extension
of the Hamiltonian method look at the supplementary
material, sec. @ Moreover, note that the RNI objec-
tive remains well-defined even in the unconstrained case
where we have the non-compact sets X = R", Y = R™,
due to the strong convexity of the involved problems.

2.2 Properties of the RNI formulation

The RNI formulation has a number of properties that
make it suitable for attaining FNEs of non-convex zero-
sum games. In the next proposition we present those
properties.

Proposition 1. Suppose that Assumption |1 holds.
Then, provided that L > max{L,,L,} the function
P(x,y) possesses the following properties:

1. The global minimum of P(x,y) is 0.

2. A point (x*,y*) is a FNE of if and only if
(x*,y*) is a global minimum of P(x,y).

Proof. First of all, using the definitions of ®, and @,
we can see that, for every x € X,y € ), it holds that

@, 0x,y) = min{f(a,) + [ — x|}

< Jy) + gl - xIP = fxy)
@, (x,y) = min{~(x,%) + & s — )

< ey + Sy~ yIP = )

Then, it follows that P(x,y) = —®,(x,y) —®,(x,y) >
—f(x,y) + f(x,¥) > 0. Moreover, note that the com-
pactness of the sets X and )Y and the twice differen-
tiable objective f ensure the existence of an FNE of
(Nouiehed et al., 2019, Theorem 2.2, pg.3).

Now, suppose that (x*,y*) is a FNE of . Then, we
know that

<fo(x*,y*),xfx*> Zoa VXGX, (12)
(Vyf(x*,y"),y —y") <0, ¥y € ). (13)

Also, note that the function
* L *
o) = flmy") + 5 s = x|

is strongly convex (for L > max{L,, L,}) and addi-
tionally it holds that

(Vxg(x"), x = x7)

= (Vaf (x%,y7) + L(x" = x7),x = x7)

= (Vi f(x*,y"),x—x") > 0,Vx € X,

where the last inequality follows from . As a result,
x* is a global minimum of g and thus ®,(x*,y*) =
f(x*,y*). Following a similar reasoning we can show
that ®,(x*,y*) = —f(x*,y*). Then, P(x*,y*) =
—f(x*,¥y") + f(x*,y*) = 0. The latter equation com-
bined with the fact that P(x,y) > 0, implies that
(x*,y*) is a global minimum of P. At the same time
it implies that the global minimum of P is 0 (i.e., the
lower bound in P(x,y) > 0 is attained), which proves
property 1.

Next, consider the opposite direction, that is sup-
pose that (x*,y*) is a global minimum of P. Then,
P(x*,y*) = 0 = &,(x*,y*) = —®,(x*,y*). More-
over, we know that ®,(x*,y*) < f(x*,y*) and
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(I)y(X*vy*) S _f(X*ay*)' Therefore7 f(X*7y*) Z
P (x",y") = —Py(x",y") > f(x",y"), which im-
plies that ®,(x*,y*) = f(x*,y*) and ®,(x*,y*) =
—f(x*,¥y*). Thus, using the strong convexity of the
problems involved in ®, and ®, we conclude that

L
* . * -~ o *2
X farggggg{f(z,y ) + 2||z x*[*} =

(Vi f(x*,y") + L(x* —x*),x —x*) >0
= (Vaf(x*,y"),x —x*) > 0,¥x € X.

* . * L * |12
= — R —_ — =
y* = argmin{—f(x",2) + 5z -y}

(-Vyfx"y )+ Ly -y ),y—y") >0
= (Vyf(x"y"),y—y") <0, Vye ).

Consequently, (x*,y*) is an FNE of (T)). O

Notice that computing the gradient of P(x,y) is not
straightforward, due to the existence of the “arg min"
operator. However, under certain assumptions we can
obtain the following result.

