
Di↵erentially Private Analysis on Graph Streams

A Related Work and Sliding Window Algorithm

Di↵erentially private graph analysis has received a lot of attention in the static graph setting with e�cient
algorithms known for many functions under edge-level privacy Eliáš et al. (2020); Gupta et al. (2012); Blocki
et al. (2012); Hay et al. (2010); Xiao et al. (2014); Raskhodnikova and Smith (2016). These algorithms utilize
various techniques including, but not limited to, multiplicative weight updates Gupta et al. (2012), random
projections Blocki et al. (2012, 2013), private mirror descent Eliáš et al. (2020), and network flow Kasiviswanathan
et al. (2013); Raskhodnikova and Smith (2016). While these techniques are provably e�cient and work well in
the static setting, it is not clear how to extend them to a more dynamic setting such as a sliding window model,
even for most basic graph analysis.

In static setting, an important class of graph problems is estimating cut functions such as cut queries, Max-Cut,
Min-Cut, and Sparsest-Cut. The question of privately answering cut functions on a graph was first explored
by Gupta et al. (2012) and recently improved by Eliáš et al. (2020). Their algorithms are based on an additive
noise mechanism, which itself cannot guarantee edge weights to be positive. To circumvent this, Gupta et al.
(2012) makes use of linear programming techniques and Eliáš et al. (2020) make use of noisy mirror descent.
However, it is not known whether these algorithms or techniques can be extended to spectrum-related analysis,
a generalization of cut function, on graphs. Finally, the output of Dwork et al. (2014) is a full-rank matrix that
may not even be positive semidefinite, let alone Laplacian of a graph. In other words, it cannot be used for
several applications considered in this paper.

Private approximation of spectrum of graphs was subsequently addressed by Blocki et al. (2012). They showed
that Johnson-Lindenstrauss transform preserves di↵erential privacy under certain conditions on the spectrum
of the graph and use it on the edge-incidence matrix of the input graph. Their approach outputs a positive
semidefinite matrix that approximately preserves the spectrum of Laplacian of the graph. However, the output
matrix may not correspond to the Laplacian of a graph since random projections do not preserve that (see
Section 1.2 in Cohen et al. (2017) for more discussion). While this allows us to calculate the cut function for a
given subset of the vertex set, it is not clear how to find the partitioning of vertices that induce Max-Cut or
Sparsest-Cut with optimal approximation ratio. This is because the existing approximation algorithms assume
that the edge weights of the graph are non-negative2, which is not guaranteed by the Johnson-Lindenstrauss
transform.

In a recent work, Arora and Upadhyay (2019) gave a polynomial-time di↵erentially private algorithm to output
spectral sparsification of graphs. Their approach is to estimate the e↵ective resistance privately and then sample
edges from a graph overlayed with an appropriately weighted complete graph. While e�cient, their technique is
arguably complicated and less implementation friendly.

Moving on to the dynamic setting, to the best of our knowledge, there has been no prior work on problems
arising in private graph analysis in this setting. In sliding window setting, Bolot et al. Bolot et al. (2013) (for
counting queries), Chan et al. Chan et al. (2012) and Upadhyay Upadhyay (2019) (estimating heavy hitters)
have focused on private data analysis. However, our work and approach are unrelated to their work.

Some work have studed degree distribution and the number of high degree nodes in the continual release
model Dwork et al. (2010a); Song et al. (2018). Similarly, with recent advances in dynamic graph sparsifica-
tion Kapralov et al. (2019); Kyng et al. (2017), Upadhyay Upadhyay (2013) demonstrated a way for computing
cut queries. However, these approaches consider the entire data stream to be useful, whereas we consider only
the last W updates to be useful.

Note that privacy is with respect to the entire stream while accuracy is with respect to the sliding window.
There are some closely related privacy definitions: continual release model Dwork et al. (2010a) and pan-privacy
streaming model Dwork et al. (2010b) are accurate for entire stream and privacy with expiration Bolot et al.
(2013) classify only the current window as private.

2For Max-Cut, the approximation ratios achieved by SDP based algorithm when edge weights range over real or
are assumed to be non-negative are remarkably di↵erent. When weights are non-negative, one has constant factor
approximation Goemans and Williamson (1995); when weights are real (a problem known as quadratic programming
problem), one has O(log(n)) approximation Charikar and Wirth (2004) with tight integrality gap Alon et al. (2006); Khot
et al. (2007).

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

B Notation and terminology

We use the notation R to denote the space of real numbers and N to denote the space of natural numbers.

Linear algebra. The space of n-dimensional vectors over reals is denoted Rn. The set of non-negative vectors
(also known as non-negative orthant) and the set of strictly positive vectors in Rn are denoted Rn

+ and Rn

++,
respectively. For a vector x, we let x> denote the transpose of the vector. We reserve the letters x, y, z to denote
real vectors in Rn. The entries of a vector x 2 Rn is denoted as follows:

x =
�
x[1], x[2], . . . , x[n]

�>
.

We let {ēi : i 2 [n]} (where [n] := {1, 2, . . . , n}) denote the set of standard basis vectors of Rn. That is,

ēi[j] =

⇢
1 if i = j,

0 if i 6= j.

We let the vector of all 1’s denoted by ē, which can be expressed in terms of basis vectors as follows: ē =
ē1 + ē2 + · · ·+ ēn. For two vectors x, y 2 Rn, their inner product is denoted hx, yi and is defined as

hx, yi :=
nX

i=1

x[i]y[i].

The Euclidean norm of a vector x 2 Rn is defined as kxk2 :=
p
hx, xi.

The set of real n⇥m matrices is denoted Rn⇥m. For a real matrix A, the transpose of it is denoted A
> and the

entries are denoted A[i, j]. The linear mapping

vec : Rn⇥m
! Rnm

denotes the vectorization of the matrix and is defined on matrices eie>j as

vec
�
ēiē

>

j

�
= ēi ⌦ ēj

where ēi ⌦ ēj 2 Rnm is tensor product of ēi and ēj . In this paper, we will mostly be working with matrices in
Rn⇥n. For a matrix A 2 Rn⇥n, Tr(A) is sum of the diagonal entries of A. For two matrices A,B 2 Rn⇥n, their
inner product is denoted hA,Bi and is defined hA,Bi := Tr

�
A

>
B
�
. The following special classes of matrices are

relevant to this paper.

1. A real matrix A 2 Rn⇥n is symmetric if A = A
>. The set of symmetric matrices is denoted Sn and forms a

vector space over R. The eigenvalues of symmetric matrices are real.

2. A symmetric matrix A 2 Sn is positive semidefinite if all of its eigenvalues are non-negative. The set of such
matrices is denoted Sn+. The notation A ⌫ 0 indicates that A is positive semidefinite and the notations A ⌫ B

and B � A indicate that A� B ⌫ 0 for symmetric matrices A and B. We also use the notation A 6⌫ B and
B 6� A for A,B 2 Sn to say that A�B 62 Sn+.

3. A positive semidefinite matrix A 2 Sn+ is positive definite if all of its eigenvalues are strictly positive. The set
of such matrices is denoted Sn++. The notation A � 0 indicates that A is positive definite and the notations
A � B and B � A indicate that A�B � 0 for symmetric matrices A and B.

4. A matrix U 2 Rn is orthonormal if UU
> = U

>
U = 1n, where 1n is the identity matrix. We will drop the

subscript n from 1n when the dimension is understood from the context.

The eigenvalues of any symmetric matrix A 2 Sn are denoted by (�1(A), . . . ,�n(A)) sorted from largest to
smallest: �1(A) � �2(A) � · · · � �n(A). When discussing the largest and smallest eigenvalues, we alternately
use the notation �max(A) and �min(A) to denote �1(A) and �n(A), respectively. Similarly, the singular values
of A is denoted by the tuple (s1(A), . . . , sn(A)) sorted from largest to smallest: s1(A) � s2(A) � · · · � sn(A).
We use the notation smax(A) and smin(A) to denote the largest and smallest singular values of A, respectively.
It is a well known fact that for any symmetric matrix A

smax(A) = max {|�max(A)|, |�min(A)|} and smin(A) = min {|�max(A)|, |�min(A)|} .

Di↵erentially Private Analysis on Graph Streams

For a matrix A 2 Rn⇥m, the singular values of A is given by the tuple
✓q

�1(A>A),
q

�2(A>A), . . . ,
q
�n(A>A)

◆
.

The maximum number of non-zero singular values of A 2 Rn⇥m is min{n,m}. The spectral norm of a matrix
A 2 Rn⇥m is defined as

kAk2 = max{kAxk2 : x 2 Rm
, kxk2 = 1}.

The spectral norm of A is equal to the largest singular value of A.

Two types of matrix decomposition are used in this paper. The first matrix decomposition is spectral decompo-
sition (or eigenvalue decomposition). It means that a symmetric matrix A 2 Sn can be written as

A = U⇤U> =
nX

i=1

�i(A)xix
>

i

where U is an orthonormal matrix, ⇤ is a diagonal matrix with eigenvalues of A on its diagonal, and the set
{xi 2 Rn : i 2 [n]} are set of orthonormal vectors known as eigenvectors of A. We note that orthonormal matrices
can also be decomposed in above form. The second matrix decomposition that is relevant to this paper is singular
value decomposition (or SVD for short). Any real matrix A 2 Rn⇥m can be decomposed as follows:

A = USV
> =

min{n,m}X

i=1

si(A)xiy
>

i
.

Here, U 2 Rn⇥n and V 2 Rm⇥m are orthonormal matrices, S is a diagonal matrix with diagonal entries singular
values of A, and the sets {xi 2 Rn : i 2 min{n,m}} and {yj 2 Rm : j 2 min{n,m}} are orthonormal sets of
vectors.

Probability distributions. For a random variable X 2 R, we denote the mean and variance of X by E[X]
and Var(X), respectively. The symbols µ and �

2 are reserved to represent these quantities. That is,

µ = E[X] and �
2 = Var(X) = E

h
(X � E[X])2

i
.

At various points in this paper, we refer to moments of random variables. The k-th moment of a random variable
(if it exists) is simply E

⇥
X

k
⇤
. The existence of k-th moment of a random variable means that E

⇥
|X|

k
⇤
<1 and

E
⇥
X

k
⇤
2 R.

We say that a random variable X 2 R has Gaussian (or normal) distribution if its probability density function
is given by

p(x) =
1

p
2⇡�

exp

✓
�
(x� µ)2

2�2

◆
.

We denote Gaussian distribution by N
�
µ,�

2
�
and write X ⇠ N

�
µ,�

2
�
when X has Gaussian distribution.

Apart from the above mentioned distribution, we also make use of the an important family of distributions,
known as sub-Gaussian distribition. A random variable X 2 R is said to be sub-Gaussian if it has zero mean
and its moment generating function satisfies

E [exp(aX)]  exp
�
�
2
a
2
/2
�

for all a 2 R.

