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Abstract

We study the problem of space and time
efficient evaluation of a nonparametric esti-
mator that approximates an unknown den-
sity. In the regime where consistent estima-
tion is possible, we use a piecewise multivari-
ate polynomial interpolation scheme to give
a computationally efficient construction that
converts the original estimator to a new es-
timator that can be queried efficiently and
has low space requirements, all without ad-
versely deteriorating the original approxima-
tion quality. Our result gives a new statistical
perspective on the problem of fast evaluation
of kernel density estimators in the presence
of underlying smoothness. As a corollary, we
give a succinct derivation of a classical re-
sult of Kolmogorov—Tikhomirov on the met-
ric entropy of Holder classes of smooth func-
tions.

1 INTRODUCTION

The fast evaluation of kernel density estimators
has been well-studied including approaches based
on the fast Gauss transform (Greengard & Strain|
1991)), hierarchical space decompositions (Greengard
& Rokhlin, [1987)), locality sensitive hashing (Charikar
& Siminelakis| 2017, [Backurs et al., 2018} [Siminelakis
et al.2019; Backurs et al.,2019), and binning (Scott &
Sheather], [1985)), as well as interpolation (Jones, 1989;
Kogure, 1998), our main technique in this work. Typ-
ically these techniques carefully leverage the structure
of the kernel under consideration, and many of them
operate in a worst-case framework over the dataset. In
this work, we consider the problem of fast evaluation
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of a density estimator f in a statistical setting where f
gives a good pointwise approximation to an unknown
density f : [0,1]? — R that lies in a Holder class of
smooth functions. We show that a pointwise approxi-
mation guarantee alone, without assuming any specific
structure of the estimator f, is enough to construct
a new estimator f that can be stored and queried
cheaply, and whose approximation error is similar to
that of the original estimator. Our approach is based
on a multivariate polynomial interpolation scheme of
Nicolaides| (1972)) (see also [Chung & Yao, [1977) and
provides an explicit formula for f in terms of some
judiciously chosen queries of the original estimator.

1.1 Background and related work

Density estimation is the task of estimating an un-
known density f given an i.i.d. sample X;,..., X, ~
P;, where Py is the probability distribution associated
to f. A popular choice of density estimator is the ker-
nel density estimator (KDE)

fw) = n}leK (F). W

With proper setting of the bandwidth parameter h and
choice of kernel K, the KDE f is a minimax optimal
estimator over the L-Holder smooth densities Py (8, L)
of order § (see e.g. | Tsybakov} 2009, Theorem 1.2):

inf sup  Eg[f— fla=Oparn mE). (2
I fePu(B,L)

Despite its statistical utility, the KDE has the com-
putational drawback that it naively requires Q(n) time
to evaluate a query. The problem of improving on
these computational aspects has thus received a lot of
attention.

Motivated by multi-body problems, |Greengard &
Strain| (1991)) developed the fast Gauss transform to
rapidly evaluate sums of the form when K(x) =
exp(— |m|§) is the Gaussian kernel. Their work is posed
a worst-case batch setting where f is to be evaluated at
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m points y1, . . ., Ym specified in advance and the loca-
tions X1,..., X, lie in a box. Their techniques use hi-
erarchical space decompositions and series expansions
to show that may be evaluated at y1,...,y,, with
precision ¢ in time h~%(log 2)4(n + m). These results
apply to any kernel that has a rapidly converging Her-
mite expansion (see also |Greengard & Rokhlin| [1987)).
There are also follow up works on the improved fast
Gauss transform and tree-based methods that use re-
lated ideas (Yang et all [2003; [Lee et al., 2006).

More recently, several works (Charikar & Siminelakis
2017; [Backurs ef all [2018} [Siminelakis ef all [2019
Backurs et all), 2019} [Coleman & Shrivastaval, 2020

of (1

’

are devoted to the problem of fast evaluation
in high dimension using locality sensitive hashing. In
these works, the dataset is carefully reweighted for im-
portance sampling such that a randomly drawn data-
point X,.’s corresponding kernel value K (X, —y) gives
a good approximation to f (y). This sampling pro-
cedure can be executed efficiently using hashing-based
methods. For example, [Backurs et al|(2019) show that
for the Laplace and Exponential kernels with band-
width h = 1, e.g., the value f(y) can be computed
with multiplicative 1 & ¢ error in time O(ﬁ) even

in worst case over the dataset, where 7 is a uniform
lower bound on the KDE.