Lemma 1. Suppose that Assumption[d] holds. Then,
provided that L > max{L,, Ly}, the gradients of P are

vxP(X’Y) L(i - X) + vxf(x7y)a (14)
VyP(x,y) =Ly -y) - VyfXy), (1)

where X = X(x,y) = arg mi)r(l{f(z,y) +L)z—x|?} and
zE

¥ =¥(xy) = argmin{—f(x,2) + Lz —y|?}.

Proof. To begin with, we define the functions

L
92(2,%,y) = = f(z,y) = 5|z — x|

L
gy(Z7x7y) = f(X’Z) - §||Z - Y||2

Thus, we have ®,(x,y) = —ma;{c{gw(z,x, y)} and
K4S
o, (x,y) = —ma;c{gy(z,x,y)}. Moreover, note that
zE

the sets X and ) are compact, and the functions g,
and g, are differentiable. Also, the Lipschitz gradient
property of f implies that

= Lol 2V f(x,y) = Lol

— L, 2V, f(x,y) = Ly

and as a result for L > max{L,,L,} the functions

9. and g, are strongly concave in z. The last prop-

erty implies that the problems ma}i{{gz(z,x,y)} and
z€

mal)/({gy(z,x, y)} admit unique solutions, which we de-
K4S

note with
X = i(X, y) = arg maX{gz (Z7 X, Y)}
zeX

. L 2
= argmin{f(z,y) + 5 |2 = x|}

¥y =¥(x,y) =arg rzﬂeaf{gy(z, x,y)}
in{—f(x,2) + 2|z — |’}
= arg miny — X,Z —||Z — y
gzey 2 y

respectively.

Then, Danskin’s theorem (Bernhard and Rapaport),
1995)), (Barazandeh and Razaviyayn, 2020, Theorem 1)
implies that

VoL (xy) = g = - gy

Vy9:(X,%,y)

Vo, (x,y) = [

[

Combining the above we obtain

o Rl v dad]

This concludes the proof. O

Remark 2. The main results of the RNI, GNI (Raghu-
nathan et all 2019) and Hamiltonian (Abernethy et all,
2019) formulations are derived under the assumption
that f is a two times differentiable function. However,
differently from the GNI and the Hamiltonian formula-
tions, the gradient formula of the RNI objective does
not require the use of the Hessian of f.

Moreover, among the advantages of this reformulation
is that it reduces the FNE finding problem of certain
strongly convex, bilinear and even some non-convex
min-max games (with some “strong coupling" condi-
tion) to a convex optimization problem.

Example 1.
1. Let f(x,y) = h(x)+x7Qy —g(y). Then, consider
the following cases:

(a) (Constrained) Strongly-convex strongly-con-
cave objective : h(x) and g(x) are strongly
convex functions.

(b) (Unconstrained) Bilinear objective
g(y) =0; X =R", Y =R".

:h(x) =
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(¢) (Unconstrained) Strongly-convez strongly-con-
vex objective : h(x) is a strongly convex
function, g(y) is a strongly concave function;
X =R"Y=R"™.

For each of the above problem classes, the RNI

reformulated objective is a convex function.

2. Consider an unconstrained objective f(x,y),x €

R™ yv € R™ with n = m,

Tmin (Vg [(X,¥)) 2 A, ¥x €R",y €R™  (16)

Oz (Vay [(x,7)) S A Vx € Ry eR™, (17)
and for which the following conditions are satisfied:

a) — L, XV2 f(x,y) X L, I,¥x € R" y ¢ R™

(18)
b) — L, 2V f(x,y) X L,I,Vx €R",y € R"
(19)
L+1L
c))\>max{L+Lz (L2 +2LL,),
L+L.
L 2LL 20
Crr ) f e

where L > max{Ly, L,} is the parameter of the
RNI formulation . In addition, assume that

L, = L, = L, while we set L = 2L in (I0). Then,
if
~.12 ~
[A - 5L2} — 144I%A > 0 (21)

holds the RNI reformulated objective is a
strongly convex function.