The family of sub-Gaussian are denoted SG(0,�2). We slightly abuse notation and write X ⇠ SG
�
0,�2

�
to

denote that the random variable X has a sub-Gaussian distribution. The notation X ⇠ SG
�
µ,�

2
�
represent

families of distributions X such that X � µ ⇠ SG
�
0,�2

�
.

Throughout this paper, we discuss and work with random matrices. They are simply matrices with matrix
entries drawn from random variables that may or may not be independent. The following is a well known fact
about non-asymptotic bounds on singular values of random matrices.

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

Theorem 7 (Vershynin Vershynin (2012)). Let A 2 Rn⇥m be a random matrix whose entries drawn from
independent sub-Gaussian random variables with sub-Gaussian moments bounded by 1. Then for t > 0,

Pr
⇥
smax(A) � Cg(

p
n+
p
m) + t

⇤
 e

�cgt
2

where cg and Cg are positive absolute constants.

Di↵erential privacy. Roughly speaking, di↵erential privacy is a robust guarantee of privacy which makes
confidential data available for accurate analysis while simultaneously preserving the privacy of individual data.
Achieving these two requirements at the same time appears to be paradoxical. On one hand, we expect no or
limited information leakage about an individual. And on the other hand, we expect that the database answers
to the queries with high accuracy.

One of the key features of di↵erential privacy is that it is preserved under arbitrary post-processing, i.e., an
analyst, without additional information about the private database, cannot compute a function that makes an
output less di↵erentially private. In other words,

Lemma 1 (Dwork et al. (2006b)). Let M(D) be an (✏, �)-di↵erential private mechanism for a database D , and
let h be any function, then any mechanism M

0 := h(M(D)) is also (✏, �)-di↵erentially private for the same set
of tasks.

Let f(·) be a function from a class of �-sensitive functions. The Gaussian mechanism is

M(D, f(·), ") := f(D) + (X1, . . . , Xk),

where Xi ⇠ N

✓
0,

�2

"2
log(5/4�)

◆
.

Dwork et al. (2006a) proved the following.

Theorem 8 (Gaussian mechanism Dwork et al. (2006a)). Let x, y 2 Rn be any two vectors such that kx�yk2  c.
Let g 2 Rn be a random vector whose entries are sampled from independently identically distributed Gaussian
distribution as follows:

g[i] ⇠ N (0,�2) 8i 2 [n] where � =
c

"

s

log

✓
1

�

◆
.

Then for any S ⇢ Rn, Pr[x+ g 2 S]  exp(") Pr[y + g 2 S] + �.

Graph preliminaries. For a weighted graph G = (V,E,w), we let n denote the size of the vertex set V and m

denote the size of the edge set E. When the graph is uniformly weighted (i.e., each edge weight is either same
or 0), then the graph is denoted G = (V,E). Without loss of generality, one can assume that all edge weights
are 1. The Laplacian of a graph is defined as the matrix LG with entries

LG [u, v] = �w(u, v) if u 6= v and LG [u, u] =
X

v2V \{u}

w(u, v).

Here, w(u, v) is the weight on the edges between vertices u and v. If (u, v) /2 E, then w(u, v) = 0. When the
weights associated with the edges of graph are non-negative, the Laplacian of the graph is positive semidefinite.
Moreover, let W 2 Sm+ be a diagonal matrix with non-negative edge weights on the diagonal. If we define an
orientation of the edges of graph, then we can define the signed edge-vertex incidence matrix AG 2 Rm⇥n as
follows:

AG [e, v] =

8
<

:

1 if v is e’s head,
�1 if v is e’s tail,
0 otherwise.

Simple algebra establishes that

LG = A
>

G
WAG = E

>
E

where E =
p
WAG is called the weighted signed edge-vertex incidence matrix.

Di↵erentially Private Analysis on Graph Streams

The Laplacian of graphs with non-negative weights are denoted by Ln
⇢ Sn+. That is,

Ln =

8
<

:X : X[i, j]  0 8i, j 2 [n] : i 6= j and
nX

j=1

X[i, j] = 0 8i 2 [n]

9
=

; . (4)

The set of Laplacian matrices forms a closed convex cone. It is a convex cone because if X,Y 2 Ln, then
�X 2 Ln and X + Y 2 Ln. We also define a convex relaxation of Ln paratemerized by % � 0 as below:

Ln(%) =

8
<

:X : X[i, j]  0 8i, j 2 [n] : i 6= j and 0 
nX

j=1

X[i, j]  % 8i 2 [n]

9
=

; . (5)

It is not hard to see that Ln(0) = Ln and Ln(%) ⇢ Sn+. We use the notation AG [AH to denote the graph whose
edge sets is the union of edges in G and H. We slightly abuse notation and write AG [e to denote a graph formed
by adding the edge e to the graph G.

We study a wide variety of graph related problems. We formally define them next. The first and most basic
problem that we study is to answer cut queries privately.

Definition 3 ((S, T)-cut). For two disjoint subsets S and T , the size of the cut (S, T)-cut is denoted �S,T (G)
and defined as

�S,T (G) :=
X

u2S,v2T

w (u, v) .

When T = V \S, we denote �S,T (G) as �S(G).

The partitioning of vertex set V of a graph G in to two disjoint subsets S and V \S based on optimizing �S(G)
leads to two widely studied NP-hard combinatorial optimization problems on graphs.

Definition 4 (Max-Cut). Given a graph G = (V,E,w), the maximum cut of the graph is

max
S✓V

{�S(G)} = max
S✓V

8
<

:
X

u2S,v2V \S

w (u, v)

9
=

; .

Let OPTmax(G) denote the maximum value.

Based on semidefinite programming, Goemans and Williamson Goemans and Williamson (1995) showed that
Max-Cut can be approximated within a factor of ↵GW where ↵GW ⇡ 0.878567.

Theorem 9 (Goemans and Williamson Goemans and Williamson (1995)). Let ⇢ > 0 be an arbitrary small
constant. For an n-vertex graph G, there is a polynomial-time algorithm that produces a set of nodes S satisfying

�S(G) = (↵GW � ⇢)OPTmax(G),

where OPTmax(G) is the optimal max-cut.

Assuming unique games conjecture, the approximation factor ↵GW is proved to be the optimal Khot et al. (2007).

When privacy is a concern, it is not possible to achieve pure multiplicative approximation factor. One can only
hope for a “mixed approximation”. This motivates us to study the following variant of Max-Cut:

Definition 5 ((a, b)-Max-Cut). Given a graph G = (V,E,w), the (a, b)-Max-Cut of the graph requires to
output a partition of nodes (S, V \S) such that

�S(G) � a · OPTmax(G)� b,

where OPTmax(G) denote the maximum value.

The goal of (a, b)-Max-Cut is to minimize the value of b for a given a.

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

Definition 6 (Sparsest-Cut). Given a graph G = (V,E), the sparsest-cut of the graph is

min
S✓V

⇢
�S(G)

|S|(|V |� |S|)

�
.

Let OPTsparsest(G) denote the minimum value.

Definition 7 (Edge-Expansion). Given a graph G = (V,E), the edge-expansion of the graph is

min
S✓V |S|n/2

⇢
�S(G)

|S|

�
.

Let OPTedge(G) denote the minimum value.

Since n/2  |S|  n, up to a factor 2 computing the Sparsest-Cut is the same as computing the Edge-

Expansion of the graph.

Arora et al. (2009) showed an e�cient algorithm that outputs a partitioning of vertices that achieve O(
p

log(n))-
approximation to Sparsest-Cut problem Arora et al. (2009).

Theorem 10 (Arora et al. Arora et al. (2009)). For an n-vertex graph G, there is a polynomial-time algorithm
that produces a set of nodes S satisfying

�S(G) = O(
p
log(n))OPTsparsest(G),

where OPTsparsest(G) is the optimal sparsest cut.

As in the case of Max-Cut, when privacy is a concern, it is not possible to achieve pure multiplicative approx-
imation, i.e., we can only hope for a mixed approximation. This motivates us to study the following variant of
Sparsest-Cut and Edge-Expansion:

Definition 8 ((a, b)-Sparsest-Cut). Given a graph G = (V,E,w), the (a, b)-Sparsest-Cut of the graph
requires to output a partition of nodes (S, V \S) such that

�S(G)

|S|(n� |S|)
 a · OPTsparsest(G) + b,

where OPTsparsest(G) denote the minimum value.

Definition 9 ((a, b)-Edge-Expansion). Given a graph G = (V,E,w), the (a, b)-Edge-Expansion of the graph
requires to output a partition of nodes (S, V \S) such that

�S(G)

|S|
 a · OPTedge(G) + b,

where OPTedge(G) denote the minimum value.

The goal of (a, b)-Sparsest-Cut, and (a, b)-Edge-Expansion is to minimize the value of b for a given a.

One of the problems that we concentrate on in this paper in context of di↵erential privacy is spectral sparsification
of graphs Spielman and Teng (2011). It is based on spectral similarity of Laplacian of graphs.

Definition 10 (⇢-spectral sparsification of graphs Spielman and Teng (2011)). For a weighted graph G =
(V,E,w) where edge weights are non-negative, a graph eG = (V, eE, ew) is called ⇢-spectral sparsification of G if

(1� ⇢)LeG � LG � (1 + ⇢)LeG .

Spectral sparsification of graphs has been widely studied Allen-Zhu et al. (2015); Lee and Sun (2015); Spielman
and Srivastava (2011); Spielman and Teng (2011). We use the following result given by Lee and Sun Lee and
Sun (2015):

Theorem 11 (Lee and Sun (2015)). Given a graph H and an approximation parameter ⇢ > 0, there is an
algorithm Sparsify such that the graph eH formed as eH Sparsify (H) is ⇢-spectral sparsification of H.
Further, Sparsify outputs eH in O(m) time.

Di↵erentially Private Analysis on Graph Streams

Definition 11 ((⇢, ⇣,#)-spectral sparsification of graphs). For a weighted graph G = (V,E,w) where edge weights
are non-negative, a graph eG = (V, eE, ew) is called (⇢, ⇣,#)-spectral sparsification of G if

(1� ⇢)LeG � ⇣LKn � LG � (1 + ⇢)LeG + #LKn .

In above, ⇣ and # can be thought of as the distortion we are willing to accept to preserve privacy. Ideally we
would like ⇣ and # to be as small as possible.

C Proof of Main Theorem for Gaussian case

In this section, we prove the main theorem when instantiated with normal Gaussian distribution. This su�ces
for all our di↵erential privacy results. We prove the more general result for sub-Gaussian random variables in
Section E. Let smax(A) denote the largest singular value of a matrix A and smin(A) denote the smallest non-zero
singular value of A. For Gaussian case, we will use the following classical result by Bai and Yin Bai and Yin
(2008).

Theorem 12 (Bai-Yin’s law Bai and Yin (2008); Tao (2012)). Let G be an n ⇥ n symmetric random matrix
whose upper triangular entries are independent copies of a random variable with zero mean, unit variance, and
finite fourth moment. Then with probability 1�e

�cn, smax(G)  c1
p
n and smin(G) � c2/

p
n for some constants

c, c1, c2 > 0.