Another effective approach to this problem in high di-
mensions is through coresets (Agarwal et all [2005;
(Clarkson|, 2010} [Phillips & Tai, 2018a.b). A coreset
is a representative subset {X;};cs of a dataset such

that
5 1 Xi—y
f(y)Nnhd;K< h >

When h = O(1), for example, the results of
give a polynomial time algorithm in n,d
such that the coreset KDE yields an additive € ap-
proximation to f using a coreset of size O(@). Their
results hold in worst case over the dataset and for a
variety of popular kernels. The methods of

(2018b) are powered by state-of-the-art algo-

rithms from discrepancy theory (Bansal et al.l [2018)
(see [Matousek, [1999; [Chazellel 2000} for a comprehen-
sive exposition on discrepancy).

Our approach is most closely related to prior work on
the interpolation of kernel density estimators due to

(1989) and (1998)). Motivated by vi-
sualization and computational aspects, (1989)

studies binned and piecewise linearly interpolated uni-
variate kernel density estimators and provides precise
bounds on the mean-integrated squared error. |[Kogure
(1998)) extends this work and constructs higher order
piecewise polynomial interpolants of multivariate ker-
nel density estimators, and shows that for very smooth

densities, this procedure improves the mean-integrated
squared error. In addition, we note the recent work of
Belkin et al| (2019); Liang et al. (2020) demonstrat-
ing the perhaps surprising effectiveness of interpola-
tion in nonparametric regression. We also remark that
nonparametric estimators based on multivariate piece-
wise polynomials are well-studied in statistics (see e.g.
|Gyorfi et all [2006, Chapter 10), and there is a line of
related literature in computer science on fast estima-
tion of univariate densities that are well-approximated
by piecewise polynomials (Chan et al. [2014; |Acharya)
let all |2017; [Hao et al.l [2020).

Our work differs from in a few impor-
tant respects. We do not assume f to be a KDE
in the first place, but rather give a general method
for effectively interpolating a minimax density esti-
mator. Also, our results hold for the entire range
of the smoothness parameter § and dimension d,

while (1998) requires the density to be at

least gd times differentiable when interpolating KDEs
with kernels of order ¢ Definition
1.3). On the other hand, our method increases the
mean squared by a multiplicative factor 0(05@), while
Kogure’s approach improves the mean squared error
(though our focus here is the L® norm). Finally, we
use a different interpolation scheme as detailed in Sec-

tion 211

1.2 Results

We seek to impose minimal requirements on a density
estimator f of an unknown smooth density f so that it
can be converted to a new estimator f that performs
well on the following criteria.

1. (Minimax) f is a minimax estimator for f

(

2. (Space-efficient) f can be stored efficiently

3. (Fast querying) f can be evaluated efficiently
4. (

Fast preprocessing) f can be constructed effi-
ciently

In this work, we focus on near-minimax estimation
in the L* norm, motivated by the aforementioned
works on efficient evaluation of kernel density estima-
tors. Since we impose that the unknown density f
is supported on [0,1]%, such a guarantee also implies
upper bounds on the LP error for all p > 1.

In the statistical setup where typically 8,d = O(1),
by efficient we mean requiring only polynomial time
or space in the sample size n. In particular for fixed
B, by consistent estimation is only possible when
d < logn. In what follows we indicate dependencies
on the parameters 8 and d for clarity.
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The requirement that we place on the estimator f to
be converted is the following assumption.
Assumption 1. For all y € [0,1]¢ and 1 >t > ¢, we
have

w2y [[F) = 100)] > ] < 20 (-55).

fE€Pu(B,L

where ¢ := ¢*n~P/CB+d) s the minimaz rate of esti-
mating L-Hélder smooth densities Py (8, L) of order 3
and c* = cg,q,1, > 0.

The formal definition of the Holder class Py (8, L) we
consider is given in Section In particular As-
sumption [I] is satisfied if the pointwise error is a sub-
Gaussian random variable with parameter € that cap-
tures the minimax rate of estimation. For the KDE

built from a kernel K of order ¢ := 3] (Tsybakovl

2009, Definition 1.3) and bandwidth h = n~2F+a,
this assumption follows from a standard bias-variance
trade-off and an application of Bernstein’s inequality

(see Section [4)).

