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1 PROOFS FROM SECTION 2

1.1 Proof of Lemma 1

Here we prove Lemma 1, restated below for convenience.

Lemma. Let K−1 = c(log n)/n for c > 0 a sufficiently large absolute constant, and let A = Aβ,L,K denote a

sufficiently small constant. Then for all f ∈ PH(β, L) and X1, . . . , Xn
iid∼ Pf , the event that for every j = 1, . . . ,K

there exists some xi in bin Bj holds with probability at least 1−O(n−2).

Proof. Note that f1(x1) ∈ PH(β, L) as a univariate density because f(x) ∈ PH(β, L). Hence, f1 satisfies

|f1(x)− f1(y)| ≤ L|x− y|α

for some absolute constants L > 0 and α ∈ (0, 1). If Bik = Bjk + s for s ≤ A, then

|P(Bik)− P(Bjk)| ≤
∫
Bik

|f(x1)− f(x1 + s)|dx1 ≤ LK−1A1+α. (1)

Thus for all i, j,

|P(Bi)− P(Bj)| ≤
1/A∑
k=1

|P(Bik)− P(Bjk)| ≤ LK−1Aα. (2)

It follows that for all i = 1, . . . ,K,
lim
A→0

P(Bi) = K−1. (3)

Let E denote the event that every bin Bi contains at least one observation xk. By the union bound,

P(Ec) ≤
∑
j=1

P(X11 /∈ Bj)n ≤ K max
j

(1− P(Bj))
n.

By (3), choosing A small enough ensures that P[Bj ] ≥ (1/2)K−1 for all j. In fact, by (1) one may take
A = ( 1

2K−2L )1/α. Hence, setting K−1 = c(log n)/n for c sufficiently large, we have

P(Ec) = O(n−2).

1.2 Proof of the lower bound in Theorem 1

In this section, X = X1, . . . , Xn ∈ Rd denotes the sample. It is convenient to consider a more general
family of decorated coreset-based estimators. A decorated coreset consists of a coreset XS along with a data-
dependent binary string σ of length R. A decorated coreset-based estimator is then given by f̂ [XS , σ], where

f̂ : Rd×m × {0, 1}R → L2([−1/2, 1/2]d) is a measurable function. As with coreset-based estimators, we require

that f̂ [x1, . . . , xm, σ] is invariant under permutation of the vectors x1, . . . , xm ∈ Rd. We slightly abuse notation

and refer to the channel S : X → YS = (XS , σ) as a decorated coreset scheme and f̂S as the decorated coreset-
based estimator. The next proposition implies the lower bound in Theorem 1 on setting R = 0, in which case a
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decorated coreset-based estimator is just a coreset-based estimator. This more general framework allows us to
prove Theorem 4 on lower bounds for weighted coreset KDEs.

Proposition 2. Let f̂S denote a decorated coreset-based estimator with decorated coreset scheme S such that
σ ∈ {0, 1}R. Then

sup
f∈PH(β,L)

Ef‖f̂S − f‖2 ≥ cβ,d,L
(

(m log n+R)−
β
d + n−

β
2β+d

)
.

1.2.1 Choice of function class

Fix h ∈ (0, 1) such that 1/hd is integral to be chosen later. Let z1, . . . , z1/hd label the points in { 1
2h · 1d +

hZd} ∩ [−1/2, 1/2]d, where 1d denotes the all-ones vector of Rd. We consider a class of functions of the form

fω(x) = 1 +
∑1/hd

j=1 ωjgj(x) indexed by ω ∈ {0, 1}1/hd . Here, gj(x) is defined to be

gj(x) = hβφ

(
x− zj
h

)
where φ : Rd → R is L-Hölder smooth of order β, has ‖φ‖∞ = 1, and has

∫
φ(x) dx = 0.

Informally, fω puts a bump on the uniform distribution with amplitude hβ over zj if and only if ωi = 1. Using

a standard argument (Tsybakov, 2009, Chapter 2) we can construct a packing V of {0, 1}1/hd which results

G = {fω : ω ∈ V} of the function class {fω : ω ∈ {0, 1}1/hd} such that

(i) ‖f − g‖2 ≥ cβ,d,L hβ for all f, g ∈ G, f 6= g and,

(ii) G is large in the sense that M := |G| ≥ 2cβ,d,L/h
d

.

1.2.2 Minimax lower bound

Using standard reductions from estimation to testing, we obtain that

inf
f̂ ,|S|=m,
σ∈{0,1}R

sup
f∈PH(β,L)

Ef ‖f̂S − f‖2 ≥ inf
f̂ ,|S|=m,
σ∈{0,1}R

max
f∈G

Ef ‖f̂S − f‖2

≥ cβ,d,L hβ · inf
ψS

1

M

∑
ω∈V

Pfω [ψS(X) 6= ω]. (4)

where the infimum in the last line is over all tests ψS : Rd×n → [M ] of the form ψS(X) = ψ(YS) for a decorated
coreset scheme S and a measurable function ψ : Rd×m × {0, 1}R → [M ].

Let V denote a random variable that is distributed uniformly over V and observe that

1

M

∑
ω∈V

Pfω [ψS(X) 6= ω] = P[ψS(X) 6= V ]

where P denotes the joint distribution of (X,V ) characterized by the conditional distribution X|V = ω which is
assumed to have density fω for all ω ∈ V.

Next, by Fano’s inequality (Cover & Thomas, 2006, Theorem 2.10.1) and the chain rule, we have

P[ψS(X) 6= V ] ≥ 1− I(V ;ψS(X)) + 1

logM
, (5)

where I(V ;ψS(X)) denotes the mutual information between V and ψS(X) and we used the fact that the entropy
of V is logM . Therefore, it remains to control I(V ;ψS(X)). To that end, note that it follows from the data
processing inequality that

I(V ;ψS(X)) ≤ I(V ; (XS , σ)) = I(V ;YS) = KL(PV,YS‖PV ⊗ PYS ) ,

where PV,YS , PV and PYS denote the distributions of (V, YS), V and YS respectively and observe that PYS is
the mixture distribution given by PYS (A, t) = M−1

∑
ω∈V Pfω (XS ∈ A, σ = t) for A ⊂ Rd×m and t ∈ {0, 1}R.