For the ease of the readers, we restate the theorem for the Gaussian case.

Theorem 13 (Spectral theorem for Gaussian graphs). Let G be a complete graph on n vertices with edge weights
identical and independent copies of N (0, 1). Then

Pr
h
smax(LG)  C

p
n log(n)

i
� 1� 3e�cn

for some constants C, c > 0.

Proof. First note that we can write the Laplacian of graphs as LG = G�D+S, where G be the random matrix
whose entries are sampled i.i.d. from N (0, 1), D and S are diagonal matrices formed in the following manner:

D[i, i] = G[i, i], S[i, i] =
X

j 6=i

G[i, j].

Now, using subadditivity of spectral norm, we have smax(LG)  smax(G) + smax(D) + smax(S). In particular,
smax(G)  2

p
n with probability 1 � e

�c1n for Gaussian random variable using Theorem 12. For the second
term, again using Theorem 12, we have with probability 1� e

�c1n,

smax(D) = max
ei

|e
>

i
Dei| = max

ei

|e
>

i
Gei|

 max
v2Sn�1

|v
>
Gv| = smax(G),

where ei is the i-th standard basis vector. Finally, for the last term, we note that

smax(S)  max
i

������

X

j 6=i

G[i, j]

������
.

The standard Cherno↵-Hoefding bound for the sum of random Gaussian variable gives that with probability
1� e

�c2n, smax(S)  C
p
n log(n). The theorem follows by using union bound.

A direct corollary of the above theorem is as follows:

Corollary 1. Let G be a complete graph on n vertices with edge weights identical and independent copies of
N (0,�2). Then

Pr
h
smax(LG)  C�

p
n log(n)

i
� 1� 3e�cn

for some constants C, c > 0.

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

In our application, we would use the above corollary.

Remark 2. Using Borel Cantelli’s theorem, it is possible to achieve a tighter bound on smax(D) than what is
claimed above (see Exercise 2.5.10 in Vershynin (2018)). However, for our purpose, the above bound su�ces.

D Applications

In this section, we give various applications of our privacy theorem. In Section D.1, we show some applications
in performing di↵erentially private analysis on graphs. In Section D.4, we show its application in signal recovery.

D.1 Di↵erentially Private Graph Analysis

Let kAk2 denote the spectral norm of a matrix A. We utilize the fact that kLRk2 = O(�
p
n log(n)) if the edge

on the graph R is sampled i.i.d. from N (0,�2) for various di↵erentially private analysis. In particular, this
implies that

LR � O

�

r
log(n)

n

!
LKn ;�LR � O

�

r
log(n)

n

!
LKn . (6)

This is due to the fact that LR and LKn commute with each other and hence have a spectral decomposition
with same unitary matrix U . Since LRe = LKne = 0 and rest of the eigenvalues of LKn are n, it holds that

LR �
kLRk2

n
LKn and � LR �

kLRk2

n
LKn .

Since di↵erential privacy is preserved under arbitrary post-processing Dwork and Roth (2014), this result can
be used in many graph problems. In what follows, we focus on a few key examples of the application of our
results. In particular, we show its application to compute di↵erentially private approximation to cut related
tasks, learning functions on graphs, etc.

We first state the following about Priv-Graph.

Theorem 14 (Di↵erential privacy of Priv-Graph). Let G be an n vertex graph. Then eG Priv-

Graph(G; (✏, �)) satisfy (✏, �)-di↵erential privacy.

Proof. Let G and G
0 be two neighboring graphs that di↵ers in exactly one edge e := (i, j) by a weight � 2 (0, 1].

Let vec (AG) and vec (AG0) be the vectorization of adjacency matrices of G and G
0, respectively. Then

vec (AG)� vec (AG0) = �(ēi ⌦ ēj + ēj ⌦ ēi).

It follows from above that kvec (AG)� vec (AG0)k2 = �
p
2. The proof of the theorem follows by invoking Theo-

rem 8 with � = �

✏

p
2 log(1/�).

Algorithm 7 Priv-Graph (G; (✏, �))

Input: An input graph G = (V,E), privacy parameter (✏, �).
Output: A laplacian of graph LeG .

1: Set � :=
4
p

log(1/�)

✏
.

2: Sample gij ⇠ N (0,�2) for 1  i < j  n.
3: Define a matrix LR 2 Rn⇥n such that

LR[i, j] :=

8
><

>:

gij i < j

gji j < i

�
P

k 6=i
gik i = j.

4: Compute the laplacian, LeG = LG + LR.

5: Output: eG.

Di↵erentially Private Analysis on Graph Streams

Di↵erentially private cut queries. Cut queries are arguably one of the most widely studied graph prob-
lems Blocki et al. (2012); Gupta et al. (2012, 2013); Hardt and Rothblum (2010). Let us consider the case when
we are given a query of the form (S, V \S). Recall that for a cut query S ⇢ V on a graph G, we denote by �S(G)
as the size of the cut, i.e.,

�S(G) =
X

u2S,v2V \S

w (u, v) ,

where wu,v is the weight on the edge between nodes u 2 V and v 2 V . We have the following result:

Theorem 15 ((S, V \S)-cut). Let G be the input graph. Then Priv-Graph is an (✏, �)-di↵erentially private
algorithm such that, simultaneously for all S ⇢ V , the output eG Priv-Graph (G; (✏, �)) satisfy:

����S(eG)� �S(G)
���  O

 p
n log(n) log(1/�)|S|

✏

!

with probability 2/3.

There is nothing special about success probability of 2/3. Using standard techniques, one can easily enhance it
to 1� � for arbitrary small � > 0 while incurring accuracy loss by a factor of log(1/�) more that what is stated
in Theorem 15.

We now proceed to contrast the claim of the above theorem with existing results. The current best known
✏-di↵erentially private algorithm by Gupta et al. (2012) takes as input a graph and outputs a graph eG via their
iterative construction framework (and appropriate linear program) to show the following guarantee:

����S(eG)� �S(G)
��� = eO

✓
n
3/2

✏

◆
.

Our result improve upon their guarantee whenever |S| = o(n). Moreover, our algorithm is arguably much simpler.

In the regime of sublinear additive error in n on weighted graphs, the best known di↵erentially private algorithm
is due to Blocki et al. (2012). They achieve the following guarantee:

|estS � �S(G)|↵ · �S(G) +O

0

@

q
n log3(1/�)|S|

↵2✏

1

A

for a small constant ↵ > 0. If the size of the cut is large, i.e., whenever �S(G) � e⌦
⇣p

n

✏

⌘
, the contribution

of �S(G) on estimation error can be very large. Our result improves upon their guarantee by removing the
dependence on cut size and the additive accuracy by 1

↵2 log(1/�).

Finally, the algorithm of Dwork et al. (2014) output a matrix C = LG +N , where N is a Gaussian matrix with
appropriate noise to preserve di↵erential privacy and LG denotes the Laplacian of the input graph, G. For a set
of q cut queries (S, V \S), standard concentration bounds on Gaussian distribution implies that their algporithm

incur an additive error of order O(|S|

✏

p
log(q)). In particular, if we wish to answer all possible cut queries, it

leads to O(|S|

✏

p
n) additive error, asymptotically same as ours. However, as we will shortly see, their result

cannot answer the (S, T) cut query when T 6= V \S.

Proof of Theorem 15. First of all, we note that the proof of di↵erential privacy follows from Lemma 1 and
Theorem 14. It remains to prove the accuracy guarantee of the theorem. By definition, the matrix LR in Priv-

Graph is symmetric and satisfies ē
>
LRē = 0. Moreover, Theorem 23 implies that kLRk2 = O

⇣
�
p
n log(n)

⌘

with high probability. For a subset S ✓ [n], let

�S =
X

i2S

ēi.

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

It is known that for any graph eG, �S(eG) = �
>

S
LeG�S . It follows that

�S(eG) = �
>

S
LeG�S = �

>

S
LG�S + �

>

S
LR�S

= �S(G) + �
>

S
LR�S

and hence
����S(eG)� �S(G)

��� =
���>

S
LR�S

��. It follows from Equation (6) that

���>

S
LR�S

�� = O

�

r
log(n)

n

!
���>

S
LKn�S

��

= O

�
p
log(n)|S| (n� |S|)

p
n

!

= O

⇣
�

p
n log(n)|S|

⌘
.

Setting the value of � gives the desired result as stated in Theorem 15.

Theorem 15 can be extended to general (S, T)-cut queries, when T is not necessarily V \S. We restate the
theorem for cut queries for the ease of readers.

Theorem 16 ((S, T)-cut). Let G be the input graph. Then Priv-Graph is an (✏, �)-di↵erentially private
algorithm such that for any S ⇢ V , the output eG Priv-Graph (G; (✏, �)) satisfy:

����S,T (eG)� �S,T (G)
���  O

 p
log(n) log(1/�)|S||T |

✏
p

|S|+ |T |

!
.

Proof. As in the case of Theorem 15, the privacy proof follows from Lemma 1 and Theorem 14. Consider the
modified graph G

0 with vertex and edge sets

V
0 = S [T and E

0 = {(u, v) : u, v 2 S [T},

respectively. Let LR0 denote the submatrix of LR where rows and columns are indexed from S [T such that
the diagonal entries of LR0 satisfies the following relationship:

LR0 [i, i] = �
X

j2S[T :j 6=i

LR0 [i, j].

Let eG0 be the weighted graph obtained from the output eG Priv-Graph (G; (✏, �)) with vertex and edge
sets coinciding with those of G0. Since the non-diagonal entries of LR0 are identical and independent copies of
N (0,�2), we can use Theorem 23 to conclude that kLR0k = O(m logm) where m = |S[T |. Moreover, (S, T)-cut
on graph G is equivalent to (S, V 0

\S)-cut on subgraph G
0. Hence, from Theorem 15, we have that

����S,T (eG)� �S,T (G)
��� =

����S(eG0)� �S(G
0)
���

= O

✓
�
p
logm|S| (m� |S|)

p
m

◆

 O

�
p
log(n)|S||T |p
|S|+ |T |

!

= O

 p
log(n) log(1/�)|S||T |

✏
p

|S|+ |T |

!
.

This completes the proof of Theorem 16.

To the best of our knowledge, the only other e�cient algorithm that answers general (S, T) cut queries is due
to Gupta et al. (2012). Their algorithm gives an additive error O(

p
n|S| · |T |/✏). That is, we achieve better

accuracy guarantee whenever either |S| or |T | is not a constant factor of n.

Di↵erentially Private Analysis on Graph Streams

Algorithm 8 Priv-Sparsify (G; (✏, �))

Input: An input graph G = (V,E), privacy parameter (✏, �), non private algorithm for spectral sparsification of
a graph, Sparsify(·).

Output: A sparse graph, eG.
1: Compute bG Priv-Graph (G; (✏, �)). Let

��LbG � LG

��
2
= c�

p
n log(n) for some constant c and � =

4
✏

p
log (1/�).