Under Assumption [I} we have our main result.

Theorem 1. Let f : [0,1]¢ — R denote a probability
density function, and let f denote an estimator satis-
fying Assumption [1] for some 8 > 0 and d > 1. Let
Q@ denote the amount of time it takes to query f Set
¢ =|B]. Then there exists an estimator f that can be

constructed in time ccon Q n2P+4 | that requires at most

Csto n7Fa log n bits to store, that can be queried in time
Cque logm, and that satisfies

EJ‘”JF — flleo < ce"(logn)l/Qn_ wﬁd'
In Theorem [I] we may take

L (t+d
con — Z I

Cato = Bd(£ 4 1) (log L) (6 + d)’

J4
d
Caue = 14(d + £)? (EZ ) and
Cerr = 8c* Ld3'+2yt (6 —Z d) log 2 (E —Z d) )

In particular, for 3,d = O(1), we can evaluate queries
to f in nearly constant time, and the estimator f can
be stored using sublinear space. Moreover, f can be
preprocessed in subquadratic time, assuming that the
evaluation time of the original estimator f is Oq(n),
which holds for the KDE . We also note that f is
a near-minimax estimator in the sup norm, up to log-

arithmic factors, and thus by our domain assumption

is also near-minimax in the L? norms, again up to log-
arithmic factors. Finally, our construction in Section

yields an explicit formula for f in terms of a sub-

linear number of initial queries of f on a judiciously
chosen mesh. Specifically, the estimator f is a piece-
wise multivariate interpolation of the estimator f on
this mesh.

Though our focus is on density estimation, our method
is not limited to this setting. The next result holds un-
der a modified version of Assumption [I]and is derived
by following the proof of Theorem We omit the
argument as it is very similar.

Theorem 2. Let f : [0,1]¢ — R denote an L-smooth
Holder function of order B, and suppose that one has
query access to a function f where Hf—f”oo <e. Then
by first computing Ceon £ 5 initial queries of f, one can
construct a new function f that satisfies ||f — flloo <

Cerr €, that can be stored using csio s_% log 1 bits, and

that can be queried in time cque log e L.

Theorem [2] is useful when it is possible to design a
procedure for estimating a smooth function f point-
wise, but that procedure cannot necessarily be carried
out efficiently per query. For example in nonparamet-
ric regression, Nadaraya—Watson estimators are known
to be accurate pointwise (Tsybakov, [2009) but naively
require evaluation time that is linear in the number of
data points. One can also imagine a numerical or ex-
perimental setting where it is only possible to gather a
limited number of accurate measurements of a smooth
response, and one wants to graph the underlying func-
tion efficiently and accurately over the entire domain.

1.3 Setup and notation

Fix an integer d > 1. For any multi-index s =

(s1,---,8a) € Z%, let |s| = s1 4 -~ + sq and for
r = (v1,...,24) € RY define s! = s;!---s4! and
x® = ' -2, Let D* denote the differential op-

erator
ols!

DP=_— 2
81 Sd
Oxi' - - Oz

Fix a positive real number 3, and let |3] denote the
maximal integer strictly less than 5. We reserve the
notation ||-||, for the L” norm and |-, for the (¥ norm.

Given L > 0 we let H(8, L) denote the space of Holder
functions f : R? — R that are supported on the cube
[0,1]%, are | 3] times differentiable, and satisfy

D f(x) — D*f(y)| < Lz —yly 1,

for all 2,y € R? and for all multi-indices s such that

ls| = 8]
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Let Py (B, L) denote the set of probability density
functions contained in H(5,L). For f € Py(B,L),
let Py (resp. Ef) denote the probability distribution
(resp. expectation) associated to f.

The parameter L will be fixed in what follows, so typ-
ically we write Py (8) := Pu(B,L). The constants
¢, ¢8,d,CrL, etc. vary from line to line and their sub-
scripts indicate parameter dependences.

2 EFFICIENT INTERPOLATION
OF DENSITY ESTIMATORS

The important implication of Assumption [1}is that we
can query f at a polynomial number of data points

such that for each query y, f(y) =~ f(y), where f is
the unknown density.

