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Abstract

Recently, Hierarchical Clustering (HC) has
been considered through the lens of optimiza-
tion. In particular, two maximization objec-
tives have been defined. Moseley and Wang
defined the Revenue objective to handle simi-
larity information given by a weighted graph
on the data points (w.lo.g., [0,1] weights),
while Cohen-Addad et al. defined the Dis-
similarity objective to handle dissimilarity
information. In this paper, we prove struc-
tural lemmas for both objectives allowing us
to convert any HC tree to a tree with con-
stant number of internal nodes while incur-
ring an arbitrarily small loss in each objec-
tive. Although the best-known approxima-
tions are 0.585 and 0.667 respectively, us-
ing our lemmas we obtain approximations
arbitrarily close to 1, if not all weights are
small (i.e., there exist constants €,d such
that the fraction of weights smaller than ¢,
is at most 1 — €); such instances encom-
pass many metric-based similarity instances,
thereby improving upon prior work. Finally,
we introduce Hierarchical Correlation Clus-
tering (HCC) to handle instances that con-
tain similarity and dissimilarity information
simultaneously. For HCC, we provide an ap-
proximation of 0.4767 and for complementary
similarity /dissimilarity weights (analogous to
+/— correlation clustering), we again present
nearly-optimal approximations.
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1 INTRODUCTION

Clustering is a fundamental problem in unsupervised
learning and has been widely and intensively explored.
Classically, one considers a set of data points (with
some notion of either similarity or dissimilarity be-
tween every pair) and then partitions these data points
into sets. In order to differentiate between differ-
ent partitions, many classical flat clustering objectives
have been introduced, such as k-means, k-median and
k-center. However, what if one would like a more gran-
ular view of the clusters (specifically, to understand the
relations between data points within a given cluster)?

To explore these questions, the notion of Hierarchi-
cal Clustering (HC) has been introduced. One way of
studying this notion is through the lens of optimiza-
tion. Dasgupta (2016) initiated this line of work, in-
spiring others to consider several different objectives.
Two notable objectives that we will consider in our
paper are the Revenue and Dissimilarity objectives.

The problem is defined as follows. We are given a set of
data points with some notion of similarity (or dissim-
ilarity) between every pair of points which is defined
by a weighted graph, G = (V, E, w) such that V is our
set of data points, |V| = n and w : E — Ryo. We
then define an HC tree as a rooted tree with leaves in
bijective correspondence with the original data points.
Intuitively, we would expect a ”good” HC tree T to
split more similar data points towards the leaves of the
tree. When we are given similarity weights, this cor-
responds to larger weights. Thus, Moseley and Wang
(2017) proposed to maximize the Revenue objective:

revg(T) = Zw“(n —|T31),

1<j

(Rev-HC)

where T;; is the subtree rooted at the lowest com-
mon ancestor (LCA) of ¢ and j, and |T};| denotes the
number of leaves of Tj; for any binary tree 7. The
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second objective we consider was defined within the
dissimilarity realm by Cohen-Addad et al. (2018). In
this case, larger weights corresponds to dissimilar data
points. Therefore, a (binary) tree T should be re-
warded for splitting larger weights towards its root and
thus their Dissimilarity objective is to maximize:

disq(T) = > wij|Tyl.

1<J

(Dis-HC)

Note that when considering both objectives, we may
(and will) assume w.l.o.g. that w;; € [0,1].

Since the objectives have been introduced, there has
been a line of work designing approximation algo-
rithms. For the Rev-HC objective, the best approxi-
mation ratio is 0.585 (Alon et al., 2020), while for the
Dis-HC the best ratio is 0.667 (Charikar et al., 2019a).
In terms of hardness, both problems have been proven
to be APX-hard (Ahmadian et al., 2019; Chatziafratis
et al., 2020) and thus do not admit optimal or even ar-
bitrarily close to optimal approximations. Given these
results, it seems natural to ask whether this hardness
is inherent in the objectives, or rather can be some-
how circumvented. Towards that end, we consider the
following question:

Is there a large class of interesting instances that can
be shown to have significantly better approximations?

Surprisingly, we show that if we consider instances
with weights that are not all small (see Definition
3) then the above holds true. First, we obtain ap-
proximations arbitrarily close to optimal (specifically,
Efficient Polynomial Time Randomized Approxima-
tion Schemes (Efficient-PRAS)) for both Rev-HC and
Dis-HC objectives. Interestingly, in order to do so we
first consider a tree’s sketch (defined as the tree re-
sulting from removing all its leaves (and corresponding
edges)). Even though it is well known that the opti-
mal trees for these settings are binary (and therefore
contain n — 1 = Q(n) nodes), we show that there ex-
ist trees with constant sized (i.e., a constant number
of nodes and edges) sketch, for both objectives, that
approximate the optimal values arbitrarily good. We
stress that this holds true for any HC instance,
and not only if not all input weights are small.
We then leverage the seminal work of Goldreich et al.
(1998) in order to obtain approximations arbitrarily
close to optimal, if not all weights are small.

