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1 Detailed Proofs

In this section, we provide detailed proofs for Theorem 3 and Corollary 1, as well as a comparison with the
analysis of γT in Srinivas et al. (2010).

Proof of Theorem 3: We bound I(yt; f̂) = 1
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where for the last line we used det(AB) = det(A) det(B) which holds for all two square matrices of the same
dimensions. The equation (1) decouples the log det of the covariance matrix corresponding to k into that of kP
and a residual term depending on kO. We now proceed to bounding the two terms on the right hand side of (1).

We can upper bound the first term on the right hand side of (1) using a bound on the log det of the Gram matrix
in the D-dimensional feature space of kP . Let us define Φt,D = [φD(x1),φD(x2), . . . ,φD(xt)]

>, a t×D matrix
which stacks the feature vectors φ>D(xs), s = 1, . . . , t, at the observation points, as its rows. Notice that

KP,Xt,Xt
= Φt,DΛDΦ>t,D.

Consider the Gram matrix
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By Weinstein–Aronszajn identity1 (Pozrikidis, 2014)
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We can prove the following lemma on the relation between the log det and the trace of a positive definite matrix.

Lemma 1. For all positive definite matrices P ∈ Rn×n, we have

log det(P ) ≤ n log(tr(P )/n).

1That is a special case of matrix determinant lemma.
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The proof is provided at the end of this section.

We next bound the trace of ID + 1
τGt. Notice that, for all x ∈ X ,
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For the first line we expanded the Gram matrix, the second line holds by distributivity of trace over sum, and the
third line is a result of tr(AA>) = tr(A>A) which holds for any matrix A.

Using Lemma 1 and (2), we have
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To upper bound the second term on the right hand side of (1), we use kO(x, x′) ≤ δD. Notice that (It +
1
τKP,Xt,Xt

)−1 is a positive definite matrix whose largest eigenvalue is upper bounded by 1. For two positive
definite matrices P1, P2 with the same dimensions, we have tr(P1P2) ≤ λ̄P1

tr(P2) where λ̄P1
is the largest

eigenvalue of P1 (cf. Fang et al. (1994)). Thus
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Using Lemma 1, we have
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where for the last line we used log(1 + z) ≤ z which holds for all z ∈ R.

Putting (1), (3) and (4) together, we arrive at the following bound on the information gain.
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which holds for any arbitrary sequence Xt ⊆ X . Thus
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Proof of Lemma 1. Let {κm > 0}nm=1 denote the eigenvalues of P . Using the inequality of arithmetic and
geometric means
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Comparison with the analysis of Srinivas et al. (2010): In comparison, Srinivas et al. (2010), in their
analysis of the information gain, first showed that I(yt, f̂) = log det(It +KXt,Xt

) is a submodular function in Xt.
While finding the observation sequence that maximizes I(yT , f̂) is NP-hard (Ko et al., 1995), Srinivas et al. (2010)
used the properties of submodular functions to show that γT is within a constant factor of log det(IT +KX̃T ,X̃T

)

where X̃T is a sequence of observation points that is selected, in a greedy fashion, to maximize DT =
∑T
t=1 σ

2
t−1(xt).

Then, in order to bound log det(IT +KX̃T ,X̃T
), they used the proximity of the eigenvalues of KX̃T ,X̃T

and those
of the kernel k. In contrast, we directly work with the eigenvalues of k. The key idea in our analysis is the finite
dimensional projection in the RKHS which allows us to bound the information gain for an arbitrary observation
sequence, without having to handle the complexities of the greedy observation sequence and the eigenvalues of its
covariance matrix. In a related work to the approach of Srinivas et al. (2010), Seeger et al. (2008) proved bounds
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on E[I(yt, f̂)] where the expectation is taken with respect to a prior distribution on Xt. Those bounds are not
applicable to the sequential optimization problem due to the difference in the design of Xt.

Proof of Corollary 1: Under the (Cp, βp) polynomial eigendecay condition, the following bound on δD is
straightforwardly derived from the decay rate of λm.
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Under the (Ce,1, Ce,2, βe) exponential eigendecay condition,
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The first equality is obtained by a change of parameter. The inequality holds since
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which can be verified using the standard method of equating the derivative of the left hand side to zero.

With a similar logic to the polynomial eigendecay case, when βe = 1, we select
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Theorem 3 implies

γT ≤

((
2

Ce,2
(log(T ) + Cβe)

) 1
βe

+ 1

)
log(1 +

k̄T

τ
),

Cβe = log(
Ce,1ψ

2

τCe,2
) when βe = 1, and Cβe = log(

2Ce,1ψ
2

τβeCe,2
) + ( 1

βe
− 1)

(
log( 2

Ce,2
( 1
βe
− 1))− 1)

)
, otherwise.
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