
Neural Empirical Bayes

A Summary of the notations used in the paper

All notations used in the paper are summarized in Table 4.

Notation Definition
p(y|x) Likelihood function implicitly defined by the simulator
q�(y|x) Surrogate model of p(y|x)
p(y) Observed distribution
q✓(y) Estimator of p(y)
p(x) Unseen source distribution that has generated p(y)
q✓(x) Surrogate model of p(x)
q�(x|y) Variational posterior distribution
⇡(x) Proposal distribution used to generate a dataset in

order to train q�(y|x)

Table 4: Summary of the notations used in the paper.

B Properties of the log-marginal estimators LK and L̂K

B.1 Bias of LK(✓)

The bias of LK is derived from the Jensen’s inequality:
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where, since the logarithm is strictly concave, the equality in Eq. 9c holds iif the random variable p(y|xk), xk =
G✓(✏k) is degenerate, that is 9!c : p(xk) = �c(xk), which is not the case in general.

B.2 Convergence rate of LK(✓)

Closely following Nowozin (2018), we show that the bias of the estimator LK(✓) decreases at a rate O( 1

K ), in
particular:
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which implies
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Proof. Let w := p(y|x),x ⇠ q✓(x) and YK := 1

K

PK
i=1

wi. We have � := E [YK ] = E [w] =: µ because the
expectation is a linear operator. Let us expand log YK around E [w] with a Taylor series:
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Taking the expectation with respect to the samples xi leads to:

E [log YK ] = logE [w]�
1X

j=1

(�1)j

jE [w]j
E
⇥
(YK � E [w])j

⇤
.

We can relate the moments �i := E
⇥
(YK � E [YK ])i

⇤
of the sample mean YK to the moments µi :=

E
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⇤
of the samples w using the Theorem 1 of (Angelova, 2012):
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Expanding the Taylor series to order 3 leads to:
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which implies
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Again, we directly copy Nowozin (2018) to show the convergence rate of the variance of LK(✓) to 0 in O( 1

K ).

Proof. Using the definition of the variance and the Taylor series of the logarithm, we have:
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If we expand the last expression to the third order and substitute the samples moments �i with the central
moments µi we eventually obtain:

V [log YK ] =
1

K

µ2

µ2
�

1

K2
(
µ3

µ3
�

5µ2
2

2µ4
) + o(

1

K2
).

B.3 LK non-decreasing with K

Closely following Burda et al. (2016), we show the estimator is non-decreasing with K,

E [LK+1(✓)] � E [LK(✓)] .

Proof. Let I = {i1, ..., iK} ⇢ {1, ...,K + 1} with |I| = K be a uniformly distributed subset of K distinct indices

from {1, ...,K + 1}. We notice that EI

hPK
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K+1
for any sequence of numbers a1, ..., aK+1.

Using this observation and Jensen’s inequality leads to
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B.4 LK consistency

We show the consistency of the estimator LK , that is:

lim
K�!1

LK(✓) = log q✓(y). (11)

Proof. Using the strong law of large numbers:
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In Eq. 12a, we rewrite the definition of the estimator and then, in Eq. 12b we interchange the limit and logarithm
operators by continuity of the logarithm. In Eq. 12c, we use the strong law of large numbers and then, in Eq. 12d
we use the LOTUS theorem to rewrite the expectation with respect to the distribution q✓(x) implicitly defined
by the generative model G✓(·). Finally, Eq. 12e is obtained by marginalization.

B.5 Unbiased estimator L̂K

We want to show this estimator is unbiased,

EJ⇠P (J),✏1,...,✏K+J⇠p(✏)

h
L̂K

i
= log q✓(y),

where
L̂K = LK + ⌘

with ⌘ =
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LK+j+1(✓)�LK+j(✓)
P (J�j) .

Proof. Following closely Luo et al. (2020), we proceed as follows. First we observe that:
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where we have:

EJ⇠P (J),✏1,...,✏K+J⇠p(✏) [⌘] = EJ⇠P (J),✏1,...,✏K+J⇠p(✏)
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where Eq. 13e is a property of the Russian roulette estimator (see Lemma 3 of (Chen et al., 2019)) that holds
if (i) P (J � k) > 0, 8k > 0 and (ii) the series converge absolutely. The first condition is ensured by the choice
of P (J) and the second condition is also ensured thanks to the non-decreasing and consistency properties of the
biased estimator.

C Benchmark problems

Beyond doing inference on a real simulator from collider physics, we show the applicability of the methods on
three benchmark simulators inspired from the literature that are described below.