Denote by fω,YS the mixed density of Pfω (XS ∈ ·, σ = ·), where the continuous component is with respect to the
Lebesgue measure on [−1/2, 1/2]d×m. Denote by f̄YS the mixed density of the uniform mixture of these:

f̄YS :=
1

M

∑
ω∈V

fω,YS .

By a standard information-theoretic inequality, for all measures Q it holds that

KL(PV,YS‖PV ⊗ PYS ) =
1

M

∑
ω

KL(PYS |ω‖PYS ) ≤ 1

M

∑
ω

KL(PYS |ω‖Q). (6)

In fact, we have equality precisely when Q = PYS , and (6) follows immediately from the nonnegativity of the
KL-divergence. Setting Q = Unif[− 1

2 ,
1
2 ]d ⊗ Unif{0, 1}R, for all ω we have

KL(PYS |ω,Q) =
∑

t∈{0,1}R

∫
[− 1

2 ,
1
2 ]d

fω,YS (x, t) log
fω,YS (x, t)

2−R
dx

≤
∑

t∈{0,1}R

∫
[− 1

2 ,
1
2 ]d

fω,YS (x, t) log fω,YS (x, t) dx+R. (7)

Our next goal is to bound the first term on the right-hand-side above.

Lemma 2. For any ω ∈ V, we have∑
t∈{0,1}R

∫
[− 1

2 ,
1
2 ]d

fω,YS (x, t) log fω,YS (x, t) dx ≤ 3m log n.

Proof. Let PXS denote the distribution of the (undecorated) coreset XS , and note that the density of this
distribution is given by fω,XS (x) :=

∑
t∈{0,1}R fω,YS (x, t). Then because the logarithm is increasing,∑

t∈{0,1}R

∫
[− 1

2 ,
1
2 ]d

fω,YS (x, t) log fω,YS (x, t) dx ≤
∑

t∈{0,1}R

∫
[− 1

2 ,
1
2 ]d

fω,YS (x, t) log fω,XS (x) dx

=

∫
[− 1

2 ,
1
2 ]d

fω,XS (x) log fω,XS (x) dx.

By the union bound,

PXS (·) ≤
∑

s∈([n]
m)

PXs(·) =

(
n

m

)
PX[m]

(·) .

It follows readily that fω,XS (·) ≤
(
n
m

)
fω,X[m]

(·) . Next, let Z ∈ [−1/2, 1/2]d×m be a random variable with density
fω,XS and note that∫

fω,XS log fω,XS = E log fω,XS (Z) ≤ log

(
n

m

)
+ E log fω,X[m]

(Z) ≤ m log
(en
m

)
+m log 2 ,

where in the last inequality, we use the fact that fω,X[m]
= fmω ≤ 2m. The lemma follows.

Since logM ≥ cβ,d,Lh−d, it follows from (5)–(7) and Lemma 2 that

P[ψS(X) 6= V ] ≥ 1− 3m log n+R+ 1

logM
≥ 0.5

on setting h = cβ,d,L(m log n+R)−1/d. Plugging this value back into (4) yields

inf
f̂ ,|S|=m

sup
f∈PH(β,L)

Ef ‖f̂S − f‖2 ≥ cβ,d,L(m log n+R)−β/d .

Moreover, it follows from standard minimax theory (see e.g. Tsybakov, 2009, Chapter 2) that

inf
f̂ ,|S|=m

sup
f∈PH(β,L)

Ef ‖f̂S − f‖2 ≥ cβ,d,Ln−
β

2β+d .

Combined together, the above two displays give the lower bound of Proposition 2.
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2 PROOFS FROM SECTION 3

2.1 Proof of Proposition 1

We restate the result below.

Proposition. Let k(x) =
∏d
i=1 κ(xi) denote a kernel with κ ∈ S(γ, L′) such that |κ(x)| ≤ cβ,d |x|−ν for some

ν ≥ β + d, and the KDE

f̂(y) =
1

n

n∑
i=1

kh(Xi − y)

with bandwidth h = n−
1

2β+d satisfies

sup
f∈PH(β,L)

E‖f − f̂‖2 ≤ cβ,d,L n−
β

2β+d .

Then the Carathéodory coreset estimator ĝS(y) constructed from f̂ with T = cd,γ,L′ n
d/2+β+γ
γ(2β+d) satisfies

sup
f∈PH(β,L)

E‖ĝS − f‖2 ≤ cβ,d,L n−
β

2β+d .

Let ϕ : Rd → [0, 1] denote a cutoff function that has the following properties: ϕ ∈ C∞, ϕ
∣∣
[−1,1]d

≡ 1, and ϕ is

compactly supported on [−2, 2]d.

Lemma 3. Let k̃h(x) = kh(x)ϕ(x) where |κ(x)| ≤ cβ,d |x|−ν . Then

‖k̃h − kh‖2 ≤ cβ,d h−d+ν .

Proof.

‖k̃h − kh‖2 = ‖(1− ϕ)kh‖2
≤ ‖(1− 1[−1,1]d)kh‖2
= h−d/2‖(1− 1[− 1

h ,
1
h ]d)k‖2

≤ dh−d/2‖1|x1|≥ 1
h
k‖2

≤ cβ,d h−d/2
√∫
|x1|≥ 1

h

κ2(x1) dx1

≤ cβ,d h−d+ν .

The triangle inequality and the previous lemma yield the next result.

Lemma 4. Let k denote a kernel such that |κ(x)| ≤ cβ,d |x|−ν2 . Recall the definition of k̃h from Lemma 3. Let
{Xj : j ∈ S} ⊂ Rd denote an arbitrary set of points (not necessarily from a sample), and let

ĝS(y) =
∑
j∈S

λjkh(Xj − y)

denote a weighted KDE on the points labeled by S where λj ≥ 0 and 1Tλ = 1. Let

g̃S(y) =
∑
j∈S

λj k̃h(Xj − y).

Then
‖ĝS − g̃S‖2 ≤ cβ,dh−ν+d.



Next we show that k̃h is well approximated by its Fourier expansion on [−2, 2]d. Since k̃h is a smooth periodic
function on [−2, 2]d, it is expressed in L2 as a Fourier series on π

2Z
d. Thus we bound the tail of this expansion.

In what follows, α ∈ Zd≥0 is a multi-index and

F̄ [f ](ω) =
1

42d

∫
f(x)e−i〈x,ω〉 dx

denotes the (rescaled) Fourier transform on [−2, 2]d, where ω ∈ π
2Z

d.