Lemma 1. Let A > 0 and set N = An? with A > 1.
Let y1,...,yn C [0,1]¢ denote a set of points. Then
with probability at least 1 — n~2,

< y/log(2AnA+2) ¢

for all 1 < i < N, where ¢ = ¢*n = 8/CB+d) s the
minimazx rate.

f(yi) -

f(yi)

Proof. Set t = \/log(2An4+2)e > ¢ and apply As-
sumption |1 to y;. Then by the union bound,

P [3% : ‘f(yz) — f(vi)

2
> t] < 2AnAe <n2
O

We now describe our construction of f. Define £ := | 3]
and M = (é'zd).

Construction of f (informal):

1. PARTITION: Divide [0,1]? into h~¢ sub-cubes
{I:} € [0,1)¢ of side-length h = n=/(6+d where
j ezl and I;:=[0,h]% + hj.

2. MEsH: For each f, construct a mesh consisting of
Z d . 2 rd
M= ( ‘; ) points Uy, ..., Uy, €.

3. INTERPOLATE: In each sub-cube I;, construct a
multivariate polynomial interpolant qu~. on the M

points (U7, f(U7)), ... (U3, f(U))-
Return: f:[0,1]¢ — R defined by

fy)=> Wiy e ).

We first give some intuition for why f is an accu-
rate estimator. On each sub-cube Ijv, the true den-
sity f € Py (8, L) is approximated up to the minimax
error by a polynomial a5 of degree at most ¢ by the
properties of Holder functions. Upon setting A = M
and A =d/(20 + d) in Lemmal |1} this guarantees that
for all points U} in the mesh, f(U}) = f(U}) = ¢:(U})
with high probability. By studying the stability of the
resulting polynomial system of equations, we can show
that this construction yields a good approximation to
the ‘true’ interpolation polynomial ¢> on the sub-cube
I;.. This argument, carried out formally later in this
section, yields the estimation bound of Theorem [I]

Next, we comment on the remaining guarantees of
Theorem [1} As we show later, there is an explicit for-
mula for (j;, so the main preprocessing bottleneck is the

evaluation of f on the Mn%/(26+d) hoints in the mesh,
which naively takes QMn® (26+4d) time. For the space

requirement, it suffices to store the values {f(U. g)} up
to polynomial precision as well as the elements of the
mesh. Querying f at a point y € [0, 1] requires check-
ing which sub-cube y belongs to by scanning its d coor-
dinates and then evaluating ¢;(y), which is a d-variate
polynomial of degree |3]. By a careful consideration
of the numerical precision required to perform these
steps in Section [2.2.2] we obtain the computational
guarantees of Theorem

2.1 Interpolation on the principal lattice

To construct our interpolant, we refer to the next defi-
nition and theorem which are classical in finite element
analysis (Nicolaides| [1972; |(Chung & Yao, [1977). The
lattice P, C [0,1]%, dubbed the /-th principal lattice,
has the special property that every function defined on
Py admits a unique polynomial interpolant of degree
at most . This property is known to be equivalent to
a combinatorial geometric condition referred to as GC
in|Chung & Yao| (1977). A set of points P is called GC
if every point € P has an associated set H, consist-
ing of ¢ affine hyperplanes whose union contains P\x
and such that none of these hyperplanes contain .

Definition 1 (¢-th principal lattice of Ay). Let Ag C
[0,1]¢ denote the simplex on the points {0} U{e;}L; C
R?, where e; denotes the i-th standard basis vector in
R?. Label the vertices of Aq to be vy = 0,v; = e; for
1<i<d. Forall x € R%, there exists a unique vector

(Mo(z), ..., Aq(x)) with entries summing to one such
that
d
x = Z Ai(z)v;
i=0

Let A : R? — R denote the function such that
Alx) = (Mo(x), ..., Aq(x)). For £ > 1, the ¢-th princi-
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pal lattice Py of Ay is defined to be
Py = {a: €Ag: IA(z) € Zgl} . (3)
We also define Py = 0 € R%.

Given a point x € Py, the associated set of affine hy-
perplanes satisfying the GC condition is

d d
{me’ lag =, Zai = 1}.
i=0 i=0

d I (x)—1
-U u

)\f(x)>0

Given a set of hyperplanes satisfying this combi-
natorial condition, it is straightforward to write
down a Lagrangian-type interpolation formula, as was
first computed for the principal lattice by |Nicolaides
(1972]).