C.1 Simple likelihood and complex posterior (SLCP)

Given parameters x 2 R5, the SLCP simulator (Papamakarios et al., 2019) generates y 2 R8 according to:

µ = [x1, x2]
> (14a)
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3
(14b)
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4
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yj ⇠ N (µ,⌃), j = 1, ..., 4 (14f)

y = [y>
1
, ...,y>

4
]>. (14g)

The source data p(x) is uniform between [�3, 3] for each xi.

C.2 Two-moons

Given parameters x 2 R2, the the two-moons simulator (Ardizzone et al., 2019) generates y 2 R2 according to:

a ⇠ U(�
⇡

2
,
⇡

2
) (15a)

r ⇠ N (0.1, 0.012) (15b)

p = [r cos(a) + 0.25, r sin(a)]> (15c)

y = p+ [�
|x1 + x2|

p
2

,
�x1 + x2

p
2

]>. (15d)

The source data p(x) is uniform between [�1, 1] for each xi.
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C.3 Inverse Kinematics

Ardizzone et al. (2018) introduced a problem where x 2 R4 but that can still be easily visualized in 2-D. They
model an articulated arm that can move vertically along a rail and that can rotate at three joints. Given
parameters x, the arm’s end point y 2 R2 is defined as:

y1 = x1 + l1 sin(x2) + l2 sin(x2 + x3) + l3 sin(x2 + x3 + x4) (16a)

y2 = l1 cos(x2) + l2 cos(x2 + x3) + l3 cos(x2 + x3 + x4) (16b)

with arm lengths l1 = l2 = 0.5, l3 = 1.0.

As the forward model defined in Eq. 16 is deterministic and that we are interested in stochastic simulators, we add
noise at each rotating joint. Noise is sampled from a normal distribution ✏ ⇠ N (0,�2) with � = 0.00017 rad ⌘

0.01�.

The source data p(x) follows a gaussian N (0,�2

i ) for each xi with �1 = 0.25 rad ⌘ 14.33� and �2 = �3 = �4 =
0.5 rad ⌘ 28.65�.

D Benchmark problems - hyperparameters

The surrogate models q�(y|x) are modeled with coupling layers (Dinh et al., 2015, 2017) where the scaling and
translation networks are modeled with MLPs with ReLu activations. In Dinh et al. (2017), the scaling function
is squashed by a hyperbolic tangent function multiplied by a trainable parameter. We rather use soft clamping
of scale coe�cients as introduced in Ardizzone et al. (2019):

sclamp =
2↵

⇡
arctan(

s

↵
) (17)

which gives sclamp ⇡ s for s ⌧ |↵| and sclamp ⇡ ±↵ for |s| � ↵. We performed a grid search over the surrogate
model hyperparameters and found ↵ = 1.9 to be a good value for most architectures, as in Ardizzone et al.
(2019). Therefore, we fixed ↵ to 1.9 in all models.

The surrogate models are trained for 300 epochs over the whole dataset of pairs of source and corrupted data.
Conditioning is done by concatenating the conditioning variables x on the inputs of the scaling and translation
networks. More details are given in Table 5.

Architecture
Network architecture Coupling layers
Scaling network 3 ⇥ 50 (MLP)
Translation network 3 ⇥ 50 (MLP)
N�flows 4
Batch size 128
Optimizer Adam
Weight decay 5⇥ 10�5

Learning rate 10�4

Table 5: Hyperparameters used to train and model q�(y|x)

The source data distributions q✓(x) are modeled with UMNN-MAFs (Wehenkel and Louppe, 2019). The forward
evaluation of these models defines a bijective and di↵erentiable mapping from a distribution to another one which
allows to compute the jacobian of the transformation in O(d) where d is the dimension of the distributions.
However, inverting the model requires to solve a root finding algorithm which is not trivially di↵erentiable. For
LK and L̂K , the forward model defines a di↵erentiable mapping from noise z to x. This design allows to sample
new data points in a di↵erentiable way and to evaluate their densities.

For LELBO and L
IW

K , the forward model defines a di↵erentiable mapping from x to z which allows to evaluate in
a di↵erentiable way the density of any data point x, as required by the two losses. LELBO and L

IW

K also require
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to introduce a recognition network q (x|y) which should allow to di↵erentially sample new data points and
evaluate their densities. Therefore, the same architecture as q✓(x) is used. The core architecture of all models is
the same and detailed in Table 6.

LK and L̂K are trained over 100 epochs over the whole observed dataset. For LK , 10% of the data were held out
to stop training if the loss did not improve for 10 epochs. The L̂K loss was extremely noisy and therefore, no
early stopping was performed. Nonetheless, other strategies could have been used such as stopping training when
the discrepancy between the observed distribution p(y) and the regenerated one

R
q�(y|x)q✓(x) did not improve.

L
ELBO and L

IW

K need more epochs to converge, likely due to the training of two networks simultaneously. When
using these losses, training was done over 300 epochs over the whole observed dataset with 10% of the data held
out to stop training if the losses did not improve for 10 epochs.

