
HC via Sketches and HCC

A DEFERRED PROOFS OF SUBSECTION 3.1

Proof of Lemma 1. We first note that the removal of any edge creates two binary trees. Next we show how to
find an edge satisfying the rest of the properties.

Given the rooted tree T , we travel down the tree from the root such that we always pick the child that contains
more data points in its subtree (compared to the other child, if another child exists). We denote the i’th node
along this path that contains exactly two children, by ui for i ∈ {1, 2, . . .}. Furthermore, we denote the sets of
data points contained by its two children by Ai and Bi such that, |Ai| ≥ |Bi|.

Let k∗ := arg mini{|B1|+ · · ·+ |Bi| ≥ n
3 }. Since |Ak∗ |+ |B1|+ · · · |Bk∗ | = n, we are guaranteed that |Ak∗ | ≤ 2n

3 .
On the other hand, since |Ak∗ | ≥ |Bk∗ | and |Ak∗ |+ |Bk∗ | = n− (|B1|+ · · · |Bk∗−1|) we are also guaranteed that,
|Ak∗ | ≥ n

3 .

Therefore, removing the edge between uk∗ and its child associated with Ak∗ guarantees that the resulting trees
each have at most at least n/3 data points thereby completing the proof.

Proof of Lemma 2. Let n denote the number of data points in T . We define the following recursive algorithm:
for any binary tree instance T find the edge given by Lemma 1. Remove said edge and continue recursively on
both resulting trees. Stop once the input tree has less than 3εn data points.

The algorithm is clearly polynomial. Let F denote the set of resulting edges. Due to our stopping condition,
every tree in T − F contains between εn and 3εn data points. Therefore, 1

4ε + 1 ≤ |F | ≤ 1
ε for ε < 1/12.

Proof of Lemma 3. Let T be some tree on n nodes and let ` denote some leaf. We prove by induction on n. If
n = 1 or n = 2 clearly we are done. Otherwise, traverse T starting at ` (i.e., hopping from a node to one of its
untravelled neighbours). If during this traversal we arrive at a leaf before we arrive at a node with degree ≥ 3,
then |V3| = 0 and we are done. Otherwise let u denote the first node we traverse with degree ≥ 3. Remove all
nodes in the traversal upto but not including u, denote the new tree as T ′.

Thus, |V3| ≤ |V ′3 |+1 and |L|−1 = |L′|. Furthermore, since T ′ has at most n−1 nodes we may use our induction
hypothesis. Therefore,

|V3| ≤ |V ′3 |+ 1 ≤ |L′| = |L| − 1.

Proof of Lemma 4. We first note that a node is a leaf in TR if and only if it was a leaf in T (since every
contracted connected component either contained data points or will have a child following the contraction).
Next, we categorize the internal nodes of TR. These nodes are either colored (green or blue), or they are a
contracted node or an auxiliary node. We denote the set of each such nodes by G,B,C and A respectively.

It is not hard to see that the second part of our lemma holds. This is due to the fact that by Remark 1 every
node in G,B and C has at most 2 immediate children. For nodes in A, by Lemma 2 and by A’s definition, we
are guaranteed that any such node has at most 3εn children.

In order to show the first part of the lemma we bound each of the four sets of nodes. By the definition of B,
|B| ≤ 2/ε. By definition of A, |A| ≤ |C|. Furthermore, every node in C has a parent that is colored green or
blue and thus due to Remark 1, |C| ≤ 2(|G|+ |B|). Therefore, |A|+ |C| ≤ 4(|G|+ |B|).

Next we bound |G|. In order to do so, we first simplify TR in a way that does not affect |G|. Since no auxiliary
node contains green nodes in their subtree, we may detach them without affecting any green or blue nodes.
Furthermore, this removal upholds the fact that any green node’s degree is at least 3 (since we did not remove
any blue nodes). We then also remove any contracted node which now happens to be a leaf (since they too, do
not affect the green or blue nodes).

Therefore, in the resulting tree, any leaf must be blue and any green node must have degree at least 3. Thus, if
we denote by V3 the set of vertices with degree ≥ 3 and by L the set of leaves, then,

|G| ≤ |V3| ≤ |L| − 1 ≤ |B| − 1,

where the second inequality is due to Lemma 3. Thus,

|A|+ |C|+ |G|+ |B| ≤ 5(|G|+ |B|) ≤ 10|B| ≤ 20/ε.