2: Compute L eH LbG +
q

2C log(n) log(1/�)
n✏2

LKn for a positive constant C > 3c.

3: Solve the following semidefinite program to obtain the optimal solution pair
�
�̄, L̄G0

�
:

minimize: �

subject to: L eH � LG0 � �1n,

LG0 � L eH � �1n,

� � 0,

LG0 2 Ln(1/n).

4: Construct Ḡ from L̄G0 by setting weights for each edge (u, v) of Ḡ as �L̄G0 [u, v].
5: Output eG Sparsify (Ḡ).

D.2 Di↵erentially Private spectral sparsification of graphs

Spectral sparsification of graphs is a widely studied algorithmic problem. Roughly speaking, given an input
(possibly) weighted graph G, a spectral sparsification of G is a weighted sparse subgraph (weights are allowed to
be di↵erent) H such that the spectra of G and H are almost same. That is,

(1� ⇢)x>
LGx  x

>
LHx  (1 + ⇢)x>

LGx (7)

for all x 2 Rn, where LG and LH are Laplacian matrices of G and H, respectively. The above relationship implies
that the spectra of output graph lies within [1 � ⇢, 1 + ⇢] of the input graph. One should note that when x is
restricted to be 0/1 vector, then the relationship describes the cut sparsification of graph.

Right after its inception, spectral sparsification of graph has turned out be one of the fundamental notions with
wide range of applications, including but not limited to Laplacian solvers, learning Lipschitz functions on graphs,
etc. Given its importance, it is imperative to study spectral sparsification from di↵erential privacy perspective.
It turns out that one cannot hope to come up with a di↵erentially private algorithm for spectral sparsification of
graph satisfying Equation (7) because the output itself reveals information about eO

�
n/⇢

2
�
edges of the original

graph.

We give a brief overview of the di↵erentially private algorithm for spectral sparsification below. The first step
of the algorithm calls Priv-Graph (G; (✏, �)) to output bG. This step is already di↵erentially private. Since
di↵erential privacy is preserved under arbitrary post-processing, one might think that one can run existing non-
private algorithm for spectral sparsification on the output of Priv-Graph. In particular, one might consider
using any existing algorithms for spectral sparsification Allen-Zhu et al. (2015); Lee and Sun (2015); Spielman
and Srivastava (2011); Spielman and Teng (2011). Any such algorithm (denoted Sparsify in Algorithm 8) takes
as input a graph H and output a graph eH such that eH contains only O

�
n/⇢

2
�
edges and approximates the

spectrum of H.

This approach is not going to work because of following reasons.

1. The output graph bG will potentially have negative weights as the edge weights of this graph is sum of edge
weights of original graph and a random weight drawn from N (0,�2).

2. The Laplacian of bG may not be positive semidefinite (because of potentially negative weights).

These two properties is required to hold for existing spectral sparsification algorithms to work.

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

We first ensure that the Laplacian is positive semidefinite. To this end, we overlay a uniformly weighted complete
graph on Ḡ. The weight is chosen such that the Laplacian of graph after overlaying (denoted eH in Algorithm 8)
is positive semidefinite. This is accomplished in Step 2 of the algorithm Priv-Sparsify (G; (✏, �)). Note that

L eH = LbG +

r
2C log(n) log(1/�)

n✏2
LKn

= LG +

LR +

r
2C log(n) log(1/�)

n✏2
LKn

!
.

Since LG ⌫ 0 and
q

2C log(n) log(1/�)
n✏2

LKn + LR ⌫ 0, it follows that L eH ⌫ 0. While the positive semidefinite

property of eH is satisfied, the overlaying weights of complete graph are not su�ciently large to ensure that
weights of eH is non-negative. Therefore, we still cannot use the algorithm Sparsify.

The issue of negative weights is resolved by solving a semidefinite program described in Step 3. Recall from
Equation (5) that Ln(%) can be expressed as an intersection of cone of positive semidefinite matrices and set of
a�ne equalities and inequalities. That is,

Ln(%) =

8
<

:X : X[i, j]  0 8i, j 2 [n] : i 6= j and 0 
nX

j=1

X[i, j]  % 8i 2 [n]

9
=

; .

Hence the optimization problem described in Step 3 is truly a semidefinite program. Moreover, the input graph
G is already a feasible solution of the SDP with objective value c�

p
n log(n) and hence �  c�

p
n log(n). Given

the optimal solution L̄G0 of the SDP, we have
��L̄G0 � LG

��
2
=
��L̄G0 � L eH + L eH � LG

��
2


��L̄G0 � L eH

��
2
+
��L eH � LG

��
2

 � + c�

p
n log(n).

Hence,
��L̄G0 � LG

��
2
 2c�

p
n log(n). Finally, we ensure that the optimal solution of the SDP exists and attained

as well. This is done for the sake of rigor and we defer to Lemma 5 in Section F for a proof. Step 4 constructs
the actual graph from L̄G0 . Simple algebra shows that

��LḠ � L̄G0
��
2
 % = 1/n (where LḠ is the Laplacian of

Ḡ), and hence

kLḠ � LGk2  O

⇣
�

p
n log(n)

⌘
.

One may ask why we do not optimize over Ln (refer to Equation (4) for definition) in Step 3. While we can
indeed optimize over Ln by working over a smaller subspace, optimizing over Ln(%) allows us to employ SDP
algorithms (such as ellipsoid method or interior-point method based on central path) that requires existence
of feasible solutions that belong to interior of cone of PSD matrices. Moreover, we do not gain any run-time
performance by optimizing over Ln.

We restate our result for spectral sparsification of graphs in a more formal manner next.

Theorem 17 (Di↵erentially private spectral sparsification). Let G be the input graph on n vertices. Let
LKn be the Laplacian of the unweighted complete graph. Then Priv-Sparsify(G; (✏, �)) is a polynomial-time
(✏, �)-di↵erentially private algorithm with respect to presence or absence of an edge. Moreover, eG Priv-

Sparsify(G; (✏, �)) has O(n/⇢2) edges such that, with probability at least 9/10,

(1� ⇢) (LG +
p
c1↵LKn) � LḠ � (1 + ⇢) (LG +

p
c2↵LKn) where ↵ :=

log(n) log(1/�)

n✏2
.

Here c1, c2 are absolute positive constants with c1 < 2C < c2.

Proof. We will analyze the algorithm backwards to prove the theorem. First of all, by spectral sparsification
guarantee, Step 5 ensures that

(1� ⇢)LḠ � LeG � (1 + ⇢)LḠ . (8)

Di↵erentially Private Analysis on Graph Streams

Since
��LḠ � L̄G0

��
2
 % (Step 4), it follows that L̄G0 � %1n � LḠ � L̄G0 + %1n. Step 3 ensures that

L eH � �̄1n � LḠ � L eH + �̄1n.

and hence

L eH � (�̄ � %)1n � LḠ � L eH + (�̄ + %)1n

for �̄  c�
p
n log(n). Now note that ē>

�
aL eH + bLḠ

�
ē = 0 for any choice of a, b 2 R, where ē denotes the vector

of all 1’s as mentioned in Appendix B. This allows us to replace 1n by LKn/n:

L eH �
�̄ � %

n
LKn � LḠ and LḠ � L eH +

�̄ + %

n
LKn .

From Steps 1 and 2, we have the following relationship between L eH and LG .

L eH = LG + LR +

r
2C log(n) log(1/�)

n✏2
LKn .

Here LR is the Laplacian formed by Gaussian random variables as defined in Algorithm 7. We already know

from our analysis that LR satisfies �c�
q

log(n)
n

LKn � LR � c�

q
log(n)

n
LKn . A straightforward calculation yields

the following two PSD inequalities as described in the theorem statement:

LG +
p
c1↵LKn � LḠ � LG +

p
c2↵LKn

where c1 := (2C�2c�1) and c2 := (2C+2c+1). Here we use the fact that �̄  c�
p

n log(n) and % < �
p
n log(n).

Substituting the above relationship for LḠ in Equation (8) finishes the proof of Theorem 17.

As a direct application of this result, we can get the same additive error as in Theorem 15 and 18 at the expense
of a small multiplicative approximation. On the other side, the space and time requirement of the algorithm
improves significantly. This analysis is pretty straightforward and therefore omitted.

D.3 Di↵erentially private combinatorial optimization

Gupta et al. Gupta et al. (2010) initiated the study of di↵erentially private combinatorial optimization. In
particular, they gave a private algorithm for Min-Cut. We extend their work to several NP-hard graph problems
such as Max-Cut, Sparsest-Cut, and Edge-Expansion.

We next state our result for these combinatorial problems. We have to be little careful in applying our privacy
mechanism to estimate Max-Cut and Sparsest-Cut. This is because existing algorithms for these problems
assume that the graph has non-negative weights. To assure that, with high probability, all the weights stays non-
negative after overlaying a complete graph with weights sampled from Gaussian distribution, we use the same
technique as in the case of spectral sparsification: solve an appropriate semi-definite program. Then Theorem 23
allows us to prove the following result:

Theorem 18 (Di↵erentially private combinatorial optimization). Let G be the input graph. Then Priv-

Comb-Opt (G; (✏, �); flag) is a polynomial-time (✏, �)-di↵erentially private algorithm. Further Priv-Comb-Opt

(G; (✏, �); flag) outputs a set of nodes S̄ that approximates Max-Cut and Sparsest-Cut depending on the value
of Boolean variable flag with the following guarantees:

1. When flag = 0, then the algorithm, Priv-Comb-Opt (G; (✏, �); 0), approximates Max-Cut with following
guarantee:

�S̄(G) � (0.87� ⇢)OPTmax(G)�O

 p
n log(n) log(1/�)

��S̄
��

✏

!
.

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

Algorithm 9 Priv-Comb-Opt (G; (✏, �); flag)

Input: An input graph G = (V,E), privacy parameter (✏, �), flag : 0 for Max-Cut and 1 for Sparsest-Cut,
algorithms Max(·) and Sparsest(·).

Output: A partition of nodes, S.
1: Compute bG Priv-Graph (G; (✏, �)). Let

��LbG � LG

��
2
= c�

p
n log(n) for some constant c and � =

4
✏

p
log (1/�).

2: Compute L eH LbG +
q

2C log(n) log(1/�)
n✏2

LKn for a positive constant C > 3c.

3: Solve the following semidefinite program for % := 1/n to obtain the optimal solution pair
�
�̄, L̄G0

�
:

minimize: �

subject to: L eH � LG0 � �1n,

LG0 � L eH � �1n,

� � 0,

LG0 2 Ln(%).

4: Construct Ḡ from L̄G0 by setting weights for each edge (i, j) of Ḡ as �L̄G0 [i, j].
5: if flag = 0 then

6: S̄ Max(Ḡ)
7: else

8: S̄ Sparsest(Ḡ).
9: end if

10: Output: S̄.