Lemma 5. Suppose that κ ∈ S(β, L′). Let A = {ω ∈ π
2Z

d : |ω|1 ≤ T}, and define

k̃Th (y) =
∑
ω∈A
F̄ [k̃h](ω)ei〈y,ω〉.

Then
‖(k̃h − k̃Th )1[−2,2]d‖2 ≤ cγ,d,L′ T−γh−d/2−γ

Proof. Observe that for ω /∈ A, it holds that∑
|α|1=γ

γ!

α!
|ω|α = (|ω1|+ · · ·+ |ωd|)γ ≥ T γ .

Therefore,

‖F̄ [k̃h](ω)1ω/∈A‖`2 ≤ T−γ‖
∑
|α|1=γ

γ!

α!
|ω|α F̄ [k̃h](ω)1ω/∈A‖`2

≤ T−γ
∑
|α|1=γ

γ!

α!
‖ωαF̄ [k̃h](ω)‖`2

= cd T
−γ

∑
|α|1=γ

γ!

α!
‖ ∂

α

∂xα
k̃h(x)‖2, (8)

where in the last line we used Parseval’s identity. For any multi-index α with |α|1 = γ,

‖ ∂
α

∂xα
k̃h(x)‖2 = ‖

∑
η�α

∂η

∂xη
kh(x)

∂α−η

∂xα−η
ϕ(x)‖2

≤ h− d2−γ
∑
η�α

cd,γ ‖
∂η

∂xη
k(x)‖2, (9)

where we used that the derivatives of ϕ are bounded. Next by Parseval’s identity,

‖ ∂
η

∂xη
k(x)‖22 = cd

d∏
i=1

‖ωηii F [κ](ωi)‖22. (10)

For 0 ≤ a ≤ γ, we have∫
|ωaF [κ](ω)|2 dω ≤ 2‖κ‖21 +

∫
|ω|≥1

|ωγF [κ](ω)|2 dω ≤ 2‖κ‖21 + L′. (11)

By (8)–(11),

‖F̄ [k̃h](ω)1ω/∈A‖`2 ≤ cd,γ,L′ T−γh−
d
2−γ ,

as desired.
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Applying the previous lemma and linearity of the Fourier transform, we have the next corollary that gives an
expansion for a general KDE on the smaller domain [− 1

2 ,
1
2 ]d.

Corollary 2. Let g̃S denote the weighted KDE built from k̃h from Lemma 4 where {Xj : j ∈ S} ⊂ [− 1
2 ,

1
2 ]d is an

arbitrary set of points (not necessarily from a sample) and moreover κ ∈ S(β, L′). Let A = {ω ∈ π
2Z

d : |ω|1 ≤ T},
and define

g̃S
T (y) =

∑
ω∈A
F̄ [g̃S ](ω)ei〈y,ω〉.

Then

‖(g̃S − g̃ST )1[− 1
2 ,

1
2 ]d‖2 ≤ cd,γ,L′ T−γh−d/2−γL.

Now we have all the ingredients needed to prove Proposition 1.

Proof of Proposition 1 . Let

f̃(y) =
1

n

n∑
j=1

k̃h(Xj − y),

and

g̃S(y) =
∑
j∈S

λj k̃h(Xj − y)

where the coreset {Xj : j ∈ S} is constructed by Carathéodory’s theorem as in Section 3 of the main text and k̃h
is defined as in Lemma 3. Also consider their Fourier expansions f̃T and g̃TS as defined in Corollary 2. Observe
that, by construction of the Carathéodory coreset,

f̃T (y) = g̃TS (y) ∀y ∈ [−1

2
,

1

2
]d.

In what follows, ‖·‖2 is computed on [− 1
2 ,

1
2 ]d. By the triangle inequality,

‖ĝS − f̂‖2 ≤ ‖ĝS − g̃S‖2 + ‖g̃S − g̃TS ‖2 + ‖g̃TS − f̃T ‖

+ ‖f̃T − f̃‖2 + ‖f̃ − f̂‖2
≤ cβ,d h−d+ν + cd,γ,L′ T

−γh−d/2−γ + 0

+ cd,γ,L′ T
−γh−d/2−γ + cβ,d h

−d+ν (12)

On the right-hand-side of the first line, the first and last terms are bounded via Lemma 4. The second and
fourth terms are bounded via Lemma 5, and the third term is 0 by Carathéodory. By our choice of T and the
decay properties of k, we have

‖ĝS − f̂‖2 ≤ cβ,d,L hβ ≤ cβ,d,L n−β/(2β+d).

The conclusion follows by the hypothesis on k, the previous display, and the triangle inequality.

2.2 Proof of Theorem 2

We restate Theorem 2 here for convenience.

Theorem. Let ε > 0. The Carathéodory coreset estimator ĝS(y) built using the kernel ks and setting T =

cd,β,ε n
ε
d+ 1

2β+d satisfies

sup
f∈PH(β,L)

Ef‖ĝS − f‖2 ≤ cβ,d,L n−
β

2β+d .

The corresponding coreset has cardinality

m = cd,β,εn
d

2β+d+ε.



Proof. Our goal is to apply Proposition 1 to ks. First we show that the standard KDE built from ks attains the
minimax rate on PH(β, L). The Fourier condition

ess supω 6=0

|1−F [ks](ω)|
|ω|α

≤ 1, ∀α � β,

implies that ks is a kernel of order β (Tsybakov, 2009, Definition 1.3). Since F [ks](0) = 1 =
∫
ks(x) dx, it

remains to show that the ‘moments’ of order at most β of ks vanish. In fact all of the moments vanish. We have,
expanding the exponential and using the multinomial formula,

ψ(ω) = F−1[ks](ω)

=

∫
ks(x)ei〈x,ω〉dx

=

∞∑
t=0

∫
ks(x)

(i〈x, ω〉)t

t!
dx

=

∞∑
t=0

∑
|α|1=t

it

α!
wα
{∫

ks(x)xαdx

}
.

Since ψ(ω) ≡ 1 in a neighborhood near the origin, it follows that all of the terms
∫
ks(x)xαdx = 0. Thus ks is a

kernel of order β for all β ∈ Z≥0, and the standard KDE on all of the dataset with bandwidth h = n−1/(2β+d)

attains the rate of estimation n−β/(2β+d) over PH(β, L) (see e.g. Tsybakov, 2009, Theorem 1.2).