Vainstein, Chatziafratis, Citovsky, Rajagopalan, Mahdian, Azar

Now, in order to show the complement (i.e., TR contains Ω(1/ε) internal nodes) it is enough to consider Lemma
2 thereby concluding the proof.

B DEFERRED PROOFS AND DEFINITIONS OF SUBSECTION 3.2

Observation 3. Due to Fact 1 if we denote by TO our optimal solution, then since our instance is ρ, τ -weighted
we get,

rev(TO) ≥ ρτn3

3
,

for some smaller, yet still constants ρ and τ .

Proof of Lemma 6. Let Talg denote the tree returned by Algorithm 3. Furthermore denote by α` and βij the
real values of TRε . Therefore,

rev(Talg) ≥
∑
i≤j

∑
`∈S

(
(α` − nε2 − nεerr)

· (βij − n2ε3 − n2εerr)
)

≥
∑
i≤j

∑
`∈S

(
α`βij

)
−
∑
i≤j

∑
`∈S

(
βijnε

2
)

−
∑
i≤j

∑
`∈S

(
βijnεerr

)
−
∑
i≤j

∑
`∈S

(
α`n

2ε3
)

−
∑
i≤j

∑
`∈S

(
α`n

2εerr
)

≥
(∑
i≤j

∑
`∈S

α`βij
)
− n3ε220k − n3εerr20k

− n3ε3(20k)2 − n3εerr(20k)2

=
(∑
i≤j

∑
`∈S

α`βij
)
− n3

(
ε220k

+ ε3(20k)2 + εerr20k + εerr(20k)2
)

≥ rev(TRε)− n3(421ε+ 20kεerr + 400k2εerr),

where the first inequality follows from the property tester’s guarantees and the fact that we did not guess α` and
βij to their exact values. The third inequality follows since there are at most k sets in the partition,

∑
βij ≤ n2

and
∑
α` ≤ n. The last inequality is due to the fact that k ≤ 1/ε+ 1 and ε is chosen to be small enough.

Due to Observation 3, Theorem 1 and by choosing εerr = ε3

400 , we get,

rev(Talg) ≥ rev(TRε)− n3(O(ε))

≥ rev(TRε)− O(ε)

ρτ
rev(TO)

≥ (1−O(ε)− O(ε)

ρτ
)rev(TO).

Thus by choosing ε small enough, we get the desired result.

C DEFERRED PROOFS AND DEFINITIONS OF SUBSECTION 3.3

Proof of Theorem 3. Let wij = g(dij) and let w′ij = wij + ε. Denote by O and O′ the trees which generate the
maximal revenue with respect to wij and w′ij respectively. Finally, given an HC tree T , let Rev(T) and Rev′(T)
denote the revenue generated by T with respect to wij and w′ij respectively.

HC via Sketches and HCC

By Theorem 2 we are guarnateed that for any constant δ > 0, Rev′(A) ≥ (1− δ)Rev′(O′). Furthermore, by the
definitions of O and O′ we have that Rev′(O′) ≥ Rev′(O). Therefore,

Rev′(A) ≥ (1− δ)Rev′(O′) ≥ (1− δ)Rev′(O). (3)

By Fact 3 and since wij + ε = w′ij we are guaranteed that for any tree T , Rev(T) = Rev′(T)− εn3
(
n
2

)
. Combining

this with equation 3 we get that,

Rev(A) = Rev′(A)− εn
3

(
n

2

)
≥ (1− δ)Rev′(O)− εn

3

(
n

2

)
= (1− δ)Rev(O)− δεn

3

(
n

2

)
.

Let α denote the diameter of the metric. Since the metric is scale invariant we may assume w.l.o.g. that α = 1.
By the definition of the doubling dimension, D(M) = D, there are 2D(`+1) balls of radius 1

2`+1 that cover
the entirety of the data. Let xi denote the number of data points that belong to the i’th ball but not to balls

1, . . . , i−1. Therefore,
∑2D(`+1)

i=1 xi = n. On the other hand by Cauchy-Schwarz inequality,
∑2D(`+1)

i=1 x2i ≥ n2

2D(`+1) .