2. When flag = 1, then the algorithm, Priv-Comb-Opt (G; (✏, �); 1), approximates Sparsest-Cut with fol-
lowing guarantee:

�S̄(G)��S̄
�� �n�

��S̄
���  O(

p
log(n))OPTsparsest(G) +O

0

@

s
log2 n log(1/�)

✏2n

1

A .

Here OPTmax(G) and OPTsparsest(G) are the optimum value of Max-Cut and Sparsest-Cut of G, respectively.

Proof. We note that Algorithm 8 and Algorithm 9 are exactly same until Step 4. Hence, the relationship between
LḠ and LG presented in Theorem 17 holds here too:

LG +

r
c1 log(n) log(1/�)

n✏2
LKn � LḠ � LG +

r
c2 log(n) log(1/�)

n✏2
LKn . (9)

For any set S ✓ [n], let �S denotes its indicator vector:

�S =
X

i2S

ēi.

Assume the Boolean variable flag is set to 0. In this case, Algorithm 9 aims to privately approximate Max-Cut.
Let S be the vertex set that induce the maximum cut in G. The approximation guarantee for Max-Cut (refer
to Theorem 9) and Step 6 gives the following:

�S̄

�
Ḡ
�
� (↵GW � ⇢)�>

S̄
LḠ�S̄ � (↵GW � ⇢)�>

S
LḠ�S , (10)

where the second inequality is due to optimality. Using the first semidefinite inequality of Equation (9), we have
�
>

S
LḠ�S is lower bounded by

�
>

S

LG +

r
c1 log(n) log(1/�)

n✏2
LKn

!
�S � �

>

S
LG�S = OPTmax(G).

Di↵erentially Private Analysis on Graph Streams

Here we have used the fact that �>

S
LKn�S � 0. Using the above lower bound for �>

S
LḠ�S in Equation (10), we

obtain

�S̄

�
Ḡ
�
� (↵GW � ⇢)OPTmax(G).

Moreover, the second semidefinite inequality of Equation (9) gives the following chain of inequalities:

�S̄(Ḡ)  �
>

S̄
LḠ�S̄

 �
>

S̄

LG +

r
c2 log(n) log(1/�)

n✏2
LKn

!
�S̄

 �S̄(G) +

 r
c2 log(n) log(1/�)

n✏2

!
n|S̄|.

as
�
n� |S̄|

�
< n.

Combining the lower and upper bounds for �S̄(Ḡ), we get the desired relationship:

�S̄(G) � (↵GW � ⇢)OPTmax(G)�O

 p
n log(n) log(1/�)

��S̄
��

✏

!
.

This completes part 1 of Theorem 18.

Now assume that the Boolean variable flag is set to 1. In this case, Algorithm 9 aims to privately approximate
Sparsest-Cut. Recall that Sparsest-Cut for a graph G over vertex set [n] asks for a (S, V \S)-cut that
minimizes

min
S✓[n]

⇢
�S(G)

|S|(n� |S|)

�
.

Let S be the vertex set that induce the sparsest cut in G. Then we have

OPTsparsest(G) :=
�S(G)

|S|(n� |S|)

Also, by approximation guarantee of Sparsest-Cut as mentioned in Theorem 10, we have

�S̄(Ḡ)

|S̄|(n� |S̄|)
 O

⇣p
log(n)

⌘
min

S0✓[n]

(
�S0

�
Ḡ
�

|S0| (n� |S0|)

)
(11)

 O

⇣p
log(n)

⌘ �S(Ḡ)

|S| (n� |S|)
. (12)

From the second semidefinite inequality of Equation (9), one can conclude that

�S(Ḡ) = �
>

S
LḠ�S

 �
>

S

LG +

r
c2 log(n) log(1/�)

n✏2
LKn

!
�S

= �S(G) +

 r
c2 log(n) log(1/�)

n✏2

!
|S|(n� |S|),

and therefore

�S(Ḡ)

|S| (n� |S|)


�S(G)

|S| (n� |S|)
+

 r
c2 log(n) log(1/�)

n✏2

!
.

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

Since S induces the sparsest cut in G, we obtain the following from Equation (11) and above:

�S̄(Ḡ)

|S̄|(n� |S̄|)
 OPTsparsest(G) +O

0

@

s
log2(n) log(1/�)

n✏2

1

A .

It is clear from the first semidefinite inequality of Equation (9) that �S̄(G)  �S̄(Ḡ). Therefore

�S̄(G)

|S̄|(n� |S̄|)


�S̄(Ḡ)

|S̄|(n� |S̄|)
.

Combining the above two inequalities, we obtain the desired bound for Sparsest-Cut:

�S̄(G)

|S̄|(n� |S̄|)
 OPTsparsest(G) +O

0

@

s
log2(n) log(1/�)

n✏2

1

A .

This finishes the proof of Theorem 18.

In contrast to previous results of Gupta et al. (2012)3, our result gives an instance based accuracy bound.

Since n/2  |V \S|  n, computing the Sparsest-Cut is the same as computing the Edge-Expansion of the
graph up to a factor of 2. As a result, we get the following corollary to Theorem 18:

Corollary 2 (Edge expansion). Let G be the input graph. Then Priv-Comb-Opt (G; (✏, �); flag) is a polynomial-
time (✏, �)-di↵erentially private algorithm that, on setting flag = 1, outputs a set of nodes S̄ such that with
probability 2/3,

�S̄(G)��S̄
��  O(

p
log(n)) min

S✓V |S|n/2

⇢
�S(G)

|S|

�
+O

0

@

s
log2 n log(1/�)

✏2n

1

A .

D.4 Recovery problems

One of the important class of problems studied in the domain of recovery problems is angular synchronization
problem Singer (2011). It is widely used in many areas of statistics. In this problem, one is required to estimate
a collection of n phases e

i↵1 , . . . , e
i↵n , given noisy measurements of pairwise relative phases e

i(↵k�↵j). This
problem is also interesting when we work in real number instead of complex number, for example, in time-
synchronization of distributed networks Karp et al. (2003), signal reconstruction Agrawal et al. (2006), correlation
clustering Bansal et al. (2004), and stochastic block model Javanmard et al. (2016) The angular synchronization
recovery problem is as follows:

Definition 12 (Signal recovery). Given a noisy measurement C = zz
> + �R, recover z 2 {±1}n.

When R is a matrix formed by subgaussian random variable, we have the following result.

Theorem 19 (Recovery from noisy measurement). There is an e�cient algorithm that exactly recover z 2 {±1}n

from noisy measurements C = zz
>+�R if � = O(

p
n) for R is a symmetric matrix with upper triangular entries

independent copies of 0 mean unit variance subgaussian random variable.

Proof. It is a well known fact that if k�LRk2  n where R is a symmetric matrix with LRē = 0, then the
corresponding signal can be exactly recovered using semidefinite programming. As before, ē denotes the vector
of all 1’s. A straightforward application of Theorem 23 gives us that one can exactly recover the signal whenever
�  O(

p
n). This completes the proof of Theorem 19.

3Gupta et al. (2012) do not present this algorithm, but their output can be also used to approximate Max-Cut and
Sparsest-Cut.

Di↵erentially Private Analysis on Graph Streams

D.5 Private graph analysis in the sliding window

One of the reasons why existing techniques do not render to the sliding window model is that they use subroutines
that are not extendable to the sliding window model. For example, Gupta et al. (2012) require a linear program
followed by the iterative framework and Blocki et al. (2012) uses random projections. There are no existing
techniques to solve linear programs or perform the iterative construction of Gupta et al. (2012) in the sliding
window model. On the other hand, random projections cannot be used in the sliding window model because it
does not allow to revert the e↵ect of the expired stream. Finally, Dwork et al. (2014) outputs a matrix that may
not be a positive semi-definite and definitely not a Laplacian.

Likewise, it is not clear whether we can extend the techniques used in the sliding window model to preserve
privacy. Known data-structures in sliding window consider real-valued functions4. Further, it is far from clear
how to update the graph in the currently known techniques of the sliding window to reflect the removal of the
contribution of streamed edge that has expired.

In particular, we maintain a data structure consisting of ` tuples {(Gi, ti)}
`

i=1. We require that these tuples
satisfy a set of properties, which we called smooth Laplacian property. Recall the definition of smooth Laplacian
property:

Definition 13 (smooth Laplacian property). A data structure D satisfy smooth Laplacian property if there
exists an ` = poly(n, log(W)) such that D satisfy the following conditions

1. D consists of ` timestamps I := {t1, . . . , t`} and the corresponding graphs S := {G1, . . . ,Gs}.

2. At least one of the following holds:

(a) For 1  i  `� 1, if ti+1 = ti + 1, then (1� ⇢)LGi 6� LGi+1 .

(b) Both of the following properties for 1  i  `� 2:

i. Property1: (1� ⇢)LGi � LGi+1 .
ii. Property2: (1� ⇢)LGi 6� LGi+2 .

for some constant 0 < ⇢ < 1.

3. LG2 � LW � LG1 , where LW is the Laplacian of the graph formed by the window W .

We restate the result for the ease of readers.

Theorem 20. Given the privacy parameter (✏, �), approximation parameter ⇢ 2 (0, 1/2), and window size W ,
at time T , let LW denote the Laplacian of the graph streamed in the time epochs [T �W + 1, T]. Then we have
the following:

1. (Privacy guarantee). Sliding-Priv-Graph, described in Algorithm 10, is an e�cient (✏, �)-di↵erentially
private algorithm under event level privacy.

2. (Spectral guarantee) Sliding-Priv-Graph allows us to e�ciently outputs a graph eG at the end of the
stream with the following guarantee:

(1� ⇢) (LW + c1�LKn)�LeG �(1 + ⇢) (LW + c2�LKn) .

Here c1 < c2 are large constants and LW is the Laplacian of the graph formed by the sliding window of size
W and

� :=

r
log(n) log(W/�)

n✏2
.

3. (Space guarantee) The space required by Sliding-Priv-Graph is O

⇣
n
3

⇢
log(W)

⌘
.

Proof. We break the proof down to two steps:

4Positive semi-definite ordering is a partial order; therefore, A 6� B does not imply that B � A. On the other hand,
f(x) 6 f(y) implies that f(x) � f(y) – this fact is used in a non-trivial manner in the existing results.

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

1. It is not clear if we can perform spectral sparsification of a graph in space sublinear in W . In the first step,

we prove accuracy without any private constraints, but give an e�cient O
⇣

n
3

⇢
log(W)

⌘
space algorithm.

2. In the second step, we include the privacy constraints without increasing the space requirement in the above
stage.

Algorithm 10 Sliding-Priv-Graph(Dpriv; (et, wt))

Input: A new edge-weight pair (et, wt) and Dpriv containing ` tuples
n
(eG1, t1), . . . , (eG`, t`)

o
.

Output: Updated Dpriv.

Stage 1: Include new edge (et, wt) in the data structure, Dpriv

1: if t2 < t�W + 1 then

2: For 1  j  `� 1, set tj = tj+1,
eGj = eGj+1. Update ` `� 1.

3: end if

4: Construct a complete graph R`+1 with edge weights sampled i.i.d. from N

⇣
0, 8 log 1/�

✏2

⌘
.