Second, we show that many interesting, and formerly
researched problems, are encapsulated by these types
of instances. Specifically, we show that a large fam-
ily of metric-based similarity instances (as defined by
Charikar et al. (2019b) - see Subsection 3.3) are such
instances, and thus admit approximations arbitrarily
close to optimal. We note that this partially answers
an open question raised in their work of whether there

exist good approximation algorithms for low dimen-
sions. We also note that our results immediately pro-
vide an Efficient-PRAS for similarity instances defined
by a Gaussian Kernel in high dimensions when the
minimal similarity is § = (1) which was specifically
considered by Charikar et al. (2019b); improving the
approximation from 1%‘3'5 to an approximation that is
arbitrarily close to optimal. Finally, we show that
these results also provide an approximation that is
arbitrarily close to optimal, for the +/- Hierarchical
Correlation Clustering problem (defined next).

Up until now we have only considered instances han-
dling either similarity or dissimilarity information, but
not both. In many scenarios, however, both types of in-
formation are accessible simultaneously. These scenar-
ios have been tackled within the realm of correlation
clustering both in theory (e.g., Bansal et al. (2002);
Swamy (2004); Charikar et al. (2005); Ailon et al.
(2008); Chawla et al. (2015)) and in practice (e.g.,
Bonchi et al. (2014); Cohen and Richman (2001)).
However, this line of work has been centered around
flat clustering. With that in mind, it is natural to ask:

In presence of mized information, how can we extend
the notion of Correlation Clustering to hierarchies?

In order to answer the question, we introduce the Hi-
erarchical Correlation Clustering objective. The ob-
jective interpolates naturally between the Rev-HC and
Dis-HC objectives. Again, we are given a set of data
points; however, in this case every pair of data points
¢ and j are given a similarity weight wj; and a dis-
similarity weight wflj. The objective is then defined
as,

heea(T) =Y wij(n — |Ty)) + > wi|T;|. (HCC)

i<j i<j

Observe that this objective is a direct generalization

of the Rev-HC and Dis-HC objectives simply by letting

either wflj = 0 or wj; = 0 respectively. Moreover, it

captures the fact that similar points (i.e., large w;;)

should be separated towards the tree’s leaves (yielding

a large n — |T;;] coefficient), whereas dissimilar points
d

(i-e., large wy;) should be split towards the tree’s root

(yielding a large |T;;| coefficient).

Finally, we consider the +/— variant of correlation
clustering (Bansal et al., 2002) extended to hierarchies
as well. We define this objective as the HCC objective
reduced to instances that guarantee w;; =1 — wfj for
all data points ¢ and j. We will refer to this objec-
tive as the HCC* objective. This may be motivated by
the following folklore example: assume one is given a
document classifier f that returns a confidence level in
[0, 1] corresponding to how certain it is that two docu-
ments are similar. Thus, 1 minus the confidence level
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may be seen as how confident the classifier is that the
two documents are dissimilar. For further comments
regarding our formulation and how it is related to the
correlation clustering objectives of Bansal et al. (2002)
and of Swamy (2004), see Section 5.

Contributions of this paper. With respect to the
Rev-HC and Dis-HC objectives:

e We present structural lemmas for the revenue
and dissimilarity settings that provide a way of
converting optimal trees in both settings such
that the resulting trees (1) are of constant sketch
size and (2) approximate the respective objec-
tives arbitrarily close (see Figure 1 for an exam-
ple). Note that this result holds for any similar-
ity /dissimilarity input graphs.

e We use the resulting trees in order to obtain
Efficient-PRAS’s for revenue or dissimilarity in-
stances with not all small weights (see Definition
3). We note that this includes an Efficient-PRAS
for any similarity Guassian Kernel based instances
with minimal weight 6 = (1) (specifically consid-
ered by Charikar et al. (2019b)).

e We show that many metric-based similarity in-
stances in fact do not have all small weights, thus
admitting Efficient-PRAS’s. We note that this
partially solves the case where the metric’s dimen-
sion is constant (raised in Charikar et al. (2019b)).

With respect to the HCC objective:

e We present a 0.4767 approximation for the HCC
objective by extending the proof of Alon et al.
(2020) to include dissimilarity weights.

e We combine our Revenue and Dissimilarity algo-
rithms to produce an Efficient-PRAS for the HCC*
objective.

Finally, we provide hardness results in all (three) set-
tings in Section 6.

Techniques. In order to reduce HC trees to trees
with constant sketch that approximate the Rev-HC and
Dis-HC objectives arbitrarily closely, we use the fol-
lowing techniques. For both objectives the first step
is to consider an optimal solution, 7', and contract it
(i.e., contract some subgraphs of T into single nodes)
into an intermediate tree denoted as K (7). Briefly,
K(T) is generated by recursively finding a constant-
sized set of edges whose removal creates a set of trees,
each containing a small and roughly equal number of
data points. Thereafter, each such tree is contracted
(within T') to a single node. This results in K(T)
that guarantees that (1) it contains a constant num-
ber of nodes and (2) its structure resembles that of T

which allows us to easily convert it to the final rev-
enue/dissimilarity tree. Note that during this process
of contraction, some data points may have been con-
tracted as well (see Figure 2). Next we describe, at
a high level, how to convert K(T') to a proper rev-
enue/dissimilarity tree.