Note that there exist nonconvex-nonconcave min-
max games that belong in the above problem class.
For instance, the (non-convex) quadratic func-
tion f(x,y) = %XTAX +xTQy + %yTBy +cTx+
d’y +e, x € R",y € R" with —~LI < A < LI,
—LI < B X LI, and for uihich the inequalities
and X\ = 02, (Q) > 5L? hold, satisfies the

above conditions.
Proof. See supplementary material, sec. [A1] O

Finally, a key property that is needed in order to estab-
lish convergence to stationary solutions is the Lipschitz
gradient property of the objective.

Proposition 2. Suppose that Assumption [1| holds.
Then, provided that L > max{Ly, Ly}, P has Lips-
chitz continuous gradients in z = (x,y), that is

IVP(21) = VP(22)] < Lllz1 — zo]], Vau,25 € X x ,

; T _T T T L?>+LL,
with constant L = Ly + Ly, Ly = L + Ly + =~
LyLy+LLy 7 _ L24+LL, , LoL,+LL,

L—-L, Ly=L+Ly+ -1, T L-L, -

Proof. See supplementary material, sec. O

Remark 3. The Lipschitz gradient property of f(x,y),
along with the compactness of the constraint sets, suf-
fice to ensure the Lipschitz gradient property for the
reformulated objective P(x,y). On the contrary, for
the GNI @ and Hamiltonian @ formulations more
assumptions are required in order to establish the same
property. For instance, in the work of Abernethy et al.
(2019), in addition to the Lipschitz gradient property
of f, it is also assumed that f possesses bounded gradi-
ents and its Jacobian (i.e., the gradient of the vector
&= (Vxf,—Vyf)) is Lipschitz.

3 PROPOSED ALGORITHM AND
THEORETICAL ANALYSIS

3.1 Preliminaries

In this section we study the proposed formulation in
a stochastic setting, that is we assume that the objec-
tive f is expressed as f(x,y) = E,[F(x,y;w)], where
F(x,y;w) is the stochastic oracle at (x,y) and w is
a random variable drawn from some distribution W.
Before we proceed, we provide below the basic assump-
tions for problem (|1)) and the stochastic oracle F' that
will hold in the following analysis.

Assumption 2. The objective
f(xay) = Ew[F(Xay;w)]aw ~ W,

of the game satisfies the following assumptions :

1. The function F(x,y;w) is a two times continu-
ously differentiable function.

2. The sets X and Y are non-empty, conver and
compact with diameter D.

3. The function F' has Lipschitz continuous gradients
in both x and y, that is for every w ~ W and for
all x1,X2 € X,y1,y2 €Y

[VxF(x1,y1;w) — VxF (X2, y2;0)|| <
< Ly (IIx1 — %2 + [ly1 — y2l),
[VyF(x1,y1;w) — Vy F(X2, y2;w)|| <
< Ly ([lx1 — %2 + [ly1 — yall) -

Remark 4. The assumptions 1 and 3 given above
imply that the function f also satisfies assumptions
1 and 3, respectively, in Assumption [1. Then, the
Lipschitz gradient constants of f are L, and L, w.r.t.
x and 'y, respectively.

Assumption 3. The stochastic oracle of the function
f(x,y) =E,[F(x,y;w)],w ~ W, and its gradient sat-
isfy, for everyx € X,y € Y, the following assumptions:
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E[VXF(va; w)] = vxf(x7y)7
E[VyF(x,y;w)] = Vy f(x,y).
E[|VxF(x,y;w) — Ve f(x,¥)|%] < 0%,
E[|VyF(x,y;w) - Vy f(x,¥)|°] < 0®

3.2 Algorithm

In order to solve problem we propose a first-
order stochastic optimization method, the Regularized
Nikaido-Isoda Stochastic Gradient Descent (RNI-SGD)
algorithm. This algorithm has access to the stochastic
oracle F' and it uses the following mini-batch estimators
in order to approximate the values of the objective and
its gradient at a given point (x,y) € X x Y,

fxyiw ZF X, y;w;) (22)