Next, |κs(x)| ≤ cβ,d |x|ν for ν = dβ + de. This is because

xνκs(x) = xνF [ψ](x) = F
[

dν

dxν
ψ

]
(x) ≤ ‖ dν

dxν
ψ‖1 ≤ cβ,d.

Moreover for all γ ∈ Z>0, κs ∈ S(γ, cγ). By Parseval’s identity,

‖ dγ

dxγ
κs‖2 =

1√
2π
‖F [

dγ

dxγ
κs]‖2 =

1√
2π
‖ωγψ(ω)‖2 ≤ cγ

because ψ has compact support (see e.g. Katznelson, 2004, Chapter VI).

All of the hypotheses of Proposition 1 are satisfied, so we apply the result with

γ =
d

2ε

to derive Theorem 2.

2.3 Proof of Corollary 1

Corollary. Let ε > 0 and m ≤ cβ,d,ε n
d

2β+d+ε. The Carathéodory coreset estimator ĝS(y) built using the kernel

ks, setting h = m−
1
d+ ε

β and T = cdm
1/d, satisfies

sup
f∈PH(β,L)

E‖ĝS − f‖2 ≤ cβ,d,ε,L
(
m−

β
d+ε + n−

β
2β+d+ε

)
,

and the corresponding coreset has cardinality m.

Proof. Recall from the proof of Theorem 2 that ks is a kernel of all orders. By a standard bias-variance trade-off
(see e.g. Tsybakov, 2009, Section 1.2), it holds for the KDE f̂ with bandwidth h built on the entire dataset that

Ef‖f̂ − f‖2 ≤ cβ,d,L
(
hβ +

1√
nhd

)
. (13)
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Moreover, from (12) applied to ks , setting T = cdm
1/d, we get

‖ĝS − f̂‖2 ≤ cβ,d hβ + cd,γm
−γ/dh−d/2−γ . (14)

Choosing

γ = (β +
d

2
)(
β

dε
− 1), h = m−

1
d+ ε

β

(assuming without loss of generality that ε > 0 is sufficiently small so that γ > 0), then the triangle inequality,
(13), (14), and the upper bound on m yield the conclusion of Corollary 1.

2.4 Proof of Theorem 4

For convenience, we restate Theorem 4 here.

Theorem. Let A,B ≥ 1. Let k denote a kernel with ‖k‖2 ≤ n. Let ĝS denote a weighted coreset KDE with
bandwidth h ≥ n−A built from k with weights {λj}j∈S satisfying maxj∈S |λj | ≤ nB. Then

sup
f∈PH(β,L)

Ef‖ĝS − f‖2 ≥ cβ,d,L
[
(A+B)−

β
d (m log n)−

β
d + n−

β
2β+d

]
.

Proof. Let λ = λ1, . . . , λm and let λ̃ = λ̃1, . . . , λ̃m. Observe that

‖
∑
j∈S

λjkh(Xj − y)−
∑
j∈S

λ̃jkh(Xj − y)‖2 ≤
∑
j∈S

∣∣∣λj − λ̃j∣∣∣ ‖kh(Xj − y)‖2

≤
∣∣∣λ− λ̃∣∣∣

∞
n2h−d/2. (15)

Using this we develop a decorated coreset-based estimator f̂S (see Section 1.2 of this Supplement) that approxi-
mates ĝS well. Set δ = cβ,d,Ln

−4hd/2 for cβ,d,L sufficiently small and to be chosen later. Order the points of the
coreset XS according to their first coordinate. This gives rise to an ordering � so that

X ′1 � X ′2 � · · · � X ′m

denote the elements of XS . Let λ ∈ Rm denote the correspondingly reordered collection of weights so that

ĝS(y) =

m∑
j=1

λjkh(X ′j − y).

Construct a δ-net Nδ with respect to the sup-norm |·|∞ on the set {ν ∈ Rm : |ν|∞ ≤ nB}. Observe that

log |Nδ| = log(nBδ−1)m = cβ,d,L (B +A)m log n (16)

Define R to be the smallest integer larger than the right-hand-side above. Then we can construct a surjection
φ : {0, 1}R → Nδ. Note that φ is constructed before observing any data: it simply labels the elements of the
δ-net Nδ by strings of length R.

Given ĝS(y) =
∑
j∈S λjkh(Xj − y), define f̂S as follows:

1. Let λ̃ ∈ Rm denote the closest element in Nδ to λ ∈ Rm.

2. Choose σ ∈ {0, 1}R such that φ(σ) = λ̃.

3. Define the decorated coreset YS = (XS , σ).

4. Order the points of XS by their first coordinate. Pair the i-th element of λ̃ with the i-th element X ′i of XS ,
and define

f̂S(y) =

m∑
j=1

λ̃jkh(X ′j − y)



We see that f̂S is a decorated-coreset based estimator because in step 4 this estimator is constructed only by
looking at the coreset XS and the bit string σ. Moreover, by (15) and the setting of δ,

‖f̂S − ĝS‖2 ≤ cβ,d,L n−2. (17)

By Proposition 2 and our choice of R,

sup
f∈PH(β,L)

Ef‖f̂S − f‖2 ≥ cβ,d,L
(

(A+B)−
β
d (m log n)−

β
d + n−

β
2β+d

)
.

Applying the triangle inequality and (17) yields Theorem 4.

3 PROOFS FROM SECTION 4

Notation: Given a set of points X = x1, . . . , xm ∈ [−1/2, 1/2] (not necessarily a sample), we let

f̂X(y) =
1

m

m∑
i=1

kh(Xi − y)

denote the uniformly weighted KDE on X.

3.1 Proof of Theorem 5

Theorem. Let k denote a nonnegative kernel satisfying

k(t) = O(|t|−(k+1)
), and F [k](ω) = O(|ω|−`)

for some ` > 0, k > 1. Suppose that 0 < α < 1/3. If

m ≤ n
2
3−2(α(1− 2

` )+ 2
3` )

log n
,

then

inf
h,S:|S|≤m

sup
f∈PH(1,L)

E‖f̂unifS − f‖2 = Ωk

(n− 1
3 +α

log n

)
.

The infimum above is over all possible choices of bandwidth h and all coreset schemes S of cardinality at most
m.