Theorem 3 (Nicolaides| (1972);Chung & Yao| (1977)).
Write Py = {Uy,...,Up} C Ay and let g : Py — R

denote a function defined on this lattice. For £ > 1,
define the polynomial
d A (U;)—1
Ae(@) — 7
i\T) = ) 4
pe= I I Sg=r @

where we recall that \i(x) is from Definition , Ift =
0, then M =1, and we simply define p1(z) = 1. Then

M
)= 3 nl@g(U)

satisfies p(U;) = g(U;) for all U; € Py. Moreover, this
is the unique polynomial of degree at most £ with this

property.

Since A;(x) is linear in z € RY it is easy to see
that p;(z) is a polynomial of degree ¢, and moreover
pi(U;) = 1if ¢ = j and zero otherwise.

We are now ready to give a precise description of the
construction of f. The idea is to generate the mesh
for interpolation using a shifted and rescaled version
of the ¢-th principal lattice on Ay C [0,1]%. Recall
that f is a density estimator that satisfies Assumption

il

Construction of f (formal version):

1. PARTITION: Divide [0,1]¢ into h™9¢ sub-cubes
{17} C [0, 1]¢ of side-length h = n~/ (284 where

j €2y and I; := [0, h)? + hj.

2. MEsH: For each f, construct a mesh on I# con-

sisting of M = (”d) points given by the shlfted

{h(z + j) :
U3, denote the points

and rescaled principal lattice PZ =
T € ZD[} C I; Let U{,...,
in PJ.

3. INTERPOLATE: In each sub-cube I; construct

a multivariate polynomlal interpolant 4z through

the M pomts (Uf,f(Uj) ,(Ujjw,f(UJ )) given
by ¢;(y )= (Y Jh—7), Where p is the polynomial
mterpolant from Theorem [3] given by

() = Zpkmfwi).
k=1

1]d — R defined by

Zq

Return: f : [0

I(y € I3).

2.2 Proof of Theorem [

We prove Theorem [I] in two parts, first by studying
the estimation error ||f — fl|lo in Section and
second by proving the storage and time complexity
upper bounds in Section [2:2:2]

2.2.1 Estimation error

First, we quantify the error in the approximation of
the values of q; on the mesh points. Let f,, denote
the degree ¢ polynomial given by the Taylor expansion
of f € Py(B) at z. Since f € Py(B), by a standard
fact (see Lemma [5)) it holds that

d€/2

1F(y) = Fou(y)| < ly — =I5

where f, ; is the degree-/ Taylor expansion of the func-
tion f at z € R%

For j € {0,...,h~ 1 —1}4, define q7 == fzj_’[, where 27
is the vertex of I; closest to the origin. Then for all
y €Iz, it holds that

1) - a5(0)| < (Ld )

LdP
I —B/(2B+d)
( a ) "

—. on—B/(2B+d) (5)

Note that the right-hand side is the minimax rate of
estimation in up to constant factors.

Next, by Lemma (setting A = M and A = m)
and (B]) it holds with probability at least 1 — n~2 that

q;w,i’) - fwd)| <

=: &(logn)*n"2Fa (6)

4log2M + ¢)(log n)%nfwlﬁ
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for all 7 € {0,...,h~" —1}% and k € [M]. Using this
fact, we can show that the polynomial interpolant built
on {(U}, fF(UI)}M, provides a good approximation
for q; on the interval Ijﬂ,, which is our next task. The
following lemma establishes stability of the polynomial
approximation.

Lemma 2. Let ¢ denote the wunique polynomial
of Qegree ~at most { that passes through the points
{(U,g,f(U,g))}g/le Then with probability at least 1 —
n=2, for allf and all x € Ijv,

. 18
q7(x) — ¢5(2)| < cpa,L(logn)2n” 2. (7)

Proof. Define gz(z) = g¢;(h(z + 7)) and g;(z) =
qj.(h(erf)) to be polynomials restricted to the domain
[0,1]%. Recall that g and g are given by formulas as in
Theorem |3l Tt holds by @ that for all 1 < k < M,

G(UD) — gUd)| < elogn) /2n~ 7,

Let y € [0,1]¢, and observe that by Theorem |3 and
the triangle inequality,

96~ <M sup [ (9w - o)
z€[0,1

1<k<M

< M é(log n)l/an‘w% sup |pr(z)|.
z€l0,1)
1<k<M

(8)

Observe that for = € [0,1]%, we have |\o(x)| =
[1—=>"2;] <d, and for 1 <t < d, we have |\¢(z)| =

|z;| < 1. Therefore, by the definition of p, and U},
pi(x)| < £°d.