ﬁxf(X»)U W) = EZVXF(X’y;wi% (23)
i=1

Vyf(x,yiw) = % Y VyFxyiw),  (24)

i=1

where w = (w1, ...,w,) with w; ~ W,Vi. Using the
above mini-batch estimators, the stochastic estimators

for the gradient of P admit the form

ViP(x,y) = L(X — x) + Vi f(x,7; W),  (25)
VyP(x,y) = LF —y) - VyfXy;Ww),  (26)

where X = X(x,y) = argmin{f(z, y; w) + £||z — x|},
zeEX

¥ =y(xy) = argmin{—f(x, 2 w) + §[}z — y[*}, and
the elements of w, w are sampled for W.

Informally, the RNI-SGD algorithm works by perform-
ing at each iteration one projected (stochastic) gradient
descent step on P(x,y), (w.r.t both x and y), using
the gradients in . Therefore, before this step the
solutions of the subproblems involved in the compu-
tation of VxP(x,y) and VyP(x,y) are needed. We
assume that these subproblems are solved to a given
accuracy using known methods, such as the projected
gradient descent method. Note that this is a reasonable
assumption since those problems are tractable strongly
convex tasks. Finally, the complete description of the
RNI-SGD algorithm is provided on Algorithm

3.3 Theoretical Analysis

The expressions in Assumption [3] that is the unbi-
asedness of the oracle F' and its bounded variance are
standard in literature and directly imply the same
properties for the mini-batch estimators — (see

Algorithm 1 Regularized Nikaido-Isoda Stochastic
Gradient Descent (RNI-SGD)
Input : x%,y°, a, 6,8y, L
forr=0,...,7—1do
Sample w", w" ~ W
Find X" s.t [|X" — X"|| < 0x
with X" = arg mi)r(l{f(z, yhw') +
k4SS
Find y" s.t |7 —¥"|| <6y
with y" = arg mi)r/l{—f(xr, z;w") +
FAS

5llz —x"||*}

Lz—y"|I?}
X" = projie (x = alL® —x7) + Vuf (<", 575%7)])
y = projy (yr —a[L(y" —y") ~ Vy f(X,y"; VNV’")])

end for
Output : x7,y”

Lemma I in sec, . However, note that the stochas-
tic gradient estlmator of P(x,y) . , which is
formulated by plugglng the estimators ([22] . ) into
its gradient formula , is biased.

Proposition 3. Suppose that Assumption[d and[3 hold.
For the stochastic gradient estimator of P defined in
— and for everyx € X,y € Y and w ~ W, it
holds that

E[ﬁxP(& y)] = VxP(x,y) + e,
E[VyP(X7 Y)] = VyP(x,y) + ey,
th llea| < 22— 4 20
e R A W (A 3 W
Lo LyO'

T SN A

Moreover, for every x € X,y € Y, we have that

E[|[VxP(x,y) -
E[|VyP(x,y) —

VP (x,y)| ]S Tz
VyP(x,y)|°] <

/\
dw

2 2 -
2L’ 2 +(L4LL )2 +1> and 0',3 =

+(LL)2+1)

— o
wherea = n(L
42

o2 2L2
n \ (L—Ly)?

Proof. See supplementary material, sec. [A2] O

The use of biased stochastic estimators is usually some-
thing we would like to avoid. However, the bound we
provide above for the norm of the bias, between the
true gradient and the stochastic gradient estimator, will
allow us to bypass this obstacle, and show convergence.