Architecture
Network architecture UMNN-MAF
N�integ. steps 20
Embedding network 3 ⇥ 75 (MADE)
Integrand network 3 ⇥ 75 (MLP)
N�flows 6
Embedding Size 10
Batch size 128
Optimizer Adam
Weight decay 0.0
Learning rate 10�4

Table 6: Hyperparameters used to train and model q✓(x) and q (x|y).

E N=1 Empirical Bayes

Throughout the paper, the prior has been learned from the data given a large number of observations as it is
often the case in the Empirical Bayes literature. Interestingly, Figure 6 shows that even with a single (or two)
observation(s), the method is able to learn the set of source data that may have generated the observation(s).
When the number of observations is low, we observed that UMMN-MAFs tend to degenerate and concentrate
all their masses to single points. Therefore, for this experiment, we used coupling layers that act as regularizers
and do not collapse. We aim at studying the regularization introduced by bijective neural networks and how
this may a↵ect the learning of source data in the Neural Empirical Bayes framework in future work.

(a) N=1. (b) N=2.

Figure 6: Empirical Bayes with only N = 1 or N = 2 observations. (Top row) Learned (prior) distributions
over source data. (Middle row) Learned distributions weighted by the likelihood approximated with the
surrogate model. (Bottom row) Set of source data that may have generated the observation(s). Even with few
observations, the method learns good posterior distributions.
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In this experiment, we used the LK loss with K = 1024. The distribution q✓(x) was modeled by 3 coupling
layers where the scaling and translation networks are MLPs of 3 layers of 16 hidden units with ReLu activation.

F Empirical Bayes with simple models

While the need to evaluate the density of new data points under the source model with L
ELBO and L

IW heavily
restricts the model architectures that can be used to model q✓(x), LK and L̂K allow to use any generative model
mapping some noise z 2 Rn to x 2 Rd.

Normalizing flows have been consistently used in this paper to model q✓(x). Wile these models may in themselves
act as a good inductive bias for continuous and smooth source distributions, we show here that simple MLPs can
also learn good source distributions. This experiment is particularly useful as it shows that L

K and L̂K allow
to use a broader class of model architectures than L

ELBO and L
IW. This opens interesting research directions

where useful inductive bias can be embedded in the source model. For example CNNs and RNNS can be used
for image and time series analysis.

In this experiment, we model q✓(x) with a 3�layer MLPs with 100 units per layer and ReLU activations. We
optimize ✓ with the same hyperparameters described in Appendix D. For a fixed GPU memory, the usage of
simpler and lighter models allows to use higher values of K. In this experiment, we use K = 210 and K = 212.

Simulator
y-space x-space

L1024 L4096 L1024 L4096

SLCP 0.55±0.01 0.52±0.01 0.94±0.01 0.92±0.01

Two-moons 0.53±0.02 0.52±0.01 0.68±0.04 0.62±0.05

IK 0.66±0.03 0.58±0.02 0.92±0.01 0.90±0.02

Table 7: Source estimation for the benchmark problems. ROC AUC between q✓(x) and p(x) (x-space), and
between the observed distribution p(y) and the regenerated distribution

R
p(y|x)q✓(x)dx (y-space).

Table 7 reports the discrepancy between the corrupted data from the identified source distributions and the
ground truth distribution of noise-corrupted observations (y-space). It shows that simple architectures allow to
learn a source distribution that can closely reproduce the observed distribution. The ROC AUC between the
source distribution q✓(x) and the ground truth distribution p(x) shows that the source distribution learned on
the two-moons problem is close to the ground truth. For the other problems, useful inductive bias should be
introduced to constrain the solution space.

G Symmetric UMNN-MAF

UMNN-MAF are autoregressive architectures such that:

x = G(z) = [g1(z1), ..., g
d(z1:d)], (18)

where each gi(·) is a bijective scalar function such that:

gi(z1:i) =

Z zi

0

f i(t,hi(z1:i�1))dt+ �i(hi(z1:i�1)), (19)

where hi(·) : Ri�1
�! Rq is a q-dimensional neural embedding of the variables z1:i�1, f i(·) 2 R+ and �i(·) is a

scalar function.

In order to make the distribution q✓(x) one-to-one symmetric, i.e. q✓([x1, ..., xd]) = q✓([±x1, ...,±xd]), it is
su�cient that (i) the distribution p(z) is one-to-one symmetric, (ii) �i(·) is set to 0 and, (iii) the integrand
function is such that f i(t,hi(x1, ..., xi�1)) = f i(±t,hi(±x1, ...,±xi�1)). The condition (iii) is enforced by taking
the absolute value of the input variables in the first layer of the integrand and embedding networks.