Therefore, the number of pairs of data points within the same ball is
∑2D(`+1)

i=1

(
xi

2

)
≥ n2

2D(`+1)+1 − n
2 . Due to the

fact that pairs of points that belong to the same ball are at distance of at most 1
2`

and since similarity function
g is defined an non-increasing, we get that,

∑
i,j

wij ≥ g(
1

2`
)

2D(`+1)∑
i=1

(
xi
2

)

≥ g(
1

2`
)
(n2

2D(`+1)+1
− n

2

)
. (4)

By Fact 1 and equation 4 we are guaranteed that for c = 2D(`+1)

g(1

2`
)

, cδεRev(O) ≥ δεn3
(
n
2

)
. Combining the above,

Rev(A) ≥ (1− δ − cδε)Rev(O).

Due to the fact that g(0) = 1 and that g is `-Lipschitz continuous, g(1
2`

) = Ω(1). On the other hand since
D = O(1) and ` = O(1) we may choose ε and δ small enough in order to guarantee an EPRAS.

D DEFERRED PROOFS OF SUBSECTION 4.1

Proof of Lemma 7. Consider the proof of Lemma 4. The only difference between TR and TD (with respect to the
number of their internal nodes) is the fact that in TD the contracted nodes are multiplied by 1/ε (and therefore
the auxiliary nodes as well). Thus, clearly the lemma holds.

Proof of Lemma 8. In order to prove the lemma we consider the following observations. The first of which is
Observation 1 which holds here as well. The second is the following.

Observation 4. Consider any two data points, i and j, that are contained in the same contracted node in
K(TO). Further assume that they end up under different auxiliary nodes. Therefore, any descendant of the
corresponding contracted node (in K(TO)) is contained in TDij .

Consider two data points in TO, i and j and consider some k ∈ TOij . As before, we denote their lca’s by vik, vjk
and vij and assume without loss of generality that i is clustered first with k and therefore, vij = vkj .

Vainstein, Chatziafratis, Citovsky, Rajagopalan, Mahdian, Azar

We would like to bound the number of k’s for which k 6∈ TDij . As before, let {TB∪G` } denote the set of trees

defined by TO − (B ∪G) and let TB∪Gi (resp. TB∪Gj and TB∪Gk) denote the tree in TO − (B ∪G) containing i

(resp. j and k). If k ∈ TB∪Gi or k ∈ TB∪Gj then since the number of data points contained in these trees is at

most 6εn, we may disregard such k’s and incur an additive loss of 6εn. Therefore, we assume, k 6∈ TB∪Gi and
k 6∈ TB∪Gj .

Thus, we split into the following cases. The first is the case where vjk is green/blue. Otherwise, this means that
vjk has at most one child with a blue descendant. It can not be the child containing j since that would mean
that k ∈ TB∪Gi . Thus, we may only consider the following final cases: either exists a green/blue node on the
path vik → vij or there must exist a green/blue node both on the path k → vik and on the path i→ vik (since
k 6∈ TB∪Gi). Otherwise, exists a green/blue node on the path k → vik and not on the path i→ j.

We prove our lemma for each of these cases.

1. vjk is green/blue: Due to Observation 1 we are guaranteed that k ∈ TDij .

2. There exists a green/blue node on the path vik → vij : Due to Observation 1 we are guaranteed that k ∈ TDij .

3. There exists a green/blue node both on the path k → vik and on the path i → vik: In this case vik is
green/blue and therefore, again due to Observation 1 we are guaranteed that k ∈ TDij .

4. There exists a green/blue node on the path k → vik and not on the path i→ j: In this case i and j are in
the same contracted node in K(TO). If they end up under different auxiliary nodes, then by Observation
2 k ∈ TDij . Since we partitioned the data points in the contracted nodes randomly (under restriction that
the sets are of the same size), the probability that i and j will end up under different auxiliary nodes is
≥ (1− ε).

Thus, in any case, E[|TDij |] ≥ (1− ε)|TOij | − 6εn.