Revenue setting. In the revenue setting we convert
K(T) to a tree denoted by T%, such that T has a
constant-sized sketch and approximates the revenue
gained by T up to an arbitrarily small constant fac-
tor. In order to do so we replace each contracted node
in K(T) with a “star” structure (which is an auxil-
iary node with the contracted data points connected
as its children) - see Figure 3. Note that there is a
trade-off between T’s internal tree size and the rev-
enue approximation factor guaranteed (see Section 3
for formal details).

Dissimilarity setting. In the dissimilarity setting we
convert K(T) to a tree denoted by TP such that T
has a constant-sized sketch and approximates the dis-
similarity gained by T up to an arbitrarily small con-
stant factor. Instead of replacing the contracted node
with a “star” structure as in the revenue case, we re-
place it with a random “comb” structure (formally de-
fined in Section 4 and depicted in Figure 3). Also here,
there exists a trade-off between TP’s size and the ap-
proximation factor.

Related Work. HC has been extensively studied and
therefore many variations have been considered (for a
survey on the subject, see Berkhin (2006)). The work
on HC trees began within the realm of phylogenetics
(Sneath and Sokal, 1962; Jardine and Sibson, 1968)
but has since then expanded to many other domains
(e.g., genetics, data analysis and text analysis - Alon
et al. (1999); Brown et al. (1992); Seo and Shneider-
man (2002)).

As stated earlier, Dasgupta elegantly linked the fields
of approximation algorithms and HC trees, thereby
initiating this line of work. Formally, given an HC tree,
T, Dasgupta (2016) considered the problem of mini-
mizing its cost, costq(T) = > wy;|T;;|. In his work,
Dasgupta showed that recursively finding a spars-
est cut results in a O(log"®n) approximation. This
analysis was later improved to O(y/logn) (Charikar
and Chatziafratis, 2017; Cohen-Addad et al., 2018).
Charikar and Chatziafratis (2017) also showed that no
constant approximation exists (assuming the Small Set
Expansion hypothesis).

Later, Moseley and Wang (2017) considered the
Rev-HC objective. Charikar et al. (2019a) showed a
0.3364 approximation through the use of semi-definite
programming. Later, Ahmadian et al. (2019) made
use of the MAX-UNCUT BISECTION problem in order
to prove a 0.4246 approximation. Finally, Alon et al.
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(2020) improved upon this by showing a 0.585 approx-
imation, by proving the existence of a bisection which
yields large revenue.

Cohen-Addad et al. (2018) considered the Dis-HC ob-
jective (defined earlier). In their work they showed
that the Average-Linkage algorithm is a % approxima-
tion and then improved upon this by presenting a sim-
ple algorithm achieving a % approximation. Charikar
et al. (2019a) then showed a further improvement by
presenting a more intricate algorithm that achieves a
0.6671 approximation.

Since the work of Bansal et al. (2002), correlation
clustering has been extensively studied. Consider-
ing more theoretical settings, the work most relevant
to ours is that of Swamy (2004), showing a 0.766-
approximation for a maximization version of the prob-
lem, interpolating between roundings from multiple
hyperplanes, instead of just one as in Goemans and
Williamson (1995). The problem is also highly signif-
icant in practice as well - see e.g., spam filtering (Ra-
machandran et al., 2007), image segmentation (Kim
et al., 2011) and co-reference resolution (Cohen and
Richman, 2002; Elmagarmid et al., 2006).

Figure 1: Converting an HC tree to a tree of constant
Sketch while approximating the goal function.
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Figure 2: Converting an HC tree T to K (T).
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Figure 3: Converting K (T') to an HC tree for each goal
function.

2 PRELIMINARIES

We first consider several graph-specific definitions.

Definition 1. Given a tree T and a set of edges F C
E(T), let T—F denote the set of trees that results from

removing F from E(T). Furthermore, given a set of
nodes U C V(T), let T — U denote the set of trees that
results from removing U (and any edge that has a node
inU) from T.

Definition 2. Given a graph G and a subset of edges
U C V(G) we define the contraction of U as the re-
placement of U within G with a single node attached
to all edges which were formerly attached to U.

As pointed out by Charikar et al. (2019a), the average-
(n=2)

linkage algorithm generates ~—= > w;; revenue and

w >~ w;; dissimilarity, yielding the following facts:

Fact 1. rev(T°) > (";2) > i< Wij, where TO denotes

the optimal revenue tree.
Fact 2. dis(T°) > %"ZKJ. w;j, where TO denotes
the optimal dissimilarity tree.

Furthermore, as pointed out by Dasgupta (2016) all bi-
nary trees generate the same dissimilarity on instances
defined by cliques (i.e., w;; = 1 for all ¢ and j).