The proof of Theorem 5 follows directly from Propositions 3 and 4, which are presented in Sections 3.1.1 and
3.1.2, respectively, of this Supplement.

3.1.1 Small bandwidth

First we show that uniformly weighted coreset KDEs on m points poorly approximate densities that are very
close to 0 everywhere.

Lemma 6. Let f̂X denote a uniformly weighted coreset KDE built from an even kernel k : R→ R with bandwidth
h on m points X = x1, . . . , xm ∈ R. Suppose that quantiles 0 ≤ q1 ≤ q2 satisfy∫ q1

−q1
k(t)dt ≥ 0.9, and (18)∫ q2

−q2
k(t)dt ≥ 1− γ. (19)

Let U denote an interval [0, u] where
u ≥ 8q2h, (20)
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and suppose that f : U → R satisfies

1

100q1mh
≤ f(x) ≤ 45

44
· 1

100q1mh
(21)

for all x ∈ U .

Then

inf
X:|X|=m

‖(f̂X − f)1U‖1 ≥
u

440q1mh
− γ.

Proof. Let N denote the number of xi ∈ X such that [xi− q1h, xi + q1h] ⊂ [0, u]. The argument proceeds in two
cases. With foresight, we set α = 1/(44q1). Also let C1 = 1/(100q1) and C2 = 45/(4400q1).

Case 1: N ≥ αu
h . Then by (18) and the nonnegativity of k,

‖f̂X1U‖1 ≥
0.9N

m
≥ 0.9αu

mh
.

By (21),

‖f‖1 ≤
C2u

mh
.

Hence,

‖(f̂X − f)1U‖1 ≥
u

mh
(0.9α− C2) = C2

u

mh
=

45

4400
· u

q1mh
.

Thus Lemma 6 holds in Case 1 where N ≥ αu/h.

Case 2: N ≤ αu
h . Let

V = [2hq2, u− 2hq2] \
⋃
j∈T

[xj − q1h, xj + q1h]

where T is the set of indices j so that [xj − q1h, xj + q1h] ⊂ U . Observe that if j /∈ T , then by (19),∫
V

1

h
k

(
xj − t
h

)
dt ≤ γ.

If j ∈ T , then by (18), ∫
V

1

h
k

(
xj − t
h

)
dt ≤ 0.1.

Thus,

‖f̂X1V ‖1 ≤
0.1N

m
+ γ ≤ α0.1u

mh
+ γ.

By the union bound, observe that the Lebesgue measure of V is at least

u− 4hq2 − 2Nhq1 ≥
u

2
− 2Nhq1 ≥ u(

1

2
− 2αq1).

Next, by (21),

‖f1V ‖1 ≥ C1
u

mh
(
1

2
− 2αq1).

Therefore,

‖(f̂X − f)1U‖1 ≥
u

mh
(C1(1/2− 2αq1)− 0.1α)− γ =

u

440q1mh
− γ. (22)



Proposition 3. Let L > 2. Let 0 < δ < 1/3 denote an absolute constant. Let f̂X denote a uniformly weighted
coreset KDE with bandwidth h built from a kernel k on X = x1, . . . , xm. Suppose that k(t) ≤ ∆|t|−(k+1) for
some absolute constants ∆ > 0, k ≥ 1. If h ≤ n−1/3+δ, then for

m ≤ n2/3−2δ

log n

it holds that

sup
f∈PH(1,L)

inf
X:|X|=m

‖f̂X − f‖2 = Ω

(
n−1/3+δ

log n

)
. (23)

Proof. Let

f(t) = λ
(
e−1/t1(t ∈ [−1/2, 0]) + e−1/(1−t)1(t ∈ [0, 1/2])

)
,

where λ is a normalizing constant so that
∫
f = 1. Observe that f ∈ PH(1, L). Our first goal is to show that

‖f̂X − f‖1 = Ω

(
1

mh log2(mh)

)
holds for all τ/h ≤ m ≤ h−2 and for all h ≤ n−1/3+δ, where τ is an absolute constant to be determined.

We apply Lemma 6 to the density f . Let q1 be defined as in Lemma 6, and set C1 = 1/(100q1) and C2 =
45/(4400q1). Set τ = 10C2/λ. Let

U = [t1, t2] :=

[
1

log(λmh/C1)
,

1

log(λmh/C2)

]
.

The function f |U satisfies the bounds (21) from Lemma 6. Observe that the length of U is

u := t2 − t1 = Ω(
1

log2(mh)
).

We set the parameter γ in Lemma 6 to be

γ =
1

800q1mh log2(mh)
.

By the decay assumption on k, we may set

q2 :=

(
2∆

kγ

)1/k

.

Therefore,

u− 8q2h = Ω(
1

log2(mh)
)− 8h

(
2∆

kγ

)1/k

(24)

= Ω(
1

log2(mh)
)−O(h(mh log2(mh))1/k) (25)

= Ω(
1

log2(h−1)
)−O(h1−1/k log2(h−1)) > 0 (26)

for n sufficiently large, because we assume τ/h ≤ m ≤ h−2, h ≤ n−1/3+δ, and k > 1. Hence, condition (20)
is satisfied for m,h in the specified range, so we apply Cauchy–Schwarz and Lemma 6 to conclude that for all
τ/h ≤ m ≤ h−2 and h ≤ n−1/3+δ,

‖f̂X − f‖2 ≥ ‖f̂X − f‖1 = Ω

(
1

mh log2(mh)

)
= Ω

(
1

mh log2(h−1)

)
. (27)
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Suppose first that log2(1/h) ≥ n1/3−δ. Then clearly the right-hand side of (27) is Ω(1) for m ≤ n. Otherwise,
we have for all h ≤ n−1/3+δ that if m is in the range

τ

h
≤ m ≤ min

(
n1/3−δ log n

h log2(1/h)
, h−2

)
=: Nh,

then (27) implies

‖f̂X − f‖2 = Ω

(
n−1/3+δ

log n

)
. (28)

Moreover, a uniformly weighted coreset KDE on m = O(1/h) points can be expressed as a uniformly weighted
coreset KDE on Ω(1/h) points by setting some of the xi’s to be duplicates. Hence (28) holds for all 1 ≤ m ≤ Nh.
Since Nh is a decreasing function of h, it follows that (28) holds for all m ≤ n2/3−2δ/ log n and h ≤ n−1/3+δ, as
desired.