Furthermore, in this work we consider a problem with
constraints and as a result we measure the distance of
the iterate at iteration r from a first-order stationary
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point using the following optimality criterion

o _ L [X = projy (x7 — aViP(x",y"))

o \x 27
@ o |y —projy (y" —aVyP(x",y")) 27

Then, (x",y") is an e-stationary point of P if it holds
that |G~ || < e. Notice that when X = R™ and Y = R™
(and for o = 1) the respective conditions reduce to
the standard stationarity gap of (unconstrained) non-
convex optimization, that is |[VP(x",y")| <.

Ideally, we would like to attain a global minimum of
P(x,y) (which would ensure that we found an FNE
of the game ), however the non-convex nature of
the objective prevents us from achieving that in the
general case. Therefore, we show convergence of the
RNI-SGD algorithm to a neighborhood of a first-order
stationary point of P(x,y).

Theorem 1. Suppose that Assumption|[d and[3 hold.
In addition, assume that the gradients of f are bounded,
that is |V f(x,y)]| < ¢, and |Vy f(x.Y)] < c,, for
every x € X,y € Y. We run Algorithm (1| for T
iterations, with constant stepisize 0 < «a < 2/3f,
L > max{L,,L,} and for given parameters 0,,0,.
Then, we have

T-1

1 E[PY/a 3La? co ca
= E[||G% %] < R — R E—
7 3 EIGHIR < Sl + s R+ o
3La? _,
+ —0",
a
3La?

where @ = o — %, 6 = 2(L + Ly)0, + 2(L + L,)d,,
6=0,+0y, 0°=2(02+0,) and c =4LD + ¢, + ¢;.

Proof. See supplementary material O

The above theorem implies that Algorithm [I] converges
to a neighborhood around a stationary point (in the
sense of definition ) at a rate of %, up to some
additive error terms, due to the inexact solution of the
problems in ,@ and the stochastic nature of the
objective. Although the above result does not ensure
convergence to an FNE of , in the general non-convex
case (since we cannot guarantee convergence to a global
minimum of P), it is more general than the results
presented in other related works (and which might
offer stronger guarantees). For instance, the results
provided by |Abernethy et al. (2019) apply only to
specific problem classes, such as bilinear or “sufficiently
bilinear” games. Also, in the work of[Raghunathan et al.
(2019) the respective results hold under the assumption
that the reformulated objective @ is Lipschitz gradient,
since the latter property does not follow directly from
the respective property of f. Finally, differently than
the above works our convergence results can be applied
to problems with constraints.

Moreover, note that there are interesting problem
classes, (for instance, some of the examples provided in
Example, that make the objective P(x,y) a strongly
convex function. In that case theorem [I] implies con-
vergence of Algorithm [T} in the objective value sense,
to a neighborhood around a global min of P(x,y), for
which we know that it corresponds to an FNE of .

Another interesting setting arises in the special case
where the objective f is deterministic. Then, two out
of the four additive terms in theorem [I] become zero
(the ones involving & and &), while by solving problems
,@D very accurately (this is attainable since both
require the solution of a strongly convex problem) the
other two additive terms (which involve ¢) can become
very small. In other words, we still have convergence
to a neighborhood around a stationary point, but its
diameter can become very small (and we can control
how small).

4 NUMERICAL EXPERIMENTS

In this section we conduct a number of experiments
in order to illustrate the utility of the proposed
method and compare it with other relevant algo-
rithms. Specifically, we consider the following algo-
rithms (with constant stepsize): i) Gradient Descent-
Ascent (GDA), ii) Optimistic Gradient Descent-Ascent
(OGDA)(Daskalakis and Panageas, [2018)), iii) Extragra-
dient method (EG)(Mokhtari et al.l[2019b)), iv) Regular-
ized Nikaido-Isoda-Stochastic Gradient Descent (RNI-
SGD) (proposed method). Moreover, we consider the
problem of finding a stationary /FNE point of a finite
sum objective f(x,y) = 2321 fi(x,¥), where the f;s
are either bilinear or quadratic functions. The dimen-
sion of the problem is n = m = 5, ie., x,y € R?,
unless otherwise stated. Finally, the performance mea-
sure we are using is the distance of the iterates from
the stationary point.