Fact 3. Zi,j |Ti;| = %(;)

A note on non-binary HC trees. Even though the
Rev-HC and Dis-HC objectives are defined for binary
trees, we make use of star structures. A star structure
is simply a node that contains more than two data
points as children (and therefore leaves). We use these
star structures as a proxy for any binary tree contain-
ing the same set of data points. More formally, by
replacing the star structure (within some larger tree)
with any binary tree containing the same set of data
points and then rooting it in the same place within the
original tree, the goal function would only increase.

In the revenue case this follows immediately. In the
dissimilarity case, however, by following the definition
of T}; plainly, clearly attaching all data points to a sin-
gle root results in an optimal tree. Therefore, we in-
stead extend the dissimilarity definition to non-binary
trees as follows. Given an HC tree T and internal
node v, let |T,| denote the set of data points contained
within the subtree rooted at v (in particular, for any 2
data points i and j, |Tj;| = |Tjcq(ij)|). We then define
the dissimilarity as

disg(T) =Y wy(|T,

+ 1T, ),

where v; and v; denote lca(i, j)’s children containing i
and j in their subtree. We emphasize the fact that for
binary HC trees, this definition coincides with the clas-
sic dissimilarity (since |15, [+|Ty,| = |T3;]). Clearly any
non-binary node may be replaced with a binary sub-
graph within the HC tree thereby only increasing the
dissimilarity generated. Therefore, any of our algorith-
mic results apply to the binary setting (by performing
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these replacements). Further, all of our approxima-
tion results are with respect to optimal binary trees
and thus directly apply to the binary setting.

Finally, we will use the following definitions through-
out the paper. (Recall that w.l.o.g. we may assume
that all weights are in [0, 1]).

Definition 3. An HC instance is said to have not all
small weights if there exist constants (with respect to
[V'|) p, T such that the fraction of weights smaller than
T, 18 at most 1 — p.

Definition 4. An algorithm is considered an
Efficient-PRAS if for any € > 0 the algorithm runs in
time f(1/€)n®® and approzimates the optimal solu-
tion’s value up to a factor of 1 —e with high probability.

3 THE REVENUE CASE

In this section we consider the Rev-HC objective. In
Subsection 3.1 we show how to create a tree with
constant sized sketch which approximates the optimal
revenue tree up to an arbitrarily small factor (for an
overview see Techniques). Note that this result holds
for any revenue instance and thus may be of indepen-
dent interest. We then leverage this and in Subsection
3.2 we present an Efficient-PRAS for instances with
not all small weights. Finally, in Subsection 3.3 we
show that a large family of metric-based similarity in-
stances have weights that are not all small - thereby
admitting Efficient-PRAS’s.  We note that this par-
tially solves an open question raised by Charikar et al.
(2019b) regarding constant dimension instances and
immediately provides Efficient-PRAS’s for similarity
instances defined by a Gaussian Kernel in high dimen-
sions when the minimal similarity is 6 = (1) which
was specifically in their work as well.

3.1 A Reduction to Constant Sketches

We begin by first proving the existence of a tree with
constant-sized sketch that approximates the optimal
tree arbitrarily well.

Theorem 1. Let TC denote the optimal revenue tree
and assume it contains n leaves (i.e., data points).
Then, for any e > 0, there exists a tree T™ such that (i)
TE contains ©(1/¢) internal nodes each with at most
3en children, and (ii) rev(TT) > (1 — 19¢)rev(T©).

In order to construct 7% we use a two step process:
we first create an intermediate tree, denoted as K (T)
(to be defined) and then convert that to our final tree.
In fact, this process may be applied to any binary tree
T (in particular, we will apply it to T°). Before we
can define the process that generates K (TO), we must
first present several definitions and lemmas, the first
of which was shown by Dasgupta (2016) (this was not

explicitly proven, and therefore we add the proof in
the Appendix for completeness).

Lemma 1. Given a rooted binary tree T with n data
points as leaves, there exists an edge whose removal
creates two binary trees each with at least 5 data points
(and therefore at most %") Furthermore this edge can
be found in polytime.

Lemma 2. Given a rooted binary tree T with n data
points, there exists a set of edges F' such that i <
|F|+1 < 1 and the number of data points in each tree
of T — F 1is at least en and at most 3en. Furthermore
F can be found in polytime.

Proof sketch (full proof in Appendiz). Apply Lemma
1 recursively and stop once each tree in T — F' con-
tains < 3en data points. O

The following is a straightforward but useful lemma.
(See Appendix for proof).

Lemma 3. For an arbitrary tree T, let V3 denote the
set of vertices with degree > 3 and L denote its set of
leaves. Then, |V3| < |L| — 1.

Definition 5. Given F as defined by Lemma 2 we
define two sets of nodes: blue and green, denoted by
B and G. A blue node is any node connected to any
edge of F' or that is T'’s root. A green mode is any
node that is not blue and that has two children, each
of which contains a blue node as its descendant.