By this bound, , and translation and scale in-
variance of ||||cc, Lemma [2] follows with cgqr =
M drt. O

Define f(z) = >_74;(x)1(z € I3), and observe that
Theoremfollows from , Lemma and the triangle
inequality. Though we have derived a high probability
bound, the expectation claimed in Theorem [I] follows
using the uniform boundedness of Holder functions as
stated in Lemmal[d]l Tracing constants above yields the
expression for ceyy.

2.2.2 Time and space requirements

Recall that M = (“é'd) where ¢ = |3]. For the space
requirement, we store the principal lattices and the

values of f on these lattice points, and note that each
query is at most Ld°¥*+1) in magnitude by Lemma
[ The queries per sub-cube can thus be stored with
M (log Ld°(P*+Y 4 logn) bits. The extra logn bits are
required so that the interpolating polynomials can be
queried with sufficient precision. The lattices are com-
posed of rational points in R?, so we need at most
Mdlog(B + 1) bits per sub-cube to store them. Since

there are nzFa sub-cubes, the space requirement of
Theorem [I] follows and is a conservative estimate for
simplicity.

Next we characterize the time complexity. Assume
first that £ > 1. For 1 < k < M, it holds that

pe(y) — pr(y)| < (d+ 125 |y — /|

because by expanding the product in the formula in
Theorem p; is a sum of at most 2¢(d+1) terms, each
having coefficients of size at most £/, and moreover for
|a| < ¢, the monomial y* is ¢-Lipschitz with respect
to |-, over the cube. Therefore, it also holds that

i:(y) — 4:(y')| < MLd*P*5 (d + 1290 |y — /|

by the formula in the interpolation step of f, noting
FUD)] = La%B ) by
Lemmald] By the form of cerr, given a query y it suffices

to round its coordinates to B := ¢ + logd + logn bits
to compute q?(y) with the required level of accuracy.

that without loss of generality,

Next, the number of arithmetic operations needed to
evaluate ¢z (y) is bounded conservatively by 6(d+¢)M.
To identify which sub-cube contains y requires time at
most 2dlogn. Hence, the total complexity is upper
bounded by

6(d+ €)M B + 2dlogn < 16(d + £)* M logn =: cque

This bound also holds conservatively when ¢ = 0 since
in that case, to evaluate f(y), we just need to match
the given query y to the sub-cube I 7 containing it and

output f(Uf)

3 A RESULT OF KOLMOGOROV
AND TIKHOMIROV

Given a function class F, let N(F,d) denote the mini-
mal number of L balls of radius § that cover F, and
define H(F,0) = log N(F,¢) to be the metric entropy.
Let H(B) = H(B, L) denote the class of Holder func-
tions supported on [0,1]¢ as defined in Section A
classical result of Kolmogorov & Tikhomirov| (1993)
shows that

H(H(B),6) < cparnd . 9)
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Their proof strategy is conceptually similar to
our piecewise multivariate polynomial approximation
scheme in that they subdivide the cube as we do here,
approximate f by its Taylor polynomial in each cube,
and then discretize the coefficients. We show now that
our techniques imply a slightly weaker version of the
bound @D

Define a mesh as in steps 1 and 2 of our formal con-
struction of f as in Section but now for a general
parameter h > 0 to be set later. This mesh has Mh~¢

points that we denote by {U,z - Let f,g € H(B) be
such that for all 7,k it holds that

Fwd) - ()

By the Holder condition and Lemma [5] there exists a
degree ¢ = | 3] polynomial q7 approximating fin I;
and a degree £ = | 3] polynomial r7 approximating g

< Ko,

in I, each with error A pointwise. We conclude that

g;(U}) = r:(U)| < cgarh’

for all f, k. Following the proof of Lemma [2| this im-
plies that for all z € I7,

)Q;(x) - T;(x)‘ < cparh’.
Hence we conclude that for all z € [0, 1]¢,

|f(x) = g(x)| < cparh®

The Hélder functions are uniformly bounded by some
constant cg g (see Lemma . Hence setting § =
cp.a.r, h? and rounding the values of each function at

each point Ug to multiples of h?, we see that there
exists a d-net of size at most

(Cﬁ7d7L ) Mcj 4 6-Y°
5 .