Proof of Theorem 4. Lemma 7 guarantees the first bullet. For the second bullet, denote by TO the optimal
solution. We note that TO is binary. Furthermore, due to Lemma 8 and Fact 2, we get,

E[dis(TD)] =
∑
i<j

wijE[|TDij |]

≥
∑
i<j

wij((1− ε)|TOij | − 12εn)

= (1− ε)dis(TO)− 12εn
∑
i<j

wij

≥ (1− 38ε)dis(TO).

Since the expectation is over trees with our desired characteristics (i.e., constant number of internal nodes and
each node contains a small number of children), we deterministically take TD to be the tree maximizing the
expectation. Thus, by choosing ε′ = ε/38 we get the desired result.

E DEFERRED ALGORITHMS OF SUBSECTION 4.2

Algorithm 5 EPRAS for the dense dissimilarity case.

Enumerate over all trees, T , with k internal leaves.
for each such T do

for {αi}i≤k ⊂ {iε2n : i ∈ N ∧ i ≤ 3
ε } do

for {βij}i≤k,j≤k ⊂ {iε3n2 : i ∈ N ∧ i ≤ 9
ε } do

Run PT ({αi}, {βij}, εerr = ε3, δ).
Compute the dissimilarity based on T and PT ’s output.

Return the maximal dissimilarity tree encountered.

HC via Sketches and HCC

F DEFERRED PROOFS OF SECTION 5

Proof of Proposition 1. For each vertex v ∈ V , our algorithm maintains scores s(v) which are initially set to
zero. The algorithm will actually remove the node of largest score at each step and recurse on the remaining
vertices, hence producing a caterpillar tree (a tree whose every internal node has at least one leaf). A similar
greedy strategy to the one described below can also produce a tree (not necessarily caterpillar) in a bottom-up
fashion by repeatedly merging node pairs. Notice that the algorithm is deterministic.

For every edge (i, j) of similarity weight wsij , decrease s(i) and s(j) by n−2
2 wsij , and increase every other score

s(k) by wsij , where k ∈ V \ {i, j}. The intuition behind such assignments, is that for a pair i, j of similarity wsij ,
whenever we remove another node k first, k’s contribution to the hcc objective increases by wsij , as k lies outside

of the lowest common ancestor between i, j. Similarly, for every edge (i, j) of dissimilarity wdij , we increase s(i)

and s(j) by n
2w

d
ij , and decrease every other score s(k) by wdij , where k ∈ V \ {i, j}.

Next, let u ∈ V have the largest score and V ′ = V \{u}. Remove u and any adjacent edges from the graph, then
recursively construct a tree T ′1 restricted on V ′ for its leaves (if |V ′| = 2, just output the unique binary tree on
the two nodes). The final output of the algorithm is a new tree T1 with one child being u and the other child
being the root of T ′1.

We now prove correctness: Let u as above and let wsu =
∑

(u,v) w
s
uv, w

d
u =

∑
(u,v) w

d
uv,W

s =
∑

(i,j) w
s
ij ,W

d =∑
(i,j) w

d
ij . Notice that according to the scoring rule of our algorithm:

s(u) = (W s − wsu)− n−2
2 wsu − (W d − wdu) + n

2w
d
u

Note that by induction, tree T ′1 that has n− 1 leaves, satisfies the conclusion of the proposition:

hcc(T ′1) ≥ 1
3 (n− 3)(W s − wsu) + 2

3 (n− 1)(W d − wdu) (5)

Since u had the largest score, it follows that s(u) ≥ 0. Therefore:

(W s − wsu)− (W d − wdu) ≥ n−2
2 wsu + n

2w
d
u

We add 1
2 [(W s − wsu)− (W d − wdu)] to both sides:

(W s − wsu)− (W d − wdu) ≥ 1
3 (hccsu − (W d − wdu)− nwdu)

where hccsu = (n− 2)wsu + (W s − wsu) is the total contribution u can have due to similarity weights in any tree.
By rearranging terms:

(W s − wsu) + nwdu ≥ 1
3hcc

s
u + 2

3hcc
d
u (6)

where hccdu = (W d − wdu) + nwdu is the total contribution u can have due to dissimilarity edges in any tree.