Next we define the process that given a binary tree,
contracts it compactly. Given an input T, we denote
the process’ output as K(7T), formally defined by Al-
gorithm 1. (See Figure 2 for a pictorial example). We
note that each contracted node might have originally
contained data points. We therefore associate every
contracted node, ¢ with its set of data points, D.. Fi-
nally, we define the process that given any binary tree
T, outputs T - formally defined by Algorithm 2.

Algorithm 1 Algorithm to convert T to K (T).

Obtain F' as described in Lemma 2.
Color the nodes green or blue as in Definition 5.
for every tree T; in T — (BUG) do
Contract T;.
Return the resulting tree as K (7).

Algorithm 2 Algorithm to convert T to T%.

K(T) < Algorithm 1 applied to 7.
for each node ¢ € K(T') and its set of data points
D. do
Attach a (new) auxiliary node as ¢’s child (in
Attach D, as the auxiliary node’s children.
Return the resulting tree as 7.
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Remark 1. We note that T® remains binary (except
the auziliary nodes). This is in fact true since other-
wise this internal node would have contained at least
2 children which are colored green/blue (since it may
only have a single auziliary node). Thus, there would
have been a green node contained within this contracted
component in contradiction to the definition of K(T).

In what follows we show that for any binary tree T,
(1) TH has a constant sketch and (2) |T}f| is (approx-
imately) upper bounded for any data points ¢ and j
(which in turn guarantees that rev(T%) is close to T
when T = T©). Due to lack of space we defer the
proof of Lemma 4 to the Appendix.

Lemma 4. T contains ©(1/¢) internal nodes each
with at most 3en children.

Lemma 5. For any two data points i and j, |T£‘| <
|Ti;| + 6en.

Proof. Consider any three data points in T, 4,5 and
k, such that k& ¢ T;;. We will show that k ¢ Ti? for
all but 6en such k’s. In order to prove our lemma we
first introduce the following notations. First, for any
node u we denote the set of data points contained in
its induced subtree as L(u). Secondly we note that
any node colored green or blue in T will not be con-
tracted and therefore will appear in V(T®). Finally,
we observe the following given our contraction process.

Observation 1. Let v € V(T) denote a child of a
green/blue node and let v* € V(TT) denote the node
that contracted v in TT. Therefore, L(v) = L(v*).

Observation 2. Data points i and j appear under the
same auxiliary node in TT if and only if i and j were
contained in the same tree of T — (B UQG).

Recall that our goal is to show that if & ¢ Tj; then
k ¢ Ti?. Towards that end, denote by v;; (resp. v
and v;) ¢ and j’s LCA in T'. Therefore, v;;, = v;5 and
v;; is a descendant of v;,. Furthermore, let {TPY¢}
denote the set of trees defined by T' — (B U G) and
let TP9C (resp. TPYC and T,7°%) denote the tree in
T — (BUQG) containing 4 (resp. j and k).

We first assume k ¢ T;P9¢ and k ¢ T?YC. Therefore,
a green or blue node must be either on the path £ —
Vi, or on the path v;; — v;,. Otherwise there must
be a green or blue node on the path ¢ — v;; and on
the path j — v;;. We consider each case separately.
(See Figure 4).

Vik = Vjk

case 2 case 1
case 34" \Vij Uk

V; Vj

Figure 4: Explanation to proof of Lemma 5 (such that
ve = a for a € {i,5,k}).

Case 1. There exists a blue or green node on the path
k — vi;: We further split this case into two cases.
The first is that ¢ and j are part of the same tree
of T — (BUG). In this case they will end up under
the same auxiliary node and due to Observation 2 we
are guaranteed that k ¢ Tf;“ The second case is that ¢
and j are not part of the same tree and therefore there
exists a blue/green node on the path ¢ — j. Thus, the
node v;; must be green or blue and due to Observation
1, ¢ and j’s lca will remain lower than ¢ and k’s in T'Z.
Therefore, k ¢ T}F.

Case 2. There exists a blue or green node on the path
v;5 — i In this case either vy, is green/blue and due
to Observation 1 we are done. Otherwise some other
node along v;; — v is green/blue and then Obser-
vation 1 guarantees that k will not enter the subtree
defined by i and j’s lca. Thus, in any case, k & Tg

Case 3. There exists a green or blue node on the paths
i — v;; and j — v;;: If vy; is green/blue then Obser-
vation 1 guarantees that k will not enter the subtree
defined by i and j’s lca. Otherwise, we are guaranteed
to have two separate green/blue nodes, one on the path
i — v;; and one on the path j — v;;. Therefore, v;;
must be green/blue. Hence, in either case, k ¢ Tff

Thus, we have shown that in all 3 cases if k ¢ T,2Y¢
and k & TjBUG then k ¢ T,}j' Since the number of
data points within both T;% and TPYC is at most
3en each, we get that at most 6en such k’s may be
contained in T;F. Therefore, |Tf| < |Tj;| + 6en, con-
cluding the proof. O
Finally, combining Lemmas 4 and 5 for 7' = T° (i.e.,

the revenue optimal solution) with Fact 1, is enough
to prove Theorem 1.