In the case of the bilinear objective we have
fi(Xa Y) = XTQiY7

where X = R" and )V = R". The entries of the matrix
Q; are generated at random from a normal Gaussian
distribution, and the stepsizes are selected after a few
trials, in order to guarantee convergence of both algo-
rithms. In figure[la]we plot the trajectory of the iterates
of EG and RNI-SGD for a simple bilinear problem of di-
mension n = m = 1. Also, we set L = 10-max{L,,L,}
for RNI-SGD, while the subproblems ,@ are solved
using 5 steps of the projected gradient descent algo-
rithm. Note that our aim in this experiment is not to
compare the algorithms in terms of convergence speed,
but rather to illustrate the general behavior (trajectory)
of RNI-SGD compared to other classical algorithms.
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Indeed, notice that contrary to the behavior of the EG
algorithm, RNI-SGD approaches the stationary point
following a direct path. Finally, we also tested GDA
and OGDA in the same experiment and noticed that
the former cycles around the stationary point (without
converging), while the latter behaves similar to EG (we
omitted them in the presentation in order for the plot
to be more legible).

In the quadratic case we have the objective

filx,y) = %XTAiX +x"Qiy + %YTBz‘y,

where X = R™ and Y = R”. On this objective we con-
sider the following three cases: i) 4; > 0, B; > 0 (str.
convex-str. convex), ii) 4; < 0, B; < 0 (str. concave-
str. concave), iii) A; < 0,B; > 0 (str. concave-str.
convex). Notice that all the above problems are poten-
tially difficult since they involve at least one difficult
subproblem; especially case iii which involves solving
two difficult problems (i.e., minimize a concave function
and maximize a convex one).

In figures we plot the results for the cases
i, ii, iii of the quadratic objective, respectively. In
these experiments the RNI-SGD algorithm solves the
subproblems ,@D using 50 steps of the projected
gradient descent algorithm. Also, the value of L is
selected as L = 1.05 - max{L,, L,} in cases i,ii and as
L =1.5-max{L,, L,} in case iii. It should be noted
that these problems are more challenging than the
bilinear case and (strongly) convex-concave problems
(for which it is established in practice that OGDA and
EG converge to a NE (Mokhtari et al. 2019b)), and
as a result the GDA, OGDA and EG methods diverge.
On the other hand RNI-SGD approaches a stationary
point of f, as predicted by theory.

5 CONCLUSION

In this paper we use the RNI objective as a merit
function for finding the FNEs of two-player zero-sum
games over compact constraint sets, and propose a
first-order algorithm, the RNI-SGD, for solving the re-
spective optimization problem. The key characteristics
of our setting is the fact that we consider games with
non-convez and stochastic objectives. Under this set-
ting we manage to show convergence of RNI-SGD to a
neighborhood around a stationary solution of the RNT
objective. Moreover, we identify nonconvex min-max
games whose corresponding RNI reformulations are
convex functions. In the future we would be interested
to see if this approach has other benefits to offer in ad-
dressing the problem of finding FNEs or more generally
(local) Nash equilibria in non-convex games. Finally,
another interesting direction for future research is the
study of the performance of the proposed approach in
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Figure 1: The results of the experiments for bilinear
and quadratic objectives; the plots of GDA, OGDA,
EG behave similarly and so they are indistinguishable.
These results (with the exception of the trajectory
plots) are averaged over 5 independent runs. In the
quadratic objective the RNI-SGD algorithm is tested
with batch size 3 and 8, while the batch size of the
stochastic versions of the rest of the algorithms is set
to 8. Also, the stepsize is selected in all cases after
trials, in order to ensure that the algorithms approach
the stationary point sufficiently fast, if that is possible.

machine learning problems (e.g. generative adversarial
networks, adversarial learning).
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