Let hccu(T1) be the contribution towards the hcc objective of node u in T1 and observe we can easily compute
this quantity as u got removed first. In other words, hccu(T1) = (W s − wsu) + nwdu, as any dissimilarity edge
(u, ·) has a lowest common ancestor of size n and for every similarity edge (i, j), i, j 6= u, u is a non-leaf of Tij .
Summing up eq. (5) and (6), and noting that hcc(T1) = hccu(T1) + hcc(T ′1) concludes the proof.

Proof of Theorem 6. A simple calculation suggests that the expected value for HCC is at least:

min
p

{
p · 13 + 0.585 · (1− p), p · 23 + (1− p) · 13

}
By balancing the two terms, the minimum is achieved when the parameter p = 1−

1
3

0.585 and the final approxi-
mation factor becomes 0.4767.

Proof of Theorem 7. There are two cases to consider: either
∑
e w

d
e ≥

∑
e w

s
e or

∑
e w

d
e ≤

∑
e w

s
e. We first

consider the case that
∑
e w

d
e ≥

∑
e w

s
e (the second is handled symmetrically). We rewrite the objective function

Vainstein, Chatziafratis, Citovsky, Rajagopalan, Mahdian, Azar

for some HC tree T .

hcc±(T) =
∑
e

wde(Te) +
∑
e

wse(n− Te)

=
∑
e

wde(Te) +
∑
e

(1− wde)(n− Te)

= 2
∑
e

wde(Te) +
∑
e

(n− Te)− n
∑
e

wde

= 2
∑
e

wde(Te) +
1

3
n

(
n

2

)
− n

∑
e

wde ,

where the last equality follows from Fact 3. We first observe that a tree that maximizes the dissimilarity
instance defined by wde is a tree that maximizes the original HCC± objective. Let Od denote the tree maximizing
the dissimilarity objective and let O denote the tree maximizing the HCC± objective. By Theorem 5 we know
that for any constant ε > 0 algorithm 7 (denoted henceforth as ALG) generates dissimilarity of at least (1 −
ε)
∑
e w

d
e(Ode) = (1− ε)

∑
e w

d
e(Oe). Therefore, for any ε > 0,

hcc±(ALG) = 2
∑
e

wde(ALGe) +
1

3
n

(
n

2

)
− n

∑
e

wde

≥ 2(1− ε)
∑
e

wde(Oe)

+
1

3
n

(
n

2

)
− n

∑
e

wde

= (1− 2ε)
∑
e

wde(Oe)

+
∑
e

wde(Oe) +
1

3
n

(
n

2

)
− n

∑
e

wde

≥ (1− 2ε)

·
(∑

e

wde(Oe) +
1

3
n

(
n

2

)
− n

∑
e

wde
)

= hcc±(O),

where the last inequality follows from Fact 2.

The case that
∑
e w

d
e ≤

∑
e w

s
e is solved symmetrically (using Theorem 2 and Fact 1) which concludes the

proof.

G DEFERRED PROOFS OF SECTION 6

Proof of Theorem 8. Note that clearly the problem is in NP (since given a tree its revenue may be checked
efficiently), therefore we only need to show that it is NP-hard.

Ahmadian et al. (2019) showed that the unweighted revenue case is APX-hard under the Small Set Expansion
hypothesis. This in turn guarantees that the unweighted revenue problem is NP-hard assuming the Small Set
Expansion. Next we show how to reduce an unweighted revenue instance to a dense unweighted revenue instance
(in polynomial time).

Roughly speaking we will simply add a disconnect clique of size n to the general graph. Formally, let G =
(D,ED, w) denote a general revenue instance such that, D = {d1, . . . , dn}. We convert G to a dense instance
G′ = (V,EV , w

′) simply by adding a clique of size n (disconnected from V) with similarities of size 1. We denote
this clique’s set of nodes by L = {`1, . . . , `n}. Therefore, w′(`i, `j) = 1, w′(di, dj) = w(di, dj) and w′(`i, dj) = 0.

Clearly G′ is dense. Let T ′ denote the optimal solution to G′. It is known that the optimal tree first cuts the
disconnected components of G′. Therefore, there exists a node u in T ′ such that the subtree rooted at u contains
the entirety of L and no data points from D. Since D is disconnected from L and due to the definition of the

HC via Sketches and HCC

revenue goal function, taking u and moving it to the top of T ′ (formally, if r′ is the root of T ′, then we create a
new root, r and attach u and r′ as its immediate children), can only increase T ′’s revenue. Thus, we may assume
w.l.o.g. that in T ′ the root already disconnects L and D.