3.1.2 Large bandwidth

Lemma 7. Let ε = ε(n) > 0, and let f̂X denote the uniformly weighted coreset KDE on X with bandwidth h.
Suppose that φ : R → R is an odd C∞ function supported on [−1/4, 1/4]. Let f(t) : [−1/2, 1/2] → R≥0 denote
the density

f(t) =
12

11
(1− t2) + εφ(t) cos

(
t

ε

)
.

Then

‖f̂X − f‖22 ≥
1

2
ε2
(
‖φ‖22 −

∣∣F [φ2](2ε−1)
∣∣)

− ‖φ‖1 sup
|ω|≥hε−1/2

|F [k](ω)| − 2ε

∫
|ω|≥ε−1/2

|F [φ](ω)|dω. (29)

Proof. Let g(t) = (12/11)(1− t2) and ψ(t) = εφ(t) cos(t/ε). Observe that

‖f̂X − f‖22 ≥ ‖g − f‖22 − 2〈f̂X , g − f〉+ 2〈g, ψ(t)〉

= ‖g − f‖22 − 2〈f̂X , g − f〉 (30)

because g(t)ψ(t) is an odd function. Next, using cos2(θ) = (1/2)(cos(2θ) + 1),

‖g − f‖22 = ε2

∫ 1/2

−1/2

cos2(t/ε)φ2(t)dt

≥ ε2

2
‖φ‖22 −

ε2

2

∣∣F [φ2](2ε−1)
∣∣ . (31)

By the triangle inequality and Parseval’s formula,∣∣∣〈f̂X , g − f〉∣∣∣
ε

≤
(∫
|ω|≤hε−1/2︸ ︷︷ ︸

=:A

+

∫
|ω|≥hε−1/2︸ ︷︷ ︸

=:B

)∣∣∣F [k]

(
−h
ε
− ω

)
1

h
F [φ]

(
−ω
h

) ∣∣∣dω.

Moreover,

A ≤ 1

2ε
‖φ‖1 · sup

|ω|≥hε−1/2

|F [k](ω)| , (32)

B ≤ ‖k‖1 ·
∫
|ω|>ε−1/2

|F [φ](ω)|dω. (33)

Then (29) follows from ‖k‖1 = 1 and equations (30), (31), (32), and (33).



Proposition 4. Let ε = n−1/3+γ for some absolute constant γ > 0. Let f̂X denote a uniformly weighted
coreset KDE with bandwidth h built from a kernel k on X = x1, . . . , xm. Suppose that |F [k](ω)| ≤ |ω|−`. If
h ≥ cε1−2/` = cn(−1/3+γ)(1−2/`) for c sufficiently large, then for all m it holds that

sup
f∈PH(β,L)

inf
X:|X|=m

‖f̂X − f‖2 = Ω(ε) = Ω
(
n−1/3+γ

)
(34)

Proof. The proof is a direct application of Lemma 7. Let f(t) = g(t) + εφ(t) cos(t/ε), where we set

φ(t) = −e
1

x(x+1/4)1(x ∈ [−1/4, 0]) + e−
1

x(x−1/4)1(x ∈ [0, 1/4]).

Observe that φ is odd and φ ∈ C∞. Thus, φ2 ∈ C∞, so by the Riemann–Lebesgue lemma (see e.g. Katznelson,
2004, Chapter VI), F [φ2](ε−1) ≤ 10ε. Using a similar argument and noting that F [φ](ω) = ω−2F [φ′′](ω) ≤
10ω−3, we obtain ∫

|ω|≥2ε−1

|F [φ](ω)|dω ≤ 100ε2.

Also ‖φ‖2 ≥ c′ for a small absolute constant, and ‖φ‖1 ≤ 2.

Thus Lemma 7, the hypothesis on k, and h ≥ c′ε1−2/` imply that

‖f̂X − f‖22 ≥
c2

2
ε2 − 2

( ε
h

)`
− 200ε3 = Ω(ε2).

Since f ∈ PH(1, L), the statement of the lemma follows.

3.2 Proof of Theorem 6

Theorem. Fix β > 0 and a nonnegative kernel k on R satisfying the following fast decay and smoothness
conditions:

lim
s→+∞

1

s
log

1∫
|t|>s k(t)dt

> 0, (35)

lim
ω→∞

1

|ω|
log

1

|F [k](ω)|
> 0, (36)

where we recall that F [k] denotes the Fourier transform. Let f̂unifS be the uniformly weighted coreset KDE. Then
there exists Lβ > 0 such that for L ≥ Lβ and any m and h > 0, we have

inf
h,S:|S|≤m

sup
f∈PH(β,L)

E‖f̂unifS − f‖2 = Ωβ,k

(
m
− β

1+β

logβ+
1
2 m

)
.

Proof. We follow a similar strategy to the proof of Theorem 5 by handling the cases of small and large bandwidth
separately.

Let q1 = q1(k) > 0 be the minimum number such that
∫
|t|>q1 k(t)dt ≤ 0.1. By the assumption in the theorem,

there exists a > 0 such that ∫
|t|>s

k(t)dt ≤ 1

a
exp(−as), ∀s ≥ 0.

Note that we can set L
(1)
β large such that for any δ ∈ [0, 1], there exists f ∈ PH(β, L

(1)
β ) such that f(x) = δ for

x ∈ [0, 1/2]. We first show that for any given m and h, we have

inf
S:|S|≤m

sup
f∈PH(β,L

(1)
β )

E‖f̂unifS − f‖1 ≥ 0.2

(
1 ∧ 1

100q1mh

)
1

{
h ≤ 0.02a

log
(
mq1

0.001a ∨
10
a

) ∧ 1

}
. (37)
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Let f be an arbitrary function in f ∈ PH(β, L
(1)
β ) such that

f(x) = 1 ∧ 1

100q1mh
, ∀x ∈ [0, 1/2].

Let T be the set of i ∈ S for which xi ∈ [q1h, 1/2− q1h].

Case 1: |T | ≥ m
(

1 ∧ 1
100q1mh

)
. Since k ≥ 0, we have

‖f̂X1[0,1/2]‖1 ≥
0.9|T |
m

≥ 0.9

(
1 ∧ 1

100q1mh

)
.