5: Privatization step. Let Ht be a single-edge graph with weight wt on the edge et. Set t`+1 = t and

eG`+1 := Ht [R`+1 [

C

s
log(n)

n✏2
log

✓
W

�

◆
Kn

!
.

.
6: Update Dpriv Dpriv [(eG`+1, t`+1), ` = `+ 1.
7: for i = 1, . . . , `� 1 do

8: Compute eGi Ht [
eGi. . Update the graphs with new edge.

9: end for

Stage 2: Update Dpriv to maintain smooth Laplacian property

10: Mantain PSD ordering. That is, find
j := min

�
p : LGp 6⌫ LG`

and delete LGp , . . . , LG`�1 .
11: Set LGp = LG` , ` = p.

12: for i = 1, . . . , `� 2 do

13: Find eGi+1, . . . ,
eGj such that

(1� ⇢)L eGi
� L eGj

and (1� ⇢)L eGi
6� L eGj+1

.

14: Delete eGi+1, . . . ,
eGj�1 and set k = 1.

15: while j + k < ` do . Reorder the indices
16: Update eGi+k = eGj+k�1, ti+k = tj+k�1

17: Update k := k + 1.
18: end while

19: ` := `+ i� j + 1. . Update the number of checkpoints.
20: end for

21: Output: Dpriv :=
n
(eG1, t1), . . . , (eG`, t`)

o
.

Proving existence of low-space algorithm The first step towards giving a private space e�cient algorithm
for graph analysis is to prove that a space e�cient algorithm exists. For this, we assume that the weighted
complete graphs are not overlaid on the input stream in line. In other words, every checkpoint stores the exact
graph formed from the timestamp of the checkpoints until the current time epoch. We prove that this algorithm
maintains the smooth Laplacian property. Let us call this modified algorithm Sliding-Update.

Lemma 2. Let Sliding-Update be the algorithm defined above that at time t get as input an edge et

and a data structure Dspace satisfying the smooth Laplacian property. Then the output Dspace Sliding-

Spectral(et;Dspace) also satisfy the smooth Laplacian property.

Di↵erentially Private Analysis on Graph Streams

Proof. The proof is by case analysis. Let I = {t1, . . . , t`} be the timestamps before the updates and I0 =
{et1, . . . ,et`0} be the timestamps after the updates. Similarly, let G1, . . . ,G` and H1, . . . ,H`0 be the corresponding
matrices before and after an update. That is, if H and H0 are the set of graphs before and after the update, then

H := {G1, . . . ,G`}, I = {t1, . . . , t`}

H0 := {H1, . . . ,H`0}, I0 = {et1, . . . ,et`0}.

Now consider a timestamp t that is in both I and I0, i.e., a timestamp that is not deleted. Suppose this timestamp
is tj for tj 2 I and et` for et` 2 I

0. We have following cases to consider:

Case 1: tj+1 /2 I0

Case 2:

(
tj+1 2 I0 tj+1 = etp, tj+1 > tj + 1

tj+1 2 I0 tj+1 = tj + 1

Intuitively, Case 1 occurs when a timestamp is erased during the maintenance of the data structure following a
stream update, and otherwise Case 2 occurs.

We first consider the case when a succeeding checkpoint gets deleted during an update. In this case, Property1
and Property2 is preserved merely due to the construction. The formal claim follows:

Claim 1 (Succeeding checkpoint gets deleted). Let I and I0 be as defined above. Let tj be as defined above. If
tj+1 /2 I0, i.e., the succeeding checkpoint is deleted on an update, then Property1 and Property2 holds.

Proof. When tj+1 /2 I0, i.e., tj+1 /2 {et`+1, . . . ,et`0}. Consider et`+1 and t`+2 along with its corresponding matrices
H`+1 and H`+2. The update rule step ensures that LH`+1 ⌫ (1�⇢)LH` and that LH`+2 6⌫ (1�⇢)LH` . Therefore,
Property1 and Property2 are maintained.

Now we consider Case 2, i.e., when a succeeding checkpoint is not deleted on an update. Even if it is not deleted,
due to an update, it is possible that the update leads to a temporary violation of the properties required by
smooth Laplacian. Here, intuitively, the “smooth” behavior of positive semi-definite ordering comes to our rescue.
In particular, the intuition is that since the properties were maintained before the updates and the checkpoints
became a successor at some point in the past, because of “smooth” behavior of positive semidefinite matrices,
the properties are maintained after the update. The proof is more subtle and we break it in two parts for the
ease of the readers.

Claim 2 (Succeeding checkpoint is not deleted and not consecutive). Let I and I0 be as defined above. Let tj
be as defined above. If tj+1 2 I0 and tj+1 > tj + 1, i.e., the checkpoints is in the updated data structure, then
Property1 and Property2 holds.

Proof. Since tj+1 is a successor of tj , there must be a time t
0
 t when it became a successor. Let F1, . . . ,F` be

the graphs at the timestamps for time t0. Then we know that LFj+1 ⌫ (1� ⇢)LFj due to update rule. Now since
A � B implies A+C � B+C for positive semidefinite matrices A,B, and C, we deduce that LHj+1 ⌫ (1�⇢)LHj ,

giving us Property1. Now let p > ` + 1 be the index such that etp = tj+1. Property2, i.e., LHp+1 6⌫ (1� ⇢)LH`

follows from the update rule and the fact that Gj+1 was not deleted and got updated to Hp.

For the final part, we assume that (1� ⇢)LHj � LHj+1 . If not, then we are done because the property stated in
item 2a holds. So suppose this is not the case. The following claims shows that in this case, both Property1 and
Property2 holds.

Claim 3 (Succeeding checkpoint is not deleted and is consecutive). Let I and I0 be as defined above. Let tj be as
defined above. If tj+1 2 I0 and tj+1 = tj +1, i.e., the checkpoints is in the updated data structure, then Property1
and Property2 holds.

Proof. Property1 holds because of the assumption that (1� ⇢)LHj � LHj+1 . The proof that Property2 also holds
simliarly as in the case when tj+1 6= tj + 1 (Claim 2).

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

Combining Claim 1 to Claim 3 completes the proof of Lemma 2.

Incorporating privacy Let Gi be the graph formed by streaming edge during the time [ti, T], Ri be a graph

with weights sampled i.i.d. from N

⇣
0, 2 log(W/�)

✏2

⌘
, and w = C

q
log(n) log(W)/�

n✏2
for C to be defined later. Let

eGi = Gi [wKn [Ri (13)

be the n-vertex graph stored in the private data-structure corresponding to time stamp ti. That is, Dpriv :=n
(ti, AeGi

)
o
. Let LeGi

be the corresponding Laplacian. This algorithm is presented as Sliding-Priv-Graph.

The following is straightforward from the proof of Lemma 2 by replacing Gi by eGi.

Lemma 3. Let Sliding-Priv-Graph be the algorithm defined in Algorithm 10 that at time t get as input an
edge et and a data structure Dpriv satisfying the smooth Laplacian property. Then the output Dpriv Sliding-

Priv-Graph(et;Dpriv) also satisfy the smooth Laplacian property.

In what follows next, let

� :=

r
log(n) log(W/�)

n✏2

for the sake of simplifying the expressions below.

While the smooth Laplacian property is straightforward, we now need to argue about the accuracy provided
by this algorithm. Let LW be the Laplacian of graph formed by the current window. G1 and G2 denote the
input graph streamed between [t1, T] and [t2, T], respectively. By construction of the algorithm, the window is
sandwiched between the first and second timestamp; therefore,

LG2 � L � LG1 . (14)

Furthermore, Property1 implies that

(1� ⇢)LeG1
� LeG2

, (15)

where eG1 and eG2 are the graphs maintained by Sliding-Priv-Graph in the data structure Dpriv. Furthermore,

by the definition of eG1 and eG2 in Equation (13) and the spectral bound on complete graph with Gaussian weights,
we have

LG1 + (C � c)�LKn � LeG1
� LG1 + (C + c)�LKn

LG2 + (C � c)�LKn � LeG2
� LG2 + (C + c)�LKn

(16)

Combining Equations 14 to 16 gives us

(1� 2⇢) (LW + c1�LKn) � LeG1
�

1

(1� ⇢)
(LW + c2�LKn) � (1 + 2⇢) (LW + c2�LKn)

for su�ciently small ⇢.

In other words, setting eG := eG1 provides asymptotically the same level of accuracy as in the static case up to
logarithmic factor. In particular, we have Theorem 20.

Theorem 20 assumes that W � n
3, where W represents the number of events. This is a reasonable assumption

in many scenarios. For instance, in the case when the edges of the graph represent financial transaction between
two companies, there are only a small set of companies (nodes); however, in a window of a single day, there can
be significantly more events when a transaction happens (the size of the window). Likewise, for social graphs,
an edge represents interaction and nodes represent people. There can be significantly many interactions in a
given time frame than the number of people. Therefore, this assumption is valid in practical scenarios where we
would like to perform graph analysis. We would like to remark that our algorithm as presented is not optimized
for run-time; however, one can use input-sparsity time algorithms to improve the run-time by a factor of n with
a further (1± ⇢) factor loss in the accuracy. In fact, the best known existing non-private algorithm Braverman
et al. (2020) also takes aysmptotically the same time. Hence, the privacy overhead is constant.

Di↵erentially Private Analysis on Graph Streams

D.5.1 Extension to continual release

Until now, we consider only one-shot algorithm as described by Dwork et al. Dwork et al. (2010a). Our one-shot

algorithm computes spectral approximation with additive error of LKn with weights ⌧ = O

✓q
log(n) log(W/�)

n"2

◆
.

Translating this accuray bound over the entire window, we get a total accuracy loss of W ⌧LKn . In this section,
we show how our one-shot algorithm can be converted to an algorithm that computes an approximation to graph
Laplacian continually with o(W ⌧)LKn additive error over the entire window.

The continual release model was proposed by Dwork et al. Dwork et al. (2010a). In contrast to our setting,
continual release model consider the entire data useful and does not put any space constraints. We provide two
di↵erent protocols, in both of which we consider accuracy for only the update that came during the current
window.

To get an intuition of our new algorithm, we first see Sliding-Priv-Graph in a slightly di↵erent manner. For
this, it is helpful to revisit the concept of partial sums defined by Chan et al. Chan et al. (2011a). In partial
sum, the goal is to evaluate a function on the values streamed in a particular time interval.

Definition 14 (Partial sum Chan et al. (2011a)). A partial sum, denoted by P(t1, t2)-sum, is the sum of
consecutive items streamed between time t1 and t2. That is, for 1  t1  t2 and stream (xt)t�1, the partial sum
is

P(t1, t2)((xt)) :=
t2X

k=t1

xk.

We extend this definition with respect to any given input function, f , instead of simply the summation.