Proof of Theorem 1. Lemma 4 is enough to prove the
first bullet. We consider the second bullet. It is a
known fact that T may be taken to be binary. There-
fore, due to Lemma 5 and Fact 1, we get,

rev(TT) = sz‘j(n - |T5|)

i<j

> Zwij(n - |Tg| — Gen)
i<j

= rev(T°) — 6en2wij

> (1 — 19¢)rev(T°),

where the last inequality is due to Fact 1 and since n
is assumed to be large enough. O

3.2 An Efficient-PRAS for Revenue
Instances with Not All Small Weights

In this section we consider the problem of finding an
optimal revenue tree in instances with weights that are
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not all small and present an Efficient-PRAS. We show
that in a sense this is the best one could hope for, and
complement our result by showing that the problem
is NP-Complete and thus does not admit an optimal,
polynomial solution unless P = NP (see Theorem 8
in the Appendix).

Let € > 0, let |[V| = n and k = [1]. Finally, let
TR denote the tree guaranteed by Theorem 1 for e.
We may define T/’s revenue as follows. For every
one of T®’s internal nodes i, denote by D; its set
of children that are data points. Furthermore, let
W;; denote the total weight of the set of (similar-
ity) edges crossing between D; and D;. Therefore,
rev(TR) = > ici(IWij1 324 [Del), where the second
summation is over all sets Dy not contained in Tg (as
defined by Ts sketch). We note that due to Theo-
rem 1, the first summation is over at most ©(k) entries
(specifically, at most 20 - k).

Next, we consider the General Partitioning Property
Tester of Goldreich et al. (1998). Given values «; and
Bi; (representing the sizes of the data point sets and
the weight of edges between every pair of sets) the
property tester allows us to test whether there ex-
ists a graph partition with set sizes «;, and weight
of edges crossing between the different sets 8;;. The
property tester also takes as input €. and § which
define the error in «; and B;; and the probability
of failing, respectively. Formally, we denote this
as PT({a;},{Bij} €err,0). Thereafter, the property
tester returns the following: if there exists a partition
upholding the values o; and 3;; then the tester returns
this partition up to an additive error of neg,, in the
sizes of a; and additive error of n?e.,, in the sizes 3;;.
If such a partition does not exist, the tester returns
that such a partition does not exist.

Overall, this suggests an algorithm that guesses T
by guessing a tree of size 20 - k (see Theorem 1)
and guessing «; and §;; (simply through iteration).
Unfortunately, guessing o; and §;; exactly would only
yield a PRAS. To obtain an Efficient-PRAS, we guess
a; upto a factor of €2 and fB;; up to a factor of €.
This yields Algorithm 3. Lemma 6 (proved in the
Appendix) guarantees the approximation needed.

Algorithm 3 EPRAS for Revenue case.

Enumerate over all trees, T', with k internal leaves.
for each such T do
for {o;}i<i C {ie’n:i e NAi < 3} do
for {ﬁij}igk,jgk C {i€3n2 1 eNANL L %} do
Run PT({OAZ‘}, {ﬁij}, Cerr = 63, (5)
Compute the revenue given T and PT’s output.
Return the maximal revenue tree encountered.

Lemma 6. For every ¢ > 0, Algorithm 3 guarantees
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an approzimation factor of (1 — 18¢ — T:)

We note that the error from the property tester is offset
by the revenue from the optimal solution.

Theorem 2. Algorithm 3 is an Efficient-PRAS.

Proof. Lemma 6 guarantees that there exists é > 0
(specifically, ¢ = 18¢ + %) such that our algorithm
is a 1 — € approximation. The property tester runs

in time, exp(log(s—— )(%)k“) + O(ilog(ke/z(e”"'é)))n.

O€err/\ €crr
Further, we call the tester k* - (3/€)* - (9/€)*" times.
Now, since € < &, if ¢ = €3 then the algorithm is an
Efficient-PRAS. O

3.3 Metric-Based Similarity Instances

We follow the definitions as seen in Charikar et al.
(2019b). Suppose that our data points lie on a met-
ric M with doubling dimension D(M). Define a non-
increasing function g : R>g — [0,1]. Given two data
points ¢ and j let d;; denote their distance as defined by
our metric. Furthermore, we define the metric-based
similarity weights w;; = g(d;;).

Define A(e) = A to be the tree generated by the algo-
rithm that adds a constant e to all weights and then
runs Algorithm 3 for p, 7-weighted instances. We note
that A is well defined since the altered weights define
a graph with not all small weights for 7 = € and p = 0.

The following theorem shows that for a large class of
functions ¢ and metrics M, algorithm A is in fact an
Efficient-PRAS. We defer its proof to the appendix.

Theorem 3. Assume the metric’s doubling dimension
guarantees D(M) = O(1) and g is scale invariant and
{-Lipschitz continuous for £ = O(1). Then, A is an
Efficient-PRAS for the induced Revenue instance.