Therefore
1

H(H(B),9) < cg.a.0F log 5,

a mildly weaker bound than @

4 KDEs satisfy Assumption 1

In this section, for completeness we verify that for ap-
propriate kernels, the standard KDE satisfies Assump-
tion [

Proposition 1. Let K(-) denote a kernel of order | 3]
satisfying

K|l < o0, /K?(x)dx < 00, /|xO‘K(x)| dz < oo

for all multi-indices o € R‘éo with |a| = B. Then As-

sumption is satisfied for the KDE f with bandwidth
h = Cn_l/(QB"’d) .

Proof. For brevity, ¢ denotes a constant that varies
from line to line and can depend on 3,d, L and K. Fix
y € [0,1]%. Tt is well-known that under the conditions
of Proposition [I| (see e.g. [Tsybakovl [2009),

b=0(y) := |Ef(y) - f(y)| < ch’,
and for a data point X; ~ Py,
c
72 = 12(y) := Var K;,(X; —y) < 7

By the triangle inequality and Bernstein’s inequality
for bounded random variables (Vershynin, 2018),

Pr(|fw) - rw)| > 1)
nlt —b)2
< exp (‘272 T 2||$h||i)<t - b>/3> - (10)

Let h = en~ /(844 Note that ||[Kp|lee = h™ | K]0
and (nh®)~1 = cn=A/F+d)  Then we recover Assump-
tion [1 by setting ¢ > en=%/(25+d) in (10).

O

5 PROPERTIES OF HOLDER
FUNCTIONS

For completeness, we provide proofs of standard facts
about the class of Holder functions.

Lemma 3 (Inclusion). Let H(B,d, L) denote the class
of Holder functions supported on [0,1]% in dimension
d. If B > 1, then it holds that H(|8],d,L) C H(|8] —
1,d,d%?L).

Proof. Let f € H(B,d,L). Since f is supported on
[0,1]¢ and smooth on R?, we have that

D f(2)] < Llal, < LVd (11)

for all |s| = |B].
Fix z,y € [0,1]%, and define for 1 < i < d+1 the point

2t €]0,1]¢ to be
i_ ) Ti
J yi

Observe that z! = z and 2

if § >
if j <.

d+1 _
=y.
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Let t denote a multi-index with |[t| = [8] — 1. By
the fundamental theorem of calculus and the Holder
condition,

d
[D'f(2) = D'fy)l < 3 |D'f(=") = D'F (")

d
=1

Using , the expression in the second line is
bounded above by Ld®/2, which proves the lemma.

Yi

O ptfia,..

2 i ts e ya) Az
axi z yb"l‘l yd) <

Zq

O

Lemma 4 (Uniform boundedness). The class H(S) is
uniformly bounded. In particular,

sup || f]loe < dBLAI/2H1/2 ],
FEH(B)

Proof. Suppose first that f € H(B) for 8 > 1. By
repeated application of Lemma [3| f is (d®l3)/2L)-
Lipschitz. Since f is supported on [0, 1]¢,

(@) = 1f(2) = f(0)] < d*V2L ||, < d®WP2HU2L

If B < 1, then arguing as in the previous display, we
see that | f(x)| < LV/d for all € R%. O

Lemma 5 (Taylor approximation). Given f € H(3),
let f.15) denote its Taylor polynomial of degree | 3] at
a point x € RY,

forpi) = > (y%,xstf(m), y € RY.
lsi<ts)

Then it holds that

18]/2
£ @) = fo 5 ()] < 22

W x,yERd.

|$—y‘§,

Proof. By Taylor’s theorem with remainder (see, eg.,
Folland), [1999)

\f(y) = fors )| =

1 S S S
> o D f@tcly —2)) = D*f(2)] (y — 2)
[sl=18] ~
for some constant ¢ € (0,1). By the triangle inequality

and the Holder condition, the expression in the second
line is bounded above by

L|x7y|ﬁ_LﬁJ s
> e )=

ls|=L18]

where the equality is by the multinomial theorem. In
turn, this last expression is bounded above by

LdlBl/2
W lz—y |g
using Cauchy—-Schwarz. O
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