Then, q✓([x1, ..., xd]) = q✓([±x1, ...,±xd].
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Proof. First note that if conditions (ii) and (iii) are met:

xi = gi(±z1, ...,±zi�1, zi) , gi(±z1, ...,±zi�1,�zi) = �xi (20)

and

| det Jgi(±z1,...,±zi�1,zi)| = | det Jgi(±z1,...,±zi�1,�zi)| = f i(±zi,h
i(±z1, ...,±zi�1)), (21)

where Jgi(±z1,...,±zi) is the Jacobian of gi(·) with respect to zi.

It follows that:

q✓([x1, ..., xd]) = p(z1, ..., zd)| det JG(z)|
�1 (22a)

= p(z1, ..., zd)
dY

i=1

f i(zi,h
i(z1, ..., zi�1))

�1 (22b)

= p(±z1, ...,±zd)
dY

i=1

f i(±zi,h
i(±z1, ...,±zi�1))

�1 (22c)

= p(±z1, ...,±zd)| det JG(±z1,...,±zd)|
�1 (22d)

= q✓([±x1, ...,±xd] . (22e)

Eq. 22a is a direct application of the change of variable theorem while Eq. 22b is obtained by definition. Condi-
tions (i) and (iii) allow us to write Eq. 22b as Eq. 22c. The equalities in Eq. 21 yields Eq. 22d. and finally, the
last equation is obtained from Eq. 22d and Eq. 20.

H Simulation-Based Calibration

In order to perform simulation-based calibration, we repeatedly i) sample x⇤ from p(x), ii) generate y⇤ by running
the simulator conditioned on x⇤, iii) perform rejection sampling in order to empirically approximate p(x|y⇤),
and iv) store for each dimension i in which quantile of p(xi|y⇤i ), x

⇤
i fall.

For each dimension, it is expected that x% of the parameters belong to the x% quantile of p(xi|yi) and this can
be assessed qualitatively by plotting the fraction of events per quantile as in figures 3 and 5c. To perform a
quantitative assessment, one can for example, compute the maximum absolute di↵erence between the fraction of
events that fall within a quantile and the value of that quantile, or in order words, report the Kolmogorov–Smirnov
(KS) test between the empirical cumulative distribution function (blue lines on Figure 3 or Figure 5c) and the
expected cumulative distribution function (black line on Figure 3 or Figure 5c). We report those quantities in
Table 8 for the di↵erent estimators.

The strength of this approach is that it allows to get insights about the learned posterior distribution without
access to a ground truth. For example, if the model tends to assign more than x% of the parameters to the x%
quantile, the model is overconfident. On the other hand, if it tends to assign less than x% of the parameters to
the x% quantile, the model is underconfident.

In terms of weaknesses, the described approach only independently evaluate the 1D marginal distributions rather
than the full-space distribution. In higher dimension, quantiles can be extended to contours but these might
not be easily computable. Moreover, the approach is a necessary, but not su�cient, condition for well-calibrated
posterior distribution. For example, by design p(x) would pass the calibration test.
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Simulator Estimator KS

SLCP

LELBO
0.37±0.01

LIW

128
0.15±0.02

L1024 0.14±0.01

Two-moons

LELBO
0.40±0.01

LIW

128
0.45±0.01

L1024 0.10±0.01

IK

LELBO
0.65±0.04

LIW

128
0.47±0.05

L1024 0.09±0.02

Table 8: Calibration test from 1000 posterior estimates obtained with rejection sampling for L1024, importance
sampling for L

IW
128

and directly from the recognition network q (x|y) for L
ELBO. As opposed to L1024, the

posterior distributions for L
IW
128

and L
ELBO are not consistently correctly calibrated.

I Collider Physics Simulation

The simulated physics dataset, made publically available by Andreassen et al. (2019b), targets conditions similar
to those produced by the proton-proton collisions at

p
s = 14 TeV at the Large Hadron Collider (Evans and

Bryant, 2008). For surrogate training, source distributions of jets from collisions producing Z bosons recoiling o↵
of jets are modeled with the the Monte Carlo simulator Pythia 8.243 (Sjöstrand et al., 2015) with Tune 26 (ATL,
2014). For learning the source distribution with NEB, an alternative simulation of the source distribution of jets
from collisions producing Z bosons recoiling o↵ of jets is performed with Herwig 7.1.5 (Bähr et al., 2008; Bahr
et al., 1999) with default tune. The Delphes simulator (de Favereau et al., 2014) is used to model the impact
of detector e↵ects on particle measurements using a parameterized detector smearing that models the smearing
e↵ects in the ATLAS (ATLAS Collaboration, 2008) or CMS (CMS Collaboration, 2008) experiments.