On the other hand,

‖f1[0,1/2]‖1 ≤
1

2

(
1 ∧ 1

100q1mh

)
,

therefore,

‖(f̂X − f)1[0,1/2]‖1 ≥ 0.4

(
1 ∧ 1

100q1mh

)
.

Case 2: |T | < m
(

1 ∧ 1
100q1mh

)
. Define

γ := 0.1

(
1 ∧ 1

100q1mh

)
and

q2 :=
0.02

h
.

Note that to verify (37) we only need to consider the event of h ≤ 0.02a

log( mq1
0.001a∨

10
a )
∧ 1, in which case∫

|t|>q2
k(t)dt ≤ 1

a
exp(−aq2)

≤ 1

a
·
(

0.001a

mq1
∧ 0.1a

)
≤ 1

a
·
(

0.001a

q1mh
∧ 0.1a

)
= 0.1(1 ∧ 1

100q1mh
)

= γ.

Moreover since γ ≤ 0.1 we see that q2 ≥ q1. Now define

V := [2hq2, 1/2− 2hq2] \
⋃
j∈T

[xj − q1h, xj − q1h].

Then for j /∈ T , we have ∫
V

1

h
k

(
xj − t
h

)
dt ≤ γ

while for j ∈ T we have ∫
V

1

h
k

(
xj − t
h

)
dt ≤ 0.1.



Thus,

‖f̂X1V ‖1 ≤
0.1|T |
m

+ γ ≤ 0.2

(
1 ∧ 1

100q1mh

)
.

On the other hand, by the union bound we see that the Lebesgue measure of V is at least

1

2
− 4q2h− 2q1h|T | ≥ 0.5− 4q2h− 0.02 ≥ 0.4

where we used the fact that q2h = 0.02. Then

‖f1V ‖1 ≥ 0.4

(
1 ∧ 1

100q1mh

)
and hence

‖(f̂X − f)1[0,1/2]‖1 ≥ ‖(f̂X − f)1V ‖1 ≥ 0.2

(
1 ∧ 1

100q1mh

)
.

This concludes the proof of (37).

The second step is to show that for given m and h, we have

inf
S:|S|≤m

sup
f∈PH(β,L)

E‖f̂unifS − f‖1 ≥
1

4

(
b(h ∧ 1)

logm

)β
− 1

bm2
(38)

sufficiently large m and L to be determined later, and 0 < b <∞ is such that

F [k](ω) ≤ 1

b
exp(−bω), ∀ω ∈ R

whose existence is guaranteed by the assumption of the theorem. Let φ be a smooth, even, nonnegative function
supported on [−1/2, 1/2] satisfying

∫
[−1/2,1/2]

φ = 1. Define

fε(t) := φ(t)

(
cε + εβ sin

t

ε

)
where cε > 0 is chosen so that

∫
[−1/2,1/2]

fε = 1. Then limε→0 cε = 1, and in particular fε ≥ 0 when ε < ε(φ, β)

for some ε(φ, β). Moreover we can find L
(2)
β <∞ such that fε ∈ PH(β, L

(2)
β ) for all ε < ε(φ, β). Now

‖fε − f̂X‖1 ≥ |F [fε](1/ε)−F [f̂X ](1/ε)|

≥

∣∣∣∣∣
∫

[−1/2,1/2]

fε(t)e
−it/εdt

∣∣∣∣∣−
∣∣∣∣F [k](

h

ε
)

∣∣∣∣
≥

∣∣∣∣∣
∫

[−1/2,1/2]

fε(t) sin
t

ε
dt

∣∣∣∣∣−
∣∣∣∣F [k](

h

ε
)

∣∣∣∣
= εβ

∣∣∣∣∣
∫

[−1/2,1/2]

φ(t) sin2 t

ε
dt

∣∣∣∣∣−
∣∣∣∣F [k](

h

ε
)

∣∣∣∣ (39)

where (39) used the fact that φ is even. Since limε→0

∫
[−1/2,1/2]

φ(t) sin2 t
εdt = 1

2 , there exists ε′(φ) such that∫
[−1/2,1/2]

φ(t) sin2 t

ε
dt ≥ 1

4

for any ε ≤ ε′(φ). Now define

ε′′(h,m) =
b(h ∧ 1)

2 logm
.
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There exists m(φ, β, b) < ∞ such that suph>0 ε
′′(h,m) < ε(φ, β) ∧ ε′(φ) whenever m ≥ m(φ, β, b). With the

choice of ε = ε′′(h,m), we can continue lower bounding (39) as (for m ≥ m(φ, β, b)):

1

4

(
b(h ∧ 1)

logm

)β
− 1

bm2
.

Finally, we collect the results for step 1 and step 2. First observe that the main term in the risk in step 1 can
be simplified as (

1 ∧ 1

100q1mh

)
1

{
h ≤ 0.02a

log
(
mq1

0.001a ∨
10
a

) ∧ 1

}

=
1

100q1mh
∧ 1 {A} (40)

where A denotes the event in the left side of (40).

Thus up to multiplicative constant depending on k, β, we can lower bound the risk by taking the max of the
risks in the two steps: (

1

mh
∧ 1{A}

)
∨

((
b(h ∧ 1)

logm

)β
− 1

bm2

)
(41)

whenever L ≥ Lβ := L
(1)
β ∨L

(2)
β . We can use the distributive law to open up the parentheses in (41). By checking

the h > m−
1
β and h ≤ m−

1
β cases respectively, it is easy to verify that

1

mh
∨

((
b(h ∧ 1)

logm

)β
− 1

bm2

)
= Ω

(
m−

β
β+1

logβm

)
.

Next, if A is true, we evidently have

1{A} ∨

((
b(h ∧ 1)

logm

)β
− 1

bm2

)
= 1 = Ω

(
m−

β
β+1

logβm

)
.

If A is not true, then h > 0.02a

log( mq1
0.001a∨

10
a )
∧ 1, and we have

1{A} ∨

((
b(h ∧ 1)

logm

)β
− 1

bm2

)
=

((
b(h ∧ 1)

logm

)β
− 1

bm2

)
= Ω

(
log−2βm

)
= Ω

(
m−

β
β+1

logβm

)
.

In either case the risk with respect to L1 is Ω

(
m
− β
β+1

logβm

)
. It remains to convert this to a lower bound in L2.