Definition 15 (Partial evaluation). Let 1  i  j  t and (xt)t�1 be the stream. Then a P(f, i, j)-function
corresponding to a function f is a partial evaluation of the function on updates caused by consecutive items during
time epoch i and j. It is defined as the partial sum for substream x[i,j] is denoted by P(f, i, j) := f(xi, . . . , xj).

For example, in the case of graph Laplacian, the function in the question is the Laplacian Let of the graph formed
by the stream edge et with weight wt � 0, and partial sum is defined as:

P(L, i, j) :=
jX

t=i

Let .

Here Let is a symmetric matrix whose projection over the co-ordinates (u, v), where u and v are the end vertices
of the edge et, is ✓

wt �wt

�wt wt,

◆

while every other entries are 0.

Now we can cast Algorithm 10 in terms of partial sums. Every single element in the window can appear in
W release of the output. Therefore, the sensitivity of the output is W , and to preserve privacy, each partial
evaluation must be perturbed with appropriate complete graph. Now consider an alternate algorithm that uses
W space: we first privatize and store every entry in the stream and then use it to compute the output graph.
In this case, we need W partial evaluation with every element having sensitivity 1. Using Theorem 8, we would
get the following approximaation bound for the output graph eG:

LeG ⌫ (1� ⇢)LG �O

 r
W log(n) log(W/�)

n"2

!
LKn

and

LeG � (1 + ⇢)LG +O

 r
W log(n) log(W/�)

n"2

!
LKn .

This is a large loss in accuracy if W is large. Note that the space requirement is still low as we need to just store
the checkpoints.

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

Looking at these two extreme ideas, we note that, if an algorithm uses p partial evaluations, such that every
element in the stream can appear in at most s number of times in any of these sums, then it is easy to see that
we get the following bound:

LeG ⌫ (1� ⇢)LG �O

s

r
p log(n) log(Wp/�)

n"2

!
LKn

and

LeG � (1 + ⇢)LG +O

s

r
p log(n) log(Wp/�)

n"2

!
LKn .

The question now is whether we can further reduce this error. The basic idea is to build binary tree with leaves
being the graphs at the checkpoint.

The first approach uses the same binary tree method used in Dwork et al. Dwork et al. (2010a) and Chan et
al. Chan et al. (2011b). However, we depart from their technique in the sense that we only build the binary tree
over the last W updates. Let sT�W+1, . . . , sT be the updates at any time T , where si = (ei, wi) contains the
edge and the weight information. Now we construct a binary tree as follows:

1. Every leaf node 1  i  W consist of the graph formed by executing Priv-Graph (Algorithm 7) on the
i-th update in the window.

2. Every node other the leaf node contains the private version of the graph formed by the edges in its subtree.
That is, for a node n, if the leaves of its subtree contains the privatized version of graphs G1, . . . ,Gm, then
the node contains the graph Gn =Priv-Graph(G1 [· · · [Gm).

The privacy budget in the algorithm is chosen as described in Chan et al. Chan et al. (2011b). This allows the

error to scale as min
n
log3/2(T), log3/2(W)

o
, when total T updates are made.

The space requirement of this construction is Wn
2. We can reduce the space requirement by running Priv-

Sparsify (Algorithm 8) on the graphs in each nodes of the tree. This reduces the space on every node to be
O(n/⇢) For the accuracy guarantee, note that the Laplacian of graphs H formed by overlaying graphs G and Ḡ

is simply

LH = LG + LḠ .

Further, if LG1 � · · · � LG` satisfies the PSD ordering, then for any new graph G,

LG1 + LG � · · · � LG` + LG .

Therefore, using Chan et al. Chan et al. (2011b), we get the following result:

Theorem 21. Given the privacy parameter (✏, �), approximation parameter ⇢ 2 (0, 1/2), and window size W ,
at time T , let LW denote the Laplacian of the graph streamed in the time epochs [T �W + 1, T]. Then we have
the following:

1. (Privacy guarantee). Continual-Sliding-Priv-Graph, described in Algorithm 11, is an e�cient (✏, �)-
di↵erentially private algorithm under the sliding window model.

2. (Spectral guarantee) Continual-Sliding-Priv-Graph allows us to e�ciently and continually output a
graph eG with the following guarantee:

(1� ⇢) (LW + c1⌧LKn)�LeG �(1 + ⇢) (LW + c2⌧LKn) .

Here c1 < c2 are large constants and LW is the Laplacian of the graph formed by the sliding window of size
W and

⌧ =

s
log(n) log3(W/�)

n✏2
.

3. (Space guarantee) The space required by Continual-Sliding-Priv-Graph is O

⇣
nW

⇢

⌘
.

Di↵erentially Private Analysis on Graph Streams

D.6 Extension to continual release case with sublinear space

The space required by the previous algorithm is linear inW . While continual release does not prohibit using space
linear in W , we give another algorithm that decreases the space at the cost of increasing the error. Depending on
the requirement, one can use either of these two algorithms. The main idea is to divide the window in to small

subwindow of size
p
W . We then run our algorithm on each of these subwindows separately. Let eG(j)

1 , . . . , eG(j)
`

be the graphs stored in the data structure for the j-th subwindow. For this, we fix some notation:

1. eT(j) be the binary tree formed by the leaves eG(j)
1 , . . . , eG(j)

`
.

2. eT(j)
n be the subtree of the internal node n of the tree eT(j).

3. eL(j)
n be the leaves of the subtree eT(j)

n . These forms a subset of the set
n
eG(j)
1 , . . . , eG(j)

`

o
.

We define a binary tree for each of these subwindow. For now, we drop the superscript (j). For the j-th
subwindow, let Build-Binary-Tree be the subroutine that takes a number of graphs as input and constructs
a graph as follows:

1. The leaf node contains of privatized graphs eG1, . . . ,
eG`.

2. For every internal node, n, let Ln be the graphs from the set {H1, . . . ,H`} corresponding to the graphs in

the set eLn. Then the graph stored in the node n is the graph formed by first overlaying all the graphs in
Ln over each other and then privatizing it as in Step 8.

3. Delete all the internal nodes whose leaves contains graphs formed before time t1.

The details of these changes are marked in red in Algorithm 11. Continual-Sliding-Priv-Graph maintains
all these subwindows. We delete a subwindow if the leaves of its binary tree are before T �W + 1.

In other words, the above construction maintains the partial sum. Now, at every time epoch, we output the graph,
eG, stored in the first leaf in the first sub-window tree T(1). Since the number of checkpoints is ` = O

⇣
n

⇢
logW

⌘
,

combining Theorem 20 with that of Dwork et al. Dwork et al. (2010a), we have the following theorem:

Theorem 22. Given the privacy parameter (✏, �), approximation parameter ⇢ 2 (0, 1/2), and window size W ,
at time T , let LW denote the Laplacian of the graph streamed in the time epochs [T �W + 1, T]. Then we have
the following:

1. (Privacy guarantee). Continual-Sliding-Priv-Graph, described in Algorithm 11, is an e�cient (✏, �)-
di↵erentially private algorithm under the sliding window model.

2. (Spectral guarantee) Continual-Sliding-Priv-Graph allows us to e�ciently and continually output a
graph eG with the following guarantee:

(1� ⇢) (LW + c1⌧LKn)�LeG �(1 + ⇢) (LW + c2⌧LKn) .

Here c1 < c2 are large constants and LW is the Laplacian of the graph formed by the sliding window of size
W and

⌧ = W
3/4

s
log(n) log3(W/�) log3(n log(W))

n⇢3✏2
.

3. (Space guarantee) The space required by Continual-Sliding-Priv-Graph is O

⇣
n
3

⇢

p
W log(W)

⌘
.

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

E Spectral Norm of Random Graph with Subgaussian Weights

In this section, we consider the following graph, G. Every edge is an independent copy of a zero mean unit
variance subgaussian random variable with probability p, and is identically 0, otherwise. We use the notation
SG(µ,�2) to denote a subgaussian distribution with mean µ and variance �

2. As before, we can rewrite the
Laplacian of G as sum of three random matrices (which are dependent):

LG := S �G+D,

where S and D are formed as before from G and, in turn, G is formed as below: for all i < j, let gij ⇠ SG(0, 1).
Then

G[i, j] =

(
gij with probability p

0 with probability 1� p

For i > j, we set G[i, j] = G[i, j].

Before we bound the spectrum of random graph generated as above, we give a bound on the spectrum of complete
graph with subgaussian weights:

Theorem 23 (Subgaussian entries). Let G be a graph whose weights are sampled i.i.d. from SG(0, 1), then
kLGk2 = O(

p
n log(n)) with probability 1� 3e�cn for an absolute constant c > 0.

Proof. The proof of Theorem 23 follows similarly as in the proof of Theorem 13 by noting that Theorem 12
holds for any subgaussian random variable, and by invoking Cherno↵-Hoe↵ding for subgaussian distribution in
the proof of Theorem 13.

We show the result separately for each of two cases. In each of the case, let us consider LG = G�D+ S, where
G be the random matrix whose entries are sampled either i.i.d. from N (0, 1) or Lap(0, 1), D and S are diagonal
matrices formed in the following manner:

D[i, i] = G[i, i] and S[i, i] =
X

j

G[i, j].

Now, using subadditivity of spectral norm, we have

smax(LG)  smax(G) + smax(D) + smax(S).

In particular, smax(G) = eO(
p
n) for both Gaussian random variable as they both have finite fourth moment.

Now we bound the rest of the two terms separately. We have

smax(D) = max
ei

|e
>

i
Dei| = max

ei

|e
>

i
Gei|

 max
v2Sn�1

|v
>
Gv| = smax(G).

Finally, we bound the last term. We first note that

smax(S)  max
i

������

X

j 6=i

G[i, j]

������
.

The standard Cherno↵-Hoefding bound for the sum of random Gaussian variable gives that with probability
1� e

�cn, smax(S)  C
p
n log(n). The theorem follows by using union bound.

We now move to the case of random graphs with subgaussian weights defined earlier. As before to give a high
level idea, we use N (0, 1) as an example. The Laplacian LG is a Hermittian matrix and therefore, its singular
value can be bounded using the following result by Tropp Tropp (2015).

Di↵erentially Private Analysis on Graph Streams

Theorem 24 (Tropp Tropp (2015)). Consider a finite sequence {Xk} of independent, random, Hermitian ma-
trices with dimension d. Assume that E[Xk] = 0 and �max(Xk)  L for each index k. Introduce the random
matrix Y =

P
k
Xk. Let v(Y) be the matrix variance statistic of the sum: v(Y) =

��P
k
E[Y 2]

��. Then for all
t � 0,

Pr [kY k2 � t]  d · exp

✓
�t

2
/2

v + Lt/3

◆
.

Lemma 4 (Erdos-Renyi graph with subgaussian entries). The spectral norm of the Laplacian of the graph formed
as above is eO(p

p
n), almost surely.

Proof. We use Theorem 24 to prove that G satisfies the required property. For this we define random matrix
variable Xk to be an all zero entry except the (i, j)-th entry which is Gij , where k = (i� 1)n+ j for i < j. We
now need to bound v(Y) and E[Xk].