4 THE DISSIMILARITY CASE

4.1 A Reduction to Constant Sketches

In this section we show how to create a tree that ap-
proximates the optimal dissimilarity value. This tree
is produced by taking K (T°) for the optimal tree, T©
(as defined earlier) and altering it. As opposed to the
revenue case, this theorem guarantees O(1/¢€?) internal
nodes while maintaining a (1—e¢) approximation. Note
that this result holds for any dissimilarity instance and
thus may be of independent interest. For an overview
we refer the reader to our Techniques section.

Theorem 4. Let TC denote the optimal dissimilarity
tree and assume it contains n leaves (i.e., data points).
Then, for any € > 0, there exists a tree TP such that
(i) TP contains ©(1/€%) internal nodes, each with at
most 3e?n children, and (i) dis(TP) > (1—€)dis(T?).
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In order to obtain TP given a binary tree, T, we use
K(T) (as defined in Section 3). We then convert K (7T')
to TP, by randomly partitioning each contracted
node’s data points into 1/e clusters and attach-
ing them in a “comb”-like structure. The process
is defined in Algorithm 4 (see Figure 3 for an example).

Algorithm 4 Algorithm to convert T to TP.

K(T) < Algorithm 1 applied to 7.
for each node ¢ € K(T') and its data points D. do
Partition D, into 1/e random sets of equal sizes,
P={P,...,Py}
for P, € P do
Create a new auxiliary node, u;.
Attach P; as u;’s children.
Create a new node ¢;, and attach it between ¢
and its parent.
Attach wu; as ¢;’s child.
Return the resulting tree as 7.

Note that D, = 0 if ¢ is the root (since the root is
blue) and therefore ¢; is indeed only defined for ¢’s
that have a parent. Also note that as in Remark 1,
TP remains binary if we disregard the auxiliary nodes.
Next we show that TP is of constant size and that |T£
is (approximately) lower bounded.

Lemma 7. TP contains at most 20/€* and at least
2/€% internal nodes with at most 3€*n children.

Lemma 8. The resulting tree, TP, guarantees in ex-
pectation that, |TZIJD| > (1 —€)|T;5| — Gen.

We defer the proofs of Lemmas 7 and 8 to the Ap-
pendix. Finally, combining Lemmas 7 and 8 for T' =
T© with Fact 2, is enough to prove Theorem 4. (For
the formal proof, see Appendix).

4.2 An Efficient-PRAS for Dissimilarity
Instances with Not All Small Weights

In this section we consider the problem of finding an
optimal dissimilarity tree in instances with weights
that are not all small and present an Efficient-PRAS.
As in the revenue case, again we show that this is the
best one could hope for, and complement our result by
showing that the problem is NP-Complete and thus
does not admit an optimal, polynomial solution (see
Theorem 9 in the Appendix)

Let € > 0 and let TP denote the tree guaranteed by
Theorem 4 for €. As in the revenue case, for an inter-
nal node of TP, i, let D; denote the set of data points
that are ¢’s children and let W;; denote the set of (dis-
similarity) edges crossing between D; and D;. There-
fore, dis(TP) = > ijes (Wi; > pes |Del) + b, where

the second sum is over all sets D, contained in TZ’?
(as defined by T'P’s sketch). Furthermore, b is defined
as the dissimilarity gained by nodes within the same
"star” structure. Theorem 4 guarantees that |D;| is
small - therefore, since our instance has weights that
are not all small (and by Fact 2 the optimal solution
is large) this dissimilarity is negligible and we may as-
sume b = 0 since we already lose a factor of 1 — e.
Finally, recall that |S| < 20k.

Our Efficient-PRAS follows as in the revenue case and
is therefore deferred to the Appendix (Algorithm 7).
The following theorem is proven identically to the rev-
enue case and is therefore omitted.

Theorem 5. Algorithm 7 is an EPRAS for dissimi-
larity instances with weights that are not all small.

5 HIERARCHICAL CORRELATION
CLUSTERING

In this section we consider the case where the collected
data may contain both similarity and dissimilarity in-
formation. We first show a worst case approximation
and thereafter show an Efficient-PRAS for HCCT.

5.1 Worst Case Guarantees for HCC

Here we consider two separate algorithms which, if
combined properly, will yield our approximation. The
first is a simple greedy algorithm whereas the second
optimizes for the MAX-UNCUT BISECTION problem for
its top most cut and then continues with the greedy
algorithm. We first show baseline guarantees of the
greedy algorithm and then use the work of Alon et al.
(2020) in order to obtain guarantees on the second al-
gorithm with respect to the HCC objective. We defer
the following proof to the appendix.