We consider two cases. First note that by the fast decay condition on the Fourier transform, k ∈ C1. Let B = Bk
denote a constant such that

sup
x∈[−1/2,1/2]

|k′(x)| ≤ B. (42)

Set ∆ = B1/2 ∨ k(0) ∨ 1.

Case 1: h ≤ ∆.

Let U = {|y| ≥ 1
2 + cβ,∆,a logm}, and let U c = R\U . If h ≤ ∆, then because Xi ∈ [−1/2, 1/2] and by the

exponential decay of k,
‖f̂X(y)1U‖1 ≤ m−2



for cβ,∆,a sufficiently large. Thus by Cauchy–Schwarz,

‖(f̂X − f)1Uc‖2 ≥ c′β,∆,a(logm)−1/2‖(f̂X − f)1Uc‖2

= c′β,∆,a(logm)−1/2
(
‖(f̂X − f)‖1 − ‖(f̂X − f)1U‖1

)
≥ c′β,∆,a(logm)−1/2

(
cβ,k

(
m−

β
β+1

logβm

)
−m−2

)

= Ω

(
m−

β
β+1

logβ+ 1
2 m

)

Case 2: h ≥ ∆

In this case, k(Xi − y) is nearly constant for all i. By (42) and Taylor’s theorem,∣∣∣∣k(0)− k
(
Xi − y
h

)∣∣∣∣ ≤ 2B

for all y ∈ [−1/2, 1/2] and for all i. Hence, for all y ∈ [−1/2, 1/2], using h ≥ ∆,

f̂X(y) =
1

mh

m∑
i=1

k

(
Xi − y
h

)
≤ 1

h
(k(0) + 2B) ≤ 3.

For Lβ large enough, we see that for the function f ∈ PH(β, Lβ) with f |[0, 1
100 ] ≡ 4,

‖f̂X − f‖2 ≥ ‖(f̂X − f)1[0, 1
100 ]‖1 = Ω(1).

4 PROOFS FROM SECTION 5

4.1 Proof of Theorem 7

The result is restated below.

Theorem. Let ks denote the kernel from Section 3 of the main text. The algorithm of Phillips & Tai (2018)

yields in polynomial time a subset S with |S| = m = Õ(n
β+d
2β+d ) such that the uniformly weighted coreset KDE ĝS

satisfies

sup
f∈PH(β,L)

E‖f − ĝS‖2 ≤ cβ,d,L n−
β

2β+d .

Proof. Here we adapt the results in Section 2 of Phillips & Tai (2018) to our setting where the bandwidth
h = n−1/(2β+d) is shrinking. Using their notation, we define Ks(x, y) = ks

(
x−y
h

)
and study the kernel discrepancy

of the kernel Ks. First we verify the assumptions on the kernel (bounded influence, Lipschitz, and positive
semidefiniteness) needed to apply their results.

First, the kernel Ks is bounded influence (see Phillips & Tai, 2018, Section 2) with constant cK = 2 and δ = n−1,
which means that

|Ks(x, y)| ≤ 1

n

if |x− y|∞ ≥ n2. This follows from the fast decay of κs.

Note that if x and y differ on a single coordinate i, then

|ks(x)− ks(y)| ≤

∣∣∣∣∣∣c(xi − yi)
∏
j 6=i

κs(xj)

∣∣∣∣∣∣ ≤ c |xi − yi|
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because |κs(x)| ≤ ‖ψ‖1 for all x and the function κs is c-Lipschitz for some constant c. Hence by the triangle
and Cauchy–Schwarz inequalities, the function ks is Lipschitz:

|ks(x)− ks(y)| ≤ dck |x− y|1 ≤ d
3/2cκ |x− y|2 .

Therefore the kernel Ks(x, y) is Lipschitz (see Phillips & Tai, 2018) with constant CK = d3/2cκh
−1. Moreover,

the kernel Ks is positive semidefinite because the Fourier transform of κs is nonnegative.

Given the shrinking bandwidth h = n−1/(2β+d), we slightly modify the lattice used in Phillips & Tai (2018,
Lemma 1). Define the lattice

L = { (i1δ, i2δ, . . . , idδ) | ij ∈ Z} ,
where

δ =
1

cκd2nh−1
.

The calculation at the top of page 6 of Phillips & Tai (2018, Lemma 1) yields

disc(X,χ, y) :=

∣∣∣∣∣
n∑
i=1

χ(Xi)Ks(Xi, y)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

χ(Xi)Ks(Xi, y0)

∣∣∣∣∣+ 1

where y0 is the closest point to y in the lattice L, and χ assigns either +1 or−1 to each element ofX = X1, . . . , Xn.
Moreover, with the bounded influence of Ks, if

min
i
|y −Xi|∞ ≥ n

2,

then

disc(X,χ, y) =

∣∣∣∣∣
n∑
i=1

χ(Xi)Ks(Xi, y)

∣∣∣∣∣ ≤ 1.

On defining
LX = L ∩ {y : min

i
|y −Xi|∞ ≤ n

2},

we see that
max
y∈Rd

disc(X,χ, y) ≤ max
y∈LX

disc(X,χ, y) + 1

for all signings χ : X → {−1,+1}. This is precisely the conclusion of Phillips & Tai (2018, Lemma 1).

This established, the positive definiteness and bounded diagonal entries of Ks and Phillips & Tai (2018, Lemmas
2 and 3) imply that

discKs = O(
√
d log n).

Given ε > 0, the halving algorithm can be applied to Ks as in Phillips & Tai (2018, Corollary 5) to yield a

coreset XS of size m = O(ε−1
√
d log ε−1) such that

‖ 1

n

n∑
j=1

Ks(Xj , y)− 1

m

∑
j∈S

Ks(Xj , y)‖∞ ≤ ε.

Rescaling by h−d, we have

‖f̂ − f̂unifS ‖∞ = ‖ 1

n

n∑
j=1

ks(Xj , y)− 1

m

∑
j∈S

ks(Xj , y)‖∞ ≤ εh−d.

Recall from Section 2.2 of this Supplement that f̂ attains the minimax rate of estimation on PH(β, L). Thus

setting ε = hdn−β/(2β+d) we get a coreset of size Õd(n
β+d
2β+d ) that attains the minimax rate cβ,d,L n

−β/(2β+d), as
desired. Moreover, by the results of Phillips & Tai (2018), this coreset can be constructed in polynomial time.
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