Let vD and vL denote T ′’s root’s immediate children containing D and L respectively. Let T ′D denote the subtree
rooted at uD. T ′D is clearly optimal for instance G (since otherwise, we could have replaced T ′D with the optimal
tree for G, thereby increasing T ′’s revenue, contradicting the fact that it is optimal).

Thus, we converted, in polynomial time, the optimal tree for G′ to the optimal tree for G, proving that the dense
revenue problem is NP-hard.

Definition 6. We say that an unweighted graph is complement-dense if its complement graph (i.e., the graph
we get by removing all existing edges and adding all missing edges) is dense.

Lemma 10. The problem of finding a maximal revenue tree for revenue instances which are complement-dense
is NP-complete (assuming the Small Set Expansion hypothesis).

Proof. Note that clearly the problem is in NP (since given a tree its revenue may be checked efficiently),therefore
we only need to show that it is NP-hard.

As in Theorem 8, we reduce an unweighted revenue instance to a complement-dense unweighted revenue instance.
Specifically we do this by adding a disconnected path of length n2 to the original graph. Formally, let G =
(D,ED, w) denote a general revenue instance such that, D = {d1, . . . , dn}. We convert G to a complement-dense
instance G′ = (V,EV , w

′) simply by adding a path of size n2 (disconnected from V) with similarities of size 1.
We denote this path’s set of nodes by L = {`1, . . . , `n2}. Therefore, w′(`i, `i+1) = 1, w′(di, dj) = w(di, dj) and
w′(`i, dj) = 0. Note that G′ is clearly complement-dense.

As in the proof of Theorem 8 exists a node u in the optimal solution of G′, T ′, such that u contains the entirety
of L and no data points from D. Again, we may move u and its subtree to the root of T ′ thereby only increasing
the revenue. Thus, given T ′ we may take its child that contains D as our optimal tree for G.

Observation 5. Since the problem of finding a minimal (Dasgupta) cost tree is the dual problem of the revenue
problem, the unweighted, complement-dense Dasgupta cost problem is NP-complete (assuming the Small Set
Expansion hypothesis).

Proof of Theorem 9. Note that clearly the problem is in NP (since given a tree its dissimilarity may be checked ef-
ficiently), therefore we only need to show that it is NP-hard. We do this by reducing the unweighted, complement-
dense Dasgutpa cost problem to this problem.

Roughly speaking we simply consider the complement graph of the HC instance. Formally, given a complement-
dense HC instance G = (V,E,w) we define its complement as Gc = (Vc, Ec, wc). Therefore, for any edge e,
wc(e) = 1− w(e). Thus,

min
T
costG(T) = min

T

∑
w(e)|Te|

= min
T

∑
(1− wc(e))|Te|.

Dasgupta (2016) proved that for any binary tree T and for any HC instance which is a clique H its cost is fixed
and costH(T) = 1

3 (|V (H)|3 − |V (H)|). Since the optimal tree for this cost function is in fact binary we get,

min
T

∑
(1− wc(e))|Te| =

1

3
(|V (G)|3 − |V (G)|)−max

T

∑
wc(e)|Te|.

Since w defines a complement-dense instance, wc defines a dense instance. Thus, we reduced our original problem
to maxT

∑
wc(e)|Te| such that wc is dense, thereby completing the proof.

Proof of Theorem 10. The theorem is proven simply by rewriting the HCC± objective in terms of either revenue
or dissimilarity (choosing that which contributes more to the total weight) as in the proof of Theorem 7 and
then using Theorems 8 and 9.

	DEFERRED PROOFS OF SUBSECTION 3.1
	DEFERRED PROOFS AND DEFINITIONS OF SUBSECTION 3.2
	DEFERRED PROOFS AND DEFINITIONS OF SUBSECTION 3.3
	DEFERRED PROOFS OF SUBSECTION 4.1
	DEFERRED ALGORITHMS OF SUBSECTION 4.2
	DEFERRED PROOFS OF SECTION 5
	DEFERRED PROOFS OF SECTION 6