Proposition 1. There exists a greedy algorithm, de-
noted by ALGgRrg, that returns an HC tree Ty guar-
anteeing,

hee(Th) = 5(n —2) waj + %nwaj
ij ij

Denote by ALG p;pyp the algorithm that generates an
HC tree by first cutting according to MAX-UNCUT
BISECTION based on the similarity weights of the in-
stance and then running ALGgrg on each of the two
resulting sides. Let OPT = OPT, 4 OPT, be the value of
the optimum HCC tree where OPTs = > w;;(n — [Oj5])
and OPTy = ) wfj|0ij|, defined such that O;; denotes
the number of leaves in the subtree rooted at the LCA
of i and j in the tree of OPT.

Lemma 9. Let Ty denote the HC tree returned by
ALGyyp- Therefore,

heeg(Ts) > 0.585 - OPT, + % - OPT,



Vainstein, Chatziafratis, Citovsky, Rajagopalan, Mahdian, Azar

Proof. For ease of exposition let T, = T'. The top-split
of T is a bisection which means that |L| = |R| = %
For ease of notation let:

s __ s d __ d
Wi = g w;; and Wp = E wi;
i,j€L i.jEL

Similarly, we define W3 and Wﬁlz. Notice that for the
L side, GREEDY will contribute at least % 2. Wi to
waj|Tij|, as per Proposition 1. Similarly, for the R

side. This means that in the tree T, any edge con-
n

tributes either 2 - 2 (if it was cut by GREEDY) or n
(if it was cut at the top-split of MAX-UNCUT BISEC-
TION). In any case, we have:

> owilTyl>3-5 wh>30PTa (1)
by using the upper bound 0PTy; < n ) wfj
We now deal with OPT,. Observe that:
Y wihi(n —|Ty) > W (5 +55) + Wi(5 +55)
> 2n(W; + W3)

since every edge within L will contribute 5 due to the
bisection, plus an extra 1 5 due to the greedy step.
The same is true for edges 111 R.

Finally, since we used a 0.8776 for MAaX-UNncuT BI-
SECTION, it holds directly from Alon et al. (2020) that:

> win

The lemma follows by summing eq. (1) and (2). O

—|Ty5]) > %-0.8776-0PT, > 0.585-0PTq (2)

Finally, we combine Proposition 1 and Lemma 9 in
order to yield the following Theorem (whose proof is
defered to the appendix).

Theorem 6. Running ALGgrp with probability p
and otherwise ALG B guarantees an approzimation
of 0.4767 for the HCC objective, when p = 0.43.

5.2 An Efficient-PRAS for HCC on complete
graphs

Here we consider the HCCT objective (as defined earlier
in the introduction) and show an Efficient-PRAS. We
also complement our results and show that in fact this
problem is NP-Complete and thus we cannot hope for
an optimal, polynomial solution (see Theorem 10 in
the Appendix).

Let ALGT denote the algorithm that runs Algorithm 3
and Algorithm 7 simultaneously and returns the tree
maximizing the HCC* objective. We prove that ALG
is in fact an Efficient-PRAS for the HCC* objective.
We defer the theorem’s proof to the appendix.

Theorem 7. ALG* is an Efficient-PRAS for the HCC*

objective.

6 HARDNESS RESULTS FOR
INSTANCES WITH NOT ALL
SMALL WEIGHTS

When considering instances with weights that are not
all small, we have only shown Efficient-PRAS’s up un-
til now. To complement our results, we show that
we can not hope for optimal, polynomial algorithms,
assuming the Small Set Expansion (SSE) hypothe-
sis. (For a formal definition of SSE see Charikar and
Chatziafratis (2017)). In fact, it is enough to show
that these objectives are NP-complete assuming the
instances are (1) unweighted and (2) guarantee that
Dici Wig = Qn 2). We call such instances dense in-
stances. We begin by stating the results (and there-
after providing proofs for each).

Theorem 8. The Revenue objective for dense in-
stances is in NPC (assuming SSE).

Theorem 9. The Dissimilarity objective for dense in-
stances is in NPC (assuming SSE).

Theorem 10. The HCCT objective is in NPC' (assum-
ing SSE).

7 CONCLUSION

In this paper we show that to optimize for the Rev-HC
and Dis-HC objectives, it suffices to consider HC trees
with constant-sized sketches, thereby greatly simpli-
fying these problems. This result can be applied to
both the heuristic setting (since it greatly reduces the
range of optimal solutions that need to be considered)
and the approximation setting. Specifically, an ap-
proximation algorithm may iterate over all constant
sized trees. Thereafter, it will need to partition the
data points into the leaves of the constant-sized tree
- thus reducing our problem to the well-studied realm
of graph partitioning problems.

We then consider the family of instances with weights
that are not all small. We show Efficient-PRAS’s for
both Rev-HC and Dis-HC objectives. Furthermore, we
show that this family of instances encompasses many
metric-based similarity instances. Finally, we intro-
duce the HCC objective which we hope will provide a
better connection between the realms of correlation
and hierarchical clustering. We then show a worst case
approximation of 0.4767 and show an Efficient-PRAS
for the HCC* objective that leverages our algorithms
presented for the Rev-HC and Dis-HC objectives for
instances with weights that are not all small.
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