It is easy to verify that E[Xk] = 0 and
��P

k
E[X2

k
]
�� = eO(p

p
n). In other words, setting t = cp

p
n log(n) in

Theorem 24 and d = n, we have

Pr
⇥
kY k2 � cp

p
n log(n)

⇤
 n · exp

�
�cp
p
n log(n)

�

 exp(�cp
p
n).

The proof that S satisfies the required property is similar as before using the Hoe↵ding’s bound. This completes
the proof of Lemma 4.

F Projection on a positive semi-definite cone

In many applications, it is desirable that graphs have only positive weights; however, Theorem 17 does not
provide any such guarantee. Our second result is a general technique that allows us to output a graph with
positive weights if the input graph has small enough spectrum and is positive semi-definite.

Theorem 25. Given a graph G with edge weights either positive or negative whose Laplacian is a PSD and

spectral norm bounded by O

✓q
n log(n) log(1/�)

✏2

◆
, there is an e�cient algorithm that outputs a graph bG with

positive edge weights such that

��LbG � LG

��
2
 C

r
n log(n) log(1/�)

✏2
,

where C is an absolute constant and k·k is the spectral norm.

The proof of Theorem 25 requires a spectral projection onto a semidefinite cone. This is in contrast with previous
approaches that were based on projection-based methods using `2 projection onto a convex cone after specific
convex relaxation and employing Frank-Wolfe method Dwork et al. (2015); Nikolov et al. (2013). On the other
hand, we are required to show that an appropriate semidefinite program has an optimal solution. This we believe
will have applications beyond what is listed in this paper.

The Laplacian of graphs with non-negative weights are denoted by Ln
⇢ Sn+. That is,

Ln =

8
<

:X : X[i, j]  0 8i, j 2 [n] : i 6= j and
nX

j=1

X[i, j] = 0 8i 2 [n]

9
=

; . (17)

The set of Laplacian matrices forms a closed convex cone. We relax the last set of constraints
P

n

j=1 X[i, j] =
0 8i 2 [n] to get a convex relaxation of Ln. Let Ln(%) is convex relaxation of set of Laplacian of graphs with
positive weights. This set can be expressed as an intersection of cone of positive semidefinite matrices and a�ne
space.

Ln(%) =

8
<

:X : X[i, j]  0 8i, j 2 [n] : i 6= j and 0 
nX

j=1

X[i, j]  % 8i 2 [n]

9
=

; .

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

To make this argument, we need to show that the corresponding semi-definite program (SDP(1) defined below)
has an attainable optimal solution. We demonstrate this using the duality theory of semidefinite optimization
(see Lemma 5).

SDP(1)

minimize: �

subject to: L eH � LG0 � �1n,

LG0 � L eH � �1n,

� � 0,

LG0 2 Ln(%).

The attainability and existence of an optimal solution are guaranteed by what is known as Slater conditions.
We refer to Boyd and Vandenberghe (2004) for a rigorous definition on Slater conditions. In our case, satisfying
Slater conditions reduces to finding strictly feasible solution for the dual of SDP(1) as described in Lemma 5
below.

To write the dual program, we first introduce two sets of matrices {Fi : i 2 [n]} and {Eij : i, j 2 [n]} . These
matrices can be expressed in terms of standard basis vectors {ēi : i 2 [n]} and vector of all 1’s, ē, as follows:

Fi = ēiē
> + ēē

>

i
and Eij = ēiē

>

j
+ ēj ē

>

i
.

Armed with these matrices, we can write the dual program as below:

Dual of SDP(1)

maximize:
⌦
L eH, X1 �X2

↵
+ h%ē, zi

subject to: h1n, X1i+ h1n, X2i  1

X1 �X2 �

nX

i=1

(z[i]� y[i])Fi +
X

1i<jn

x[(i, j)]Eij

X1, X2 2 Sn+,
y, z 2 Rn

+,

x 2 Rn(n�1)/2
+ .

Lemma 5. The Slater conditions for SDP(1) is satisfied. That is, there exist

X̄1, X̄2 2 Sn++and ȳ, z̄ 2 Rn

++, x̄ 2 Rn(n�1)/2
++

such that

⌦
1n, X̄1

↵
+
⌦
1n, X̄2

↵
< 1 and

X̄1 � X̄2�

nX

i=1

(z̄[i]� ȳ[i])Fi+
X

1i<jn

x̄[(i, j)]Eij .
(18)

Proof. We will construct X̄1, X̄2 2 Sn++, ȳ, z̄ 2 Rn

++, and x̄ 2 Rn(n�1)/2
++ that satisfy Equation (18). Note that

the set

�
X̄1, X̄2, ȳ, z̄, x̄

form a feasible solution of dual of SDP(1). For ↵,� > 0, let ȳ = (↵,↵, . . . ,↵)> 2 Rn

++, z̄ = 2ȳ, and x̄ =

Di↵erentially Private Analysis on Graph Streams

(�,�, . . . ,�)> 2 Rn(n�1)/2
++ . For such choices of (x̄, ȳ, z̄), it holds that

nX

i=1

(z̄[i]� ȳ[i])Fi +
X

1i<jn

x̄[(i, j)]Eij

= ↵

nX

i=1

�
ēē

>

i
+ ēiē

>
�
+ �

X

1i<jn

ēiē
>

j
+ ēj ē

>

i

= (2↵+ �) ēē> � �

nX

i=1

ēiē
>

i
= (2↵+ �) ēē> � � In.

Let

↵ =
1

16n
, � =

1

16n
,

X̄1 = (2↵+ �) ēē> + �1n,

X̄2 = 3�1n.

Clearly X̄1 � X̄2 = (2↵+ �) ēē> � 2�1n and hence

X̄1 � X̄2 �

nX

i=1

(z̄[i]� ȳ[i])Fi +
X

1i<jn

x̄[(i, j)]Eij .

Moreover,
⌦
1n, X̄1

↵
+
⌦
1n, X̄2

↵
=

⌦
1n, X̄1 + X̄2

↵
= Tr

�
X̄1 + X̄2

�
= (2↵ + 5�)n = 7

16 < 1. Hence we have

constructed X̄1, X̄2 2 Sn++and ȳ, z̄ 2 Rn

++and x̄ 2 Rn(n�1)/2
++ such that Equation (18) is satisfied. This proves

that the Slater conditions for SDP(1) are satisfied, and the optimal solution of SDP(1) exists and is attained.
This completes the proof of Lemma 5.

It is not di�cult to see that the Slater conditions for the dual of SDP(1) are satisfied as well. For su�ently small
✏ 2 (0, 1/2), we instantiate a feasible solution (that satisfies Slater conditions) of SDP(1) as follows:

L̄G0 [i, j] =

⇢
�✏/n

2 if i 6= j,

2✏/n if i = j.

We let �̄ = 2
���L eH

��
2
+
��L̄0

G

��
2

�
. These choices of SDP variables satisfy the Slater condition for the dual of

SDP(1).

G Open Problems

One of the problems that we leave for future research is characterizing the space complexity of the private
spectral approximation of graphs in the sliding window model. It is well known that one requires ⌦(n2) space
to approximate the spectrum of the graph Laplacian even in the static setting without any privacy constraints.

We believe that O
⇣

logW

⇢

⌘
overhead is necessary in the sliding window model even without privacy. It remains

open whether the dependence on n is cubic (as in this paper) or quadratic (matching the non-private setting).

Another line of work that is of interest is a spectral approximation of matrices, an important numerical linear
algebra problem. It subsumes spectral approximation of a graph as a special case. In the non-private setting,
Braverman et al. (2020) used a variant of ridge-leverage score to compute a spectral approximation. However, it
is not clear if their technique can be extended to the private setting. Similarly, our analysis and algorithm rely
crucially on the structural properties of Laplacian of graphs, something that is not present in a more general
case. As such, we believe that one would need an entirely di↵erent technique for private spectral approximation
of matrices.

Raman Arora, Jalaj Upadhyay, Sarvagya Upadhyay

Algorithm 11 Continual-SubWindow-Priv-Graph(Dpriv; (et, wt))

Input: A new edge-weight pair (et, wt) and Dpriv containing ` tuples

n
(eG1,H1, t1), . . . , (eG`,H`, t`)

o
,

a binary tree T with
n
eG1, . . . ,

eG`

o
as leaves.

Output: Updated Dpriv and T.

Stage 1: Include new edge (et, wt) in the data structure, Dpriv

1: if t2 < t�W + 1 then

2: Set tj = tj+1.

3: Set eGj = eGj+1.

4: Set Hi = Hj+1 for 1  j  `� 1 . Delete the expired timestamp.
5: Set ` = `� 1.
6: end if

7: Construct a complete graph R`+1 with edge weights sampled i.i.d. from N

⇣
0, 4 log 1/�

✏2

⌘
.

8: Privatization step. Let Ht be a single-edge graph with weight wt on the edge et. Set

t`+1 = t, eG`+1 := Ht [R`+1 [

C

s
log(n)
n✏2

log

✓
W

�

◆
Kn

!
.

.
9: Update Dpriv Dpriv [(eG`+1,Ht, t`+1), ` = `+ 1.

10: for i = 1, . . . , `� 1 do

11: Compute eGi Ht [
eGi, Hi = Hi [Ht.

12: end for

Stage 2: Update Dpriv to maintain smooth Laplacian property

13: Find j := min
�
p : LGp 6⌫ LG`

and delete LGp , . . . , LG`�1 .

14: Update LGp = LG` , ` = p.

15: for i = 1, . . . , `� 2 do

16: Find eGi+1, . . . ,
eGj such that

(1� ⇢)L eGi
� L eGj

and (1� ⇢)L eGi
6� L eGj+1

.

17: Delete eGi+1, . . . ,
eGj�1.

18: Set k=1
19: while j + k < ` do . Reorder the indices
20: Update eGi+k = eGj+k�1,
21: Update Hi+k = Hj+k�1.
22: Update ti+k = tj+k�1.

23: Update k := k + 1.
24: end while

25: ` := `+ i� j + 1.
26: end for

27: T Build-Binary-Tree(eG1, . . . ,
eG`,H1, . . . ,H`).

28: Output: Dpriv :=
n
(eG1,H1, t1), . . . , (eG`,H`, t`)

o
and T.

	Introduction
	Problem setup and main results
	Main Results

	Proof of Theorem 2
	Improving space
	Incorporating privacy
	Maintaining smooth Laplacian property
	Smooth Laplacian property implies spectral approximation

	Other applications of Theorem 3
	Conclusion and big picture
	Related Work and Sliding Window Algorithm
	Notation and terminology
	Proof of Main Theorem for Gaussian case
	Applications
	Differentially Private Graph Analysis
	Differentially Private spectral sparsification of graphs
	Differentially private combinatorial optimization
	Recovery problems
	Private graph analysis in the sliding window
	Extension to continual release

	Extension to continual release case with sublinear space

	Spectral Norm of Random Graph with Subgaussian Weights
	Projection on a positive semi-definite cone
	Open